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ABSTRACT: We use numerical simulations to investigate how the chain length and topology of freely fluctuating
knotted polymer rings affect their various spatial characteristics such as the radius of the smallest sphere enclosing
momentary configurations of simulated polymer chains. We describe how the average value of a characteristic
changes with the chain size and how this change depends on the topology of the modeled polymers. Although
the scaling profiles of a spatial characteristic for distinct knot types do not intersect (at least, in the range of our
data), the profiles for nontrivial knots intersect the corresponding profile obtained for phantom polymers, i.e.,
those that are free to explore all available topological states. For each knot type, this point of intersection defines
its equilibrium length with respect to the spatial characteristic. At this chain length, a polymer forming a given
knot type will not tend to increase or decrease, on average, the value of the spatial characteristic when the polymer
is released from its topological constraint. We show interrelations between equilibrium lengths defined with respect
to spatial characteristics of different character and observe that they are related to the lengths of ideal geometric
configurations of the corresponding knot types.

1. Introduction

Depending on the type of interactions between independent
segments of a polymeric chain, one observes three fundamental
types of polymer behavior: self-attractive, self-repulsive, and
neutral.1 Self-attractive behavior is observed when a diluted
polymer is suspended in a so-called poor solvent. Under these
conditions, individual chains of a polymer collapse into compact
ellipsoidal blobs whose overall dimension, such as the radius
of gyration, grow with the cube root of the chain length and,
therefore, show a scaling exponent ν ) 1/3. Self-repelling
behavior occurs when diluted polymers are suspended in a good
solvent. Under these conditions, segments of a fluctuating chain
that come closer to each other than the Debye screening length
repel each other. The interplay between the repulsive forces and
entropic effects causes polymer chains to adopt loose coil
configurations. The increase of overall dimension of the coils
in terms of their chain length is characterized by the scaling
exponent with the widely accepted value ≈0.588,2 although
simulations from ref 3 indicate a more precise value of ν )
0.5874 ( 0.0002. The neutral behavior is observed for diluted
linear polymers in so-called Θ-solvents where segments that
are not connected to each other neither attract nor repel each
other. Under these conditions, entropic effects shape the polymer

and the loose coils increase their overall dimensions with the
square root of the chain length (scaling exponent ν ) 0.5). The
same scaling behavior with the exponent ν ) 0.5 is also
observed in highly concentrated polymers suspended in a good
solvent. Under these conditions, the melt phase forms where
the repulsive interactions acting on any segment are balanced
so that the shape of each polymer chain is determined only by
entropic contributions.1

Numerical simulations of polymers using a simple model of
random walks composed of freely jointed segments of equal
length with no thickness exhibit many essential features of the
spatial behavior of modeled macromolecules under different
scaling regimes. Numerical modeling reveals that when seg-
ments of random chains have no thickness and are permitted to
pass through each other during simulated fluctuations, the
modeled macromolecules behave like neutral polymers and show
the scaling exponent ν ) 0.5. Interestingly, when the simulated
circular macromolecules (which have no thickness) are not
permitted to pass through each other and therefore reflect the
behavior of circular macromolecules that conserve their topol-
ogy, the scaling behavior changes to that of self-avoiding
polymers with the scaling exponent ν ≈ 0.588. This topological
influence on the statistical behavior of polymers is the subject
of theoretical and numerical studies that addressed, among
others, how the growth rate of the radius of gyration, the average
crossing number, the total curvature and the total torsion are
affected by the topological state of modeled macromol-
ecules.2,4–9 In this paper, we look at the effect of topology on
additional spatial characteristics of modeled polymers and
determine which of these provide statistically distinct spatial
information.

The subject of topology in polymer structure has a significant
research history beginning with the conjecture of Frisch and
Wasserman10 and Delbrück11 that the probability of knotting
approaches unity with increasing number of edges in polygons
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or chain length in ring polymers. This conjecture was proved,
in the lattice case, by Sumners and Whittington12 and by
Pippenger,13 and, in 3-space models, by Diao14 and Diao,
Pippenger, and Sumners.15 Following this, there have been
numerous explorations of the specific parameters describing the
finite range and asymptotic range probability distribution
functions for knotting and the occurrence of the individual knot
type.16–29

