$$
\begin{gathered}
\text { Math/CS 120: Intro. to Math } \quad \operatorname{Pr} \\
\text { Lecture 9: Field Extensions }
\end{gathered}
$$

Professor: Padraic Bartlett

Week 9
UCSB 2014

In any field, find the strangest thing and then explore it.
John Archibald Wheeler, physicist

1 Field Extensions

We ended our constructible numbers lectures with the following classical questions:

- Doubling the Cube: Can you construct a number x such that the volume of the cube with side length x is 2 ? In other words, can you construct $\sqrt[3]{2}$?
- Trisecting the Angle: Given any two lines L, M that intersect at a unique point P in the plane, can you always draw a third line N through P such that the angle between N, L is a third of that between M, L ?
To give an explicit example: we can make a line that makes an angle of $\pi / 3=60^{\circ}$ with the origin by constructing a circle with radius 2 around the origin, drawing a line perpendicular to the x-axis through $(1,0)$, finding their intersection P, and drawing the line through the origin and P.

Can you draw a line that makes an angle of $\pi / 9=20^{\circ}$ with the origin? In other words, can you construct $\cos \left(20^{\circ}\right)$?

- Squaring the Circle: Given a circle C with radius 1 , can you construct a point P such that the distance from P to the origin is the same as the circumference of C ? In other words, can you construct π ?

We answer these questions in these notes. To do this, we will need the following three tools:

1. The concept of dimension, as covered in our earlier notes.
2. The following theorem on constructible numbers, that we proved in week 8:

Theorem. Let a be any constructible value. Then there are constructible values b, c such that a is a root of the polynomial

$$
x^{2}+b x+c
$$

3. The concept of a field extension.

This third concept is not one that we have discussed yet! We define it here:

1.1 Field extensions: definitions, examples.

Definition. (will be filled in when time allows!)

