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ABSTRACT: Momentary configurations of long polymers at thermal equilibrium usually deviate from spherical
symmetry and can be better described, on average, by a prolate ellipsoid. The asphericity and nature of asphericity
(or prolateness) that describe these momentary ellipsoidal shapes of a polymer are determined by specific
expressions involving the three principal moments of inertia calculated for configurations of the polymer. Earlier
theoretical studies and numerical simulations have established that as the length of the polymer increases, the
average shape for the statistical ensemble of random configurations asymptotically approaches a characteristic
universal shape that depends on the solvent quality. It has been established, however, that these universal shapes
differ for linear, circular, and branched chains. We investigate here the effect of knotting on the shape of cyclic
polymers modeled as random isosegmental polygons. We observe that random polygons forming different knot
types reach asymptotic shapes that are distinct from the ensemble average shape. For the same chain length,
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more complex knots are, on average, more spherical than less complex knots.

1. Introduction

Ring polymer chains can be modeled as freely jointed random
polygons. This simple representation of polymeric chains reflects
their statistical properties under the so-called 6-conditions, where
independent segments of the polymer chains neither attract nor
repel each other.' Under -conditions, linear polymers behave
like ideal random walks and show scaling exponent v = 0.5. If
polymer chains are circular, the situation gets more complex
as the scaling behavior depends on whether one studies all
possible configurations or just those that represent a given
topological type like unknotted circles.” "

It is an accepted convention in studies of shape and size of
polymer chains to characterize actual configurations adopted
by the polymers by calculating their inertial properties. Radius
of gyration, i.e., the root-mean-square distance from the center
of mass, is a standard measure of polymer size. In simulation
studies, the mass of the polymer is assumed to be equally
distributed among the vertex points of the simulated chains.
Studies of overall polymer size reveal that the radius of gyration
of circular polymers for a fixed knot type scales like that of
self-avoiding walks* *'*'? with an estimated scaling exponent
v = 0.5874 4 0.0002'* while phantom polymers behave like
neutral ideal chains with the scaling exponent v = 0.5.

Studies of shapes of polymer chains use the three principal
moments of inertia calculated for given configuration of the
chain to build an ellipsoid with the same ratio of its principal
moments of inertia as those of the given polymer configuration.
Kuhn'’ was first to propose that the overall shape of random
coils formed by polymer chains at thermodynamic equilibrium
should, for entropic reasons, have the shape of a prolate
ellipsoid. His proposal has been confirmed in numerical simula-
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tion studies (see e.g. refs 9, 16, and 17) and also in experimental
measurements.'®'? In the present study, we address how the
shape and overall size of polymer chains are influenced by the
presence of knots in these polymers.

The ellipsoid of inertia is defined using the moment of inertia
tensor

N N
1 i i i i . .
T, =25 Y & - X)X, —X,) (=123j=
2N n=1 m=1
1,2,3) (1)

where X}, denotes the ith coordinate of the nth vertex and N is
the number of vertices in the polygon on which one has equally
distributed the mass of the polymer. As Tj; is a real symmetric
tensor, it has three real eigenvalues 4, 1», and A3 giving the
three principal moments of inertia and determining the corre-
sponding eigenvectors providing the principal axes of inertia.
The square roots of A;, 42, and A3 define the semiaxis lengths
of the associated ellipsoid of inertia.

A critical question is how to best measure the spatial extent
of this ellipsoid. To accomplish this objective, in 1986 Aronovitz
and Nelson? proposed a three-dimensional system, later modi-
fied by Cannon, Aronovitz, and Goldbart,?! which separates the
size calculation (measured by the squared radius of gyration,
see eq 4, which we will denote by R) from two shape
descriptors: asphericity, A (see eq 2), and nature of asphericity
(see eq 3). In this definition, the asphericity and nature of
asphericity are calculated using the three principal moments of
inertia, i.e., the eigenvalues A, A, and A3 of T};. The asphericity
was defined at the same time by Rudnick and Gaspari** and
has since become a principal target of study*'**~?’ of those
interested in assessing the spatial shape of polymers. For the
sake of explicitness, we will refer to the nature of asphericity
as the prolateness and denote it by P. Roughly speaking, the
asphericity measures the degree to which the three axis lengths
of the ellipsoid of inertia are equal. The prolateness indicates
whether the largest or smallest axis length is “closer” to the
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Figure 1. Examples of prolate (left) and oblate (right) ellipsoids. In a prolate ellipsoid, the most round equatorial ellipse is perpendicular to the
longest axis, e.g., a rugby ball. In an oblate ellipsoid, the shortest axis is perpendicular to the most round equatorial ellipse, e.g., M&M candy. The
semiaxis lengths for the ellipsoids shown are (1, 0.5, 0.5) and (1, 1, 0.4), respectively. The asphericity of both ellipsoids above is 0.0625, and the

prolateness values are 1 and —1, respectively.