Of particular interest in our present study is the equilibrium
length5–8,30,31 associated to the individual spatial structural
measures. The equilibrium length of different knot types of
polymers, under Θ-conditions or in the melt phase, can be
determined through numerical simulations of random polygon
models. The equilibrium length associated to a given spatial
characteristic of a knot type is defined to be the intersection of
the scaling profile of the characteristic measure of the knot type
with the scaling profile for the same measure over the entire
collection of polygons, i.e., for phantom polygons. For example,
in measuring the radius of gyration, the scaling function for
very long polymers has been determined to be Anν, where n is
the number of edges, the amplitude A is dependent upon the
model, and the scaling exponent ν is independent of the model.
For phantom polygons, ν is 0.5, and for self-avoiding polygons,
such as those of a specific knot type, ν is 0.588.

The physical meaning of the equilibrium length can be
conveniently explained using Figure 1. Assume that we have a
knotted DNA molecule forming a figure-eight knot (41) and that
this molecule has a chain size corresponding to 100 statistical
segments. The average radius of the smallest enclosing ball,
the so-called miniball,34 for 41 knots with 100 edges is
approximately 4.3l (see Figure 1), where l is the length of a
statistical segment. What happens to this DNA molecule in the
presence of DNA topoisomerases35,36 that remove the topologi-
cal constraint and act in a globally random manner? The

molecule expands to occupy, on average, a miniball of radius
approximately 4.6l, i.e., the average miniball radius for 100
statistical segment-long cyclic molecules with unrestricted
topology (whose profile is traced by the black line in Figure
1). Now consider a figure-eight DNA molecule with 500
statistical segments. This molecule occupies, on average, a
miniball of radius 11.0l. When released from the topological
constraint, the molecule decreases its overall size and fits, on
average, into a miniball of radius 10.6l. What happens, then, to
a figure-eight DNA molecule with 280 statistical segments upon
removing the topological constraint? The average miniball radius
of this molecule does not change as a consequence of the process
since 280 segments is the equilibrium length with respect to
the miniball radius for polymer molecules forming figure-eight
knots. As is shown in Figure 1, the equilibrium lengths with
respect to the miniball radius have different values for different
knot types, where the more complex knots have higher equi-
librium lengths. Below their respective miniball equilibrium
lengths, the knotted molecules with a given knot type have a
tendency to expand upon release from a topological constraint
while the opposite is true for knotted polymer molecules whose
chain length exceeds the equilibrium length.

Notice that in the example discussed above, we have
considered topoisomerases that do not use the energy of ATP
hydrolysis to promote strand passages and are, therefore, unable
to shift the thermodynamic equilibrium. For example, topoi-
somerase I of Escherichia coli, acting on double-stranded
circular DNA with single-stranded cuts, brings this DNA to
topological equilibrium at the given solvent conditions.37 Better
known type-II DNA topoisomerases that use the energy of ATP
hydrolysis are able to change the topological equilibrium and
reduce the steady-state knotting level by more than 1 order of
magnitude below the knotting level of the thermodynamic
equilibrium.38–40

Figure 1. The scaling profile of the average miniball radius (MBR) for all generated random polygons taken together (phantom polygons, black
curve) intersects the respective profiles of random configurations of various knot types. The intersection points define the equilibrium length for a
given knot type with respect to a given characteristic (miniball radius in this case). The blown up region shows the intersection between the profile
for 41 knots (green curve) with that of phantom polygons (black curve). Standard diagrams of some of the analyzed knot types are shown together
with their Alexander-Briggs notation. In the notation, the first number indicates the minimal number of crossings a given knot can have in a
standard projection and the second number indicates its tabular position among the knots with the same number of crossings in standard tables of
knots.32,33 Notice that for chiral knots such as 31, 51, and 61, we group together the left- and right-handed versions of these knots in our statistical
analysis.
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Grosberg et al.8,30,31 introduced the overknotted and under-
knotted regimes to refer to a polymer with a given knot type.
In the overknotted regime (relatively short chain size for this
knot type), a polymer with a given knot type would have a
tendency to simplify its knot type upon release from the
topological constraint. In the underknotted regime (relatively
long chain size for this knot type), the polymer would have the
tendency to increase the knot complexity.

In refs 5 and 6, the equilibrium length was computed for two
quantities, the average crossing number and the radius of
gyration. In those papers, the equilibrium values with respect
to these two quantities were close enough that one might suspect
that the equilibrium length is a universal quantity for a knot
type within a given model, independent of the choice of spatial
characteristic quantity. In ref 7, the equilibrium lengths were
computed for the total curvature and the total torsion and
compared to the lengths at which different knot types attained
their maximum probability. While the equilibrium lengths
defined with respect to the total curvature and total torsion are
very similar to each other for each knot type, they are
significantly different from the equilibrium lengths measured
with respect to either the radius of gyration or the average
crossing number.5,6 A goal of this research is to determine the
extent to which these previously characterized families of
equilibrium lengths are comparable to other spatial character-
istics and whether there are additional distinct families of spatial
characteristics. Distinct families would appear to capture distinct
facets of the spatial structure of the polygons thereby providing
new perspectives on the structure of the polymers they model.

2. Quantities Studied

The radius of gyration,5 average crossing number,6 total
curvature, and total torsion7 are four quantities of spatial
polygons whose behavior has been observed to be correlated
to experimental observations of polymers and other macromol-
ecules such as DNA. Are there are other spatial attributes of
random polygons which capture independent information and
which also correlate with experimental observations? In the
research reported here, we have selected a wide range of such
attributes for study. We report on our investigation of the
equilibrium lengths and scaling properties of random equilateral
polygons with the respect to the following spatial characteristics:

The aVerage crossing number (ACN) is the average of the
number of crossings seen when the polygon is projected in every
direction. For polygons, the average crossing number is
computed in closed form as proposed by Banchoff41 and
implemented by Sullivan in Brakke’s Surface Evolver42 (see
also ref 43).

The radius of gyration (RGN) is a standard measure of the
overall dimensions of polymer chains and corresponds to the
root-mean-square distance of the vertices of the polygon from
their common center of mass.

The miniball is the smallest sphere that contains all vertices
of the polygon and is characterized by the miniball radius
(MBR) computed using ref 34.

The thickness radius (THI) is a measure of the extent to which
the polymer is self-avoiding (for details, see refs 44–46).
Roughly speaking, it is the radius of a thickest non self-
intersecting tube about the polymer. Knot configurations with
maximal thickness radius for a fixed length are called ideal or
tight knots and have been shown to predict some of the physical
and statistical properties of knotted polymers (see e.g., refs
47–51).

The dimensions of a smallest standard box enclosing the
vertices of a polygon were used as a measure of size in ref 52
where the box length (BXL) is the maximal distance between
any pair of vertices. The box width (BXW) is the maximum

distance between any pair of vertices in a projection on a plane
perpendicular to the chord defining the box length. The box
height (BXH) is then the length of the one-dimensional
projection of the analyzed polygon on the line perpendicular to
the line segment defining the box width. In addition to linear
dimensions, we also measure the box surface area (BXA) and
box Volume (BXV).

The skinny box is a more “economical” box where the longest
orthogonal distances are not placed along the major axes of the
orthogonal box. The skinny box height, for example, is the
shortest distance between parallel walls which contain the poly-
gon. As above, we measure the skinny box length, width, height,
surface area, and volume, denoted SBL, SBW, SBH, SBA, and
SBV respectively.

The conVex hull is the spatial polyhedron that one would
obtain by shrink-wrapping the set of points corresponding to
the vertices of the polygon. We measure the surface area (CHA)
and volume (CHV) of the convex hull using qhull.53

The equilibrium lengths for the following two quantities were
computed in ref 7 and are in the tables below. We include them
for completeness.

The total curVature (TCU) is the sum of the turning angles
at the vertices and is a discrete analog of the total curvature of
a curve in geometry.54,55

The total torsion (TTO) is the sum of the angles between
the two planes incident each edge. The first plane is determined
by the edge and the previous edge and the second plane is
determined by the edge and the following edge. This is a discrete
analog of the total torsion of a curve in geometry. Figure 2
shows the miniball, convex hull, box, and skinny box of a figure-
eight knot.

A detailed description of these spatial characteristics is
provided in the Supporting Information.

3. Computations

We analyze equilateral random polygons from 50 edges to
500 edges by increments of 10. For each number of edges, we
generated 400 000 polygons using the hedgehog algorithm56 and
classified these polygons by their HOMFLY polynomials57 using
the program of Ewing and Millett.58 We analyze the spatial
information for the 31, 41, 51, 52, 61, 62, and 63 knots as well as
phantom polygons (i.e., the entire knot population) at each
number of edges. Because the average spatial values for right-
and left-handed versions of a chiral knot should be the same,
we group them together to provide a statistically robust data
set. A more detailed explanation of the polygon generation can
be found in ref 7.