(a) R~ T7.08 (b) R~ 4.03 (c) R~1.73
A=0.35 A= 0.068 A ~0.0012
P ~0.99 P ~0.67 P~ —0.52

Figure 2. Examples of 50 edge polygonal trefoil knots with high, medium, and low asphericity shown with their characteristic inertial ellipsoids.

middle axis length and takes values between —1 and 1, thereby
quantifying the transition from oblate to prolate shapes.

Together, the squared radius of gyration, asphericity, and
prolateness form an independent set of parameters describing
an ellipsoid. In section 2, we discuss relationships between R,
A, and P and explain why we have chosen to replace the
eigenvalues employed in their definition by the square root of
3 times the eigenvalues, i.e., the semiaxis lengths of the
characteristic inertial ellipsoid, in our study of the shape of
polymers. We report these new measures of asphericity and
prolateness as well as those used previously.

Several studies have addressed the question of how the
asymptotic value for the asphericity depends on the solvent
quality. In contrast to linear chains that show large differences
in asphericity depending on whether the chains are self-avoiding
(good solvent) or not (6-solvent), the circular chains show quite
similar asymptotic values of asphericity under these two different
conditions.” Diehl and Eisenriegler*® determined theoretically
(using the eigenvalues or, equivalently, squared axis lengths)
that the asymptotic value of asphericity for non-self-avoiding
random polygons is 0.2464. Simulation studies by Bishop and
Saltiel indicated that for self-avoiding polygons the asphericity
reaches an asymptotic value of 0.255 & 0.010.%° More recently,
Zifferer and Preusser have simulated self-avoiding ring polymers
with up to 8192 segments and, upon extrapolation to infinite
chain length, concluded that the asymptotic value of asphericity
for this system is 0.2551 #+ 0.0005.'® One of the goals of this
paper is to estimate numerically this asymptotic value for
polygons with a fixed knot type.

When a polygon has between three and five vertices, the only
knot possible is the unknot, i.e., a polygon that is topologically
equivalent to a circle. At six edges, the first nontrivial knot
appears, the trefoil knot, known as 3;. For increasing numbers
of edges, more and more different (and more complicated)
types of knots become possible (see e.g. refs 28—30 for a
discussion of the minimal number of edges in an equilateral
polygon required to realize each knot type and the growth of
the number of knot types possible as a function of the number

of edges). In addition, the probability of obtaining a knotted
polymer tends to one as the length goes to infinity.*'3*

Here we investigate the shape of circular polymers with fixed
knot type, as measured by their asphericity and prolateness, and
determine the dependence of shape on the length and knotting
of the polymer. We find that for “small” numbers of edges
polymers of a fixed nontrivial knot type tend to be more
spherical (lower asphericity) than phantom polygons with the
same number of edges. However, the opposite is true for very
long knotted chains that, at least in case of the knot types we
analyzed, become less spherical than phantom polygons (see
Figures 6 and 8). Prolateness shows a more complex behavior:
short knotted chains of a given nontrivial knot type are initially
less prolate than phantom polygons of the same size. Then, in
the intermediate size range, the knotted chains become more
prolate than the corresponding phantom chains. Finally, in the
long chain regime, we again observe that knotted chains become
less prolate than phantom chains (see Figures 7 and 8).

2. Exploration of Shape Measures

As discussed in the previous section, we use a slight variation
of asphericity and prolateness to measure the shape of individual
ellipsoids describing circular polymers as we replace the
principal moments of inertia, i.e., eigenvalues of the moment
of inertia tensor, by the square root of 3 times the eigenvalues.
To explain why this is helpful, we first review the principal
concepts: the asphericity is a number between 0 (implying a
spherical shape when a = b = ¢) and 1 (implying a rodlike
shape when b = ¢ = 0) and is defined by

— b+ @—cP+®-cf

Alab.c) =&
2a+ b+ o)

2

where a, b, and ¢ are measurements of the size of the ellipsoid
of inertia. The prolateness has values between —1 (perfectly
oblate, e.g. when a = b > ¢) and 1 (perfectly prolate, e.g. when
a > b = c¢) and is defined by
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Pla.b.c) = 2a 2b 2c)(2b2 a—c)2c —a _ b) 3)

2(a” + b"+ ¢ — ab — ac — bc)
To get a sense for the values of prolateness, assume that a > b
> ¢ 2 0. Then P(a,b,c) = 0 when b = (a + ¢)/2. When b <
(a + ¢)/2, the prolateness is positive (i.e., the ellipsoid is prolate),
and when b > (a + ¢)/2, the prolateness is negative (i.e., the
ellipsoid is oblate). Note that both A and P are invariant of scale
and symmetric in a, b, and c.

As discussed earlier, traditionally the principal moments of
inertia 41, 42, and 43 have been used as the arguments «, b, and
¢.2°7?7 The scaling arguments used to predict asymptotic values
for random walks, random polygons, star shapes, etc., use these
eigenvalues as well. Cannon et al.?' observed that the asphericity
is “biased towards larger configurations”. However, with
additional care in the definitions, one can eliminate the bias of
R in A while preserving the unbiased nature of P.