We next determine, for each spatial quantity, the number of
edges for which the graph of an individual knot type intersects
the graph for the entire knot population, the phantom polygons.
To do so, we fit the data with functions that capture the behavior
of the graphs. With the exception of the average crossing number
and thickness radius, a function of the form

ndν(A+B/√n+C/n) (1)

is used. This scaling was proposed by Orlandini et al.18 The
value of power dν depends on the “dimension” of the quantity
(length-scale quantities have d ) 1, surface area quantities have
d ) 2, and volume quantities have d ) 3) and whether we are
fitting phantom polygons (ν ) 0.5) or a fixed knot type (ν )
0.588). We use gnuplot59 to generate initial fitting parameters
followed by a Markov Chain Monte Carlo (MCMC) method.
The MCMC analysis is utilized to facilitate the computation of
error bounds in the equilibrium length, i.e., the intersection
between the fitting function for a particular knot type and for
the phantom polygons, although the technique, inherently, also
determines a mean fitting curve to the data.
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We use a slight variation on the Monte Carlo Markov chain
(MCMC) technique described in ref 7. A detailed description
of our method may be found in the Supporting Information for
this work. For a given number of edges and fixed quantity, the
distribution of the values is log-normal (which also is shown
in the Supporting Information). The exceptions are the thickness
radius (which appears to have an exponential distribution at each
number of edges) and the total curvature and total torsion from
ref 7 (which are normally distributed). The MCMC technique
from ref 7 can be used with log-normal (and other distributions)
but is computationally expensive. To speed the calculations we
use the central limit theorem from statistics to transform the
distributions that are not normal to a corresponding data set
that is normally distributed.

For the sake of this study, it is easiest to explain the
differences between the technique used here versus those
reported in ref 7 by explaining one example. In measuring the
miniball radius of the 31 knots, the distribution of the data points
is log-normal. For a given number of edges, we begin with a
list of miniball radius values that are independent and unordered.
We average the values (at each number of edges) in groups of
50 and discard any extra data points if the last group of numbers
does not contain a full 50 data points. Next, we want to see if
the averages are normally distributed so we use the Shapiro-Wilk
test for normality at each number of edges. When fewer than
5% of the different numbers of edges fail the Shapiro-Wilk test,
we conclude that the grouping has successfully transformed the
log-normal distributions into normal distributions. If more than
5% fail the Shapiro-Wilk test, then we increase our grouping
to 60 and return to our Shapiro-Wilk analysis. We continue to
increase the groupings by 10 until we reach a grouping level
where enough of the distributions are passing the Shapiro-Wilk
test. In the end, we cut the data set size by a factor of 50 or
more which in turn reduces the computation time by roughly
the same factor. We then use the MCMC technique from ref 7
and the Supporting Information on the grouped data sets.

We ran some test cases using both the full set of data (using
log-normal MCMC) and the grouped data (using Gaussian
MCMC) and found that the error values obtained are similar
(usually within 10%) and that the latter error values always
exceeded the former. In other words, our error values reported
here are similar (likely slightly higher) than the error bounds
we would obtain by running MCMC with the full log-normal
data sets.

The MCMC calculations require a fitting function for the data.
For most of the quantities, we used a function of the form ndν(A
+ B/�n + C/n), where d ) 1, 2, 3 is a measure of the
dimension of the measurement and ν ) 0.5, 0.588 depends on
whether we are measuring the attribute on phantom polygons
or polygons of a fixed knot type. The two exceptions are the
average crossing number and thickness radius.

For the average crossing number, we use the fitting function

A(n- nK) ln(n- nK)+B(n- nK)+C (2)

for a given knot type (where nK is the minimum stick number
for this knot type) and

Dn ln(n)+E (3)

for the phantom polygons as in ref 6.
For the thickness radius, the log-log plot of the mean values

is well fit by a function of the form A + B/�n + C/n. Thus, we
fit the thickness radius values with the function

exp(A+B/√ln(n)+C/ln(n)) (4)

The MCMC calculations deliver 1000 likely fitting curves
for each of the knot types (in addition to the phantom polygons)
and spatial characteristics. From the fitting curves for a given

quantity, we compute the 1000 intersections between the scaling
profiles for the phantom polygons and those for each knot type.
The largest and smallest 2.5% are discarded and the remaining
values determine the 95% confidence intervals for the equilib-
rium length.

4. Analysis

In addition to the determination of the equilibrium lengths
for various knot types, one of the objectives of this study is to
determine whether imposing a given topology changes the
scaling behavior of modeled polymeric chains with respect to
quantities of very different character such as the overall
dimensions, average crossing number, and thickness radius. In
each case analyzed here, the scaling behavior of modeled
polymers with unrestricted topology was different than that of
modeled polymers confined to a given knot type. See Figure 1
for the case of miniball radius (MBR). The scaling profiles for
individual knot types intersect the scaling profiles of phantom
polymers to determine the equilibrium length of a given knot
type with respect to the given characteristic. Table 1 lists the
computed equilibrium length values that were calculated in this
study as well as the values of the equilibrium length for the
total curvature (TCU) and total torsion (TTO) from ref 7.

Our results show that there is significant visible structure
among the values of the equilibrium lengths within the various
categories of spatial characteristics. We see that there are four
distinct families:

1. Average crossing number.
2. Radius of gyration and spatial dimensions.
3. Thickness radius.
4. Total curvature and total torsion.
The computed equilibrium lengths are shown in Table 1.
We have grouped the data to show that different quantities

measuring a similar attribute of the knot population do, in fact,
determine very similar equilibrium lengths. For example, we
found that the total curvature and total torsion have equilibrium
length values that are within, on average, 3.8%.7 Here, we find
that the miniball radius, box length, and skinny box length, all
measurements of the spatial extent of the knot, have their
equilibrium length values within 0.4% on average. Furthermore,
the equilibrium lengths with respect to the surface area and
volume of both types of boxes and the convex hull are within
0.2%. In fact, note that for the 14 quantities beginning with
RGN in Table 1, the equilibrium lengths are within ap-
proximately 6%, on average.

The equilibrium lengths form four distinct groups: (1) average
crossing number, (2) radius of gyration and other spatial
dimensions, (3) thickness radius, and (4) total curvature and
total torsion. The differences between groups 3 and 4 are on
the order of 7 to 8%, on average. In the case of groups 1 and
2, they differ by 28%, on average. These differences suggest
that the groups capture distinct spatial information. For the
thickness radius, one might expect to find similarity with the
miniball radius since a knot with small miniball radius must
be tightly packed and, thus, have small thickness. We plot the
equilibrium length derived from the thickness radius and average
crossing number with respect to the equilibrium length derived
from the miniball radius (Figure 3) and see that while the values
are not the same, their relative values appear to be consistent.

For the average crossing number, we see equilibrium length
values that are smaller than the majority of the quantities we
computed. However, if we plot the equilibrium length with
respect to the average crossing number versus the miniball
radius, for example, we again see this nearly linear relationship
in Figure 3. This nearly linear relationship exists between all
the families of equilibrium values that we have computed.
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This suggests a natural hypothesis: while the actual values
of the equilibrium length may differ between spatial quantities,
there exists a linear relationship between any pair. This would
imply that the equilibrium length is a universal quantity, but
scales depending on the particular quantity one measures.

We note an intriguing similarity between the probability
distribution function (PDF) of a given characteristic for a given
knot type near its equilibrium length with the corresponding
PDF for phantom chains with the same length. Figure 5 shows
that the PDF of the miniball radius (MBR) values for 31 knots
composed of 190 segments practically coincides with the PDF
of MBR for phantom polygons with 190 segments. The means,
of course, almost coincide as 190 segments is very close to the
equilibrium length of trefoil knots with respect to MBR value
(which is 191 ( 1, see Table 1). However, the fact that their

distributions are so similar is surprising. The collection of
phantom polygons contains approximately 22% trefoil knots,
49% unknots, and 29% more complex knots. The PDF of MBR
for unknots with 190 segments is significantly shifted toward
higher MBR values indicating that unknots are, on average, more
expanded than trefoil knots or phantom polygons with the same
chain size. In contrast, the PDF of MBR for knots more complex
than the trefoil is shifted toward lower MBR values indicating
that more complex knots are, on average, more compact than
trefoil knots or phantom polygons. The fact that the PDFs for
unknots and for the more complex knots are significantly shifted
toward the right and left, respectively, compared to the trefoils
may suggest that, by grouping all the knots together, the PDF
of phantom polygons will be significantly broader than the PDF
for the trefoil knots. However this is not what is observed. We

Figure 2. Enclosing solids for a 16-edge figure-eight knot (41) capture the knot’s dimensions in different ways. The knot has been thickened for
demonstration purposes, so the slight protrudance is to be expected.

Table 1. Equilibrium Lengths for the Different Knots with Respect to the Different Spatial Quantities

Equilibrium Length ( Error

31 41 51 52 61 62 63

ACN 169 ( 1 250 ( 1 337 ( 2 336 ( 2 431 ( 5 441 ( 5 447 ( 7
RGN 187 ( 1 278 ( 2 368 ( 5 369 ( 4 475 ( 12 486 ( 12 487 ( 16
SBL 190 ( 1 279 ( 2 363 ( 5 367 ( 4 461 ( 10 470 ( 10 472 ( 17
BXL 191 ( 1 279 ( 2 363 ( 5 367 ( 3 461 ( 10 469 ( 10 474 ( 12
MBR 191 ( 1 280 ( 2 363 ( 4 367 ( 3 460 ( 9 469 ( 10 472 ( 13
SBW 195 ( 1 282 ( 2 366 ( 5 366 ( 3 460 ( 11 468 ( 9 474 ( 13
BXW 195 ( 1 281 ( 2 366 ( 4 366 ( 3 458 ( 10 465 ( 10 477 ( 13
BXH 198 ( 1 280 ( 3 359 ( 5 361 ( 4 445 ( 12 458 ( 12 460 ( 16
SBH 198 ( 1 280 ( 2 359 ( 5 360 ( 4 436 ( 11 458 ( 11 451 ( 14
CHA 198 ( 1 287 ( 2 370 ( 3 373 ( 3 465 ( 7 477 ( 7 478 ( 9
SBA 198 ( 1 286 ( 2 371 ( 3 373 ( 3 464 ( 7 476 ( 7 477 ( 10
BXA 198 ( 1 286 ( 2 370 ( 3 373 ( 2 465 ( 8 474 ( 7 480 ( 12
SBV 203 ( 1 292 ( 1 377 ( 4 380 ( 3 469 ( 7 484 ( 8 484 ( 11
CHV 203 ( 1 292 ( 1 376 ( 3 379 ( 3 471 ( 7 483 ( 7 483 ( 10
BXV 203 ( 1 292 ( 2 377 ( 4 380 ( 3 471 ( 8 483 ( 8 490 ( 12
THI 232 ( 1 305 ( 4 358 ( 8 361 ( 6 432 ( 19 440 ( 18 430 ( 17
TCU 226 ( 4 241 ( 6 265 ( 10 275 ( 8 287 ( 17 301 ( 14 289 ( 18
TTO 229 ( 2 245 ( 5 279 ( 8 276 ( 5 292 ( 10 303 ( 9 307 ( 10
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observe only a slight difference in the variance (0.93 for 31 and
1.04 for phantom polygons). This behavior is a result of the
balancing of the MBR values of the unknots by the more
complex knots. For example, in the population of unknots, there
is a higher fraction of more expanded configurations (large MBR
values) than in the population of trefoil knots. On the other hand,
in the population of more complex knots, there is a smaller
fraction of expanded configurations than in the population of
trefoils. As a consequence, when we add unknots and more
complex knots to trefoil knots (obtaining the full population of
phantom polygons), the fraction of expanded configurations
stays the same as for the set of trefoil knots. The same principle,
by analogy, applies to more compact configurations.

Within the range of our data, the profiles for the knot types
never intersect. We believe, however, that some profiles may
intersect for knots with higher crossing numbers, especially for
knots that belong to different families (e.g., alternating and
nonalternating, prime and composite, etc.). If this were not the
case, then the ordering of the profiles would be entirely
determined by the average values at every number of edges.
However, at the minimal number of edges which is sufficient
to create a certain knot type, the so-called stick number (see
e.g., refs 60–65), the configurations can be quite constrained.
At this number of edges, a particular knot type is likely to have
anomalous average spatial values. As such, it would not be
surprising to see intersections of the profiles for different knot
types as the number of edges is increased and the knots are
permitted to adopt more relaxed configurations. This will be
more likely to happen for more complex knots as their
corresponding profiles are expected to be much closer to each
other than is seen for the seven knots types analyzed in this
paper.

5. Conclusions

The results of our analysis are consistent with a scaling
exponent, for the spatial characteristics studied here, of 0.5 for
phantom polygons and 0.588 for knotted polygons, or an
appropriate multiple. This is a consequence of the fact that
random polymers with a fixed topology behave as if self-
avoiding even though the excluded volume is set to zero.4,5,2,8

The equilibrium lengths of the radius of gyration and the new
spatial characteristics investigated here form a distinct family
suggesting that they reflect one spatial feature (Figure 4).
Similarly, the equilibrium lengths associated to the total
curvature and total torsion appear to form another distinct family
thereby providing another spatial feature. The average crossing
number and thickness radius equilibrium lengths appear to
capture dimensions of the structure of polymers quite distinct
from each other and from those captured by the first two
families. Observing that the gaps between the average crossing
number equilibrium length values for the different knot types
appear to be similar to those for the new spatial characteristics
(Figure 4), a linear relationship is suggested. This is confirmed,
for these knots, as is seen in Figure 4 where the equilibrium
length for the miniball radius is plotted versus the equilibrium
lengths for the thickness radius and average crossing number.

The spatial characteristics we study here, with the exception
of the average crossing number and thickness radius, would be
expected to scale in a manner that depends upon the spatial
nature of the characteristic due to the similarity of their
equilibrium lengths to those of the radius of gyration. Thus,
those that are linear spatial characteristics would scale in the
same manner as the radius of gyration. The second order
characteristics, those comparable to surface area, would have
scaling exponents that are twice the linear exponent. Third order
characteristics, comparable to volume, would have scaling
exponents that are three times the linear exponents. One
example, the box volume, is shown in Figure 6 where one can
observe the scaling as well as the equilibrium length.

The two exceptions to this scaling behavior are the average
crossing number (ACN) and thickness radius (THI). While the
average crossing number does not appear to have a scaling
functional behavior,15 it has been shown to approach An ln(n)
(where A is a fitting parameter) for very long polymers. For
thickness radius, the log-log plot was well fit by the function
A + B/�n + C/n resulting in a fitting by exp(A + B/�ln(n) +
C/ln(n)).

Earlier studies revealed that average values of statistical
characteristics of polymer chains forming various random knots
are reflected in the shapes of the so-called ideal geometric

Figure 3. Equilibrium length based on thickness radius and average
crossing number versus the equilibrium length based on miniball
radius.

Figure 4. Equilibrium lengths for the different knots with respect to
their distinct spatial quantities.

Figure 5. The density plots (i.e., estimations of the PDFs of the
distributions) for the phantom polygons (black) and its constituent
populations: 01 knots (blue), 31 knots (red), and the polygons which
are more complex than the 31 knot (green).
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configurations of knots.47,51,66,67 The ideal geometric configura-
tions (see, e.g., refs 52 and 68–80) are the shapes needed for
closing a given knot using a minimal length of flexible uniform
radius rope and appear to be unique for simple knots. It was
observed, for example, that the average writhe of a large
statistical sample of random knots of a given knot type is very
close to the writhe value of the computed ideal configura-
tion.51,66 Also, a number of other statistical and physical
properties of randomly fluctuating knots seem to be echoed by
the ideal forms of these knots. For example, the electrophoretic
migration speed of various knot types made of identical length
DNA molecules was proportional to the average crossing
number of the ideal configurations of the corresponding knot
types.16,47 Depending on the radius of the rope, the overall
dimensions of a given knot can vary, however its shape is
invariant of scale as well as the ratio of the length and the radius
of the rope needed to form a given knot.81

The ratio of length to radius is known as the ropelength of a
knot and the minimum ropelength needed to form a given knot
is a natural measurement of the complexity of a knot. The more
complex the knot, the more rope is required to tie the knot.
The equilibrium lengths studied here also show the same
behavior since the more complex knots show higher equilibrium
lengths and this is independent of the characteristic. This
suggests that there could be a relationship between the equi-
librium lengths and the ropelength of ideal configurations. Figure
7 shows that while the correlation is not perfect, one observes
similar trends in both categories. Studies of equilibrium lengths
of more complex knots would be needed to extend the plot and
see if all points characterizing the relationship between an

equilibrium length and the ropelength of ideal knots will follow
the same power law function5 or whether different families of
knots will behave differently and the corresponding points on
the plot will fall within a narrow cone delimited by power law
functions.82
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