One of the goals in defining the asphericity and, subsequently,
the nature of asphericity or prolateness is to have true measures
of shape that are unbiased by the size of the polygon. A standard
measure of the size of a polymer, the squared radius of gyration,
is determined from its moment of inertia tensor as the sum of
its three eigenvalues:

R=A+A+1 )

With the objective of eliminating the scale bias, we first define
an ellipsoid whose principal moments of inertia and principal
axes coincide with those of the polygon. This ellipsoid has
semiaxis lengths of a; = (34)"2, i = 1, 2, 3. We refer to this
ellipsoid as the characteristic inertial ellipsoid (see Figure 2
where one can observe the relationship between polygons and
their associated characteristic inertial ellipsoids).

The characteristic inertial ellipsoid has the attractive property
that the characteristic inertial ellipsoid of an ellipsoid is itself.
This is consistent with the definition of the radius of gyration,
for example, where a sphere of radius r has radius of gyration
equal to r. In contrast, the ellipsoid of inertia of an ellipsoid
has the same principal axes of inertia, but the semiaxis lengths
are scaled by the factor 1/4/3; i.e., the ellipsoid of inertia is a
shrunken version of the original.

For the characteristic inertial ellipsoid, the squared radius of
gyration is

&+ + 3

R(a,b,c) = 3

(&)

where we use the arguments a;, ap, and a3, i.e., the semiaxis
lengths of the characteristic inertial ellipsoid.

While this might appear to be a more complex way to
compute R, it is really A and P that have been changed to ensure
that the triple, R, A, and P, are independent and unbiased as
demonstrated by their gradients which are now orthogonal:

URUA = URUP = UALP =0 (6)

where -+ is the standard dot product in R3. Equivalently, one
observes that their contour surfaces now provide an orthogonal
system (see Figure 3). One way of viewing this distinction is
via an analogy with bases for vector spaces and the special
properties enjoyed by orthogonal bases or sets of functions such
as Legendre polynomials, Bessel functions of the first kind, or
the family {sin(nx), cos(nx)} leading to Fourier series. The latter
are not only bases but provide orthogonal independent measures
expressing the structure of the vector space.

In constrast, if one were to use the eigenvalues instead of
the axis lengths, this results in redefining R to be R(x,y,z) = x
+ y + z where the arguments are now A, 4,, and A3;. The
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Figure 3. When using the semiaxis lengths for the parameters of R, A,
and P, a Mathematica®® plot of the contour surfaces shows that they
intersect perpendicularly (due to the fact that OR-[JA = OR-[IP =
OA-0OP = 0). The x, y, and z axes shown are the semiaxis lengths of
ellipsoids and, for the sake of this figure, range from 0 to 2. The contour
surfaces are the semiaxis lengths corresponding to some fixed R, A, or
P values.

Table 1. Estimates of the Asymptotic Values for Asphericity

knot axes eigenvalues
phantom 0.074360 = 0.000 42 0.2461 4 0.0013
0 0.07875 =+ 0.000 74 0.2550 4 0.0023
3 0.07931 £ 0.0010 0.2561 4 0.0030
44 0.0797 £ 0.0021 0.2569 £ 0.0066
5 0.0814 + 0.0037 0.263 £ 0.011
5, 0.0819 + 0.0029 0.2643 £ 0.0085
6 0.0853 £ 0.0055 0.275 £ 0.016
6, 0.0807 & 0.0051 0.259 £ 0.016
63 0.0782 £ 0.0063 0.254 + 0.020

definitions of A and P remain the same. In such a case, we still
obtain [JR-0JP = [HA-0P = 0. However, [JR-JA = [6(xy +
xz + yz — x%2 — y* — ))/(x + y + 2)3, thereby showing the
inherent bias in the system.

In order to employ unbiased measures of shape, we will use R,
A, and P with the semiaxis lengths of the characteristic inertial
ellipsoid a;, oy, and a3 as arguments. As a consequence, the
specific numerical results differ from previous theoretical and
numerical studies. However, we present both values in Table 1
and observe that our data provide estimates using the eigenvalues
which are consistent with those found in earlier studies. Note
that due to the scale invariance of A and P (using either the
eigenvalues or the semiaxis lengths) and the fact that the
semiaxis lengths of ellipsoid of inertia and characteristic inertial
ellipsoid differ by a common factor of 1/+/3, the ellipsoid of
inertia and characteristic inertial ellipsoid share the same A and
P values.

The asphericity and prolateness, together, give a quantification
of the shape of the polymer (see Figures 6—8). The dominant
factor is the asphericity which measures the degree to which
the three eigenvalues of the inertial tensor are equal. For
example, an ellipsoid with semiaxis lengths 1, 1, and 0.4 has
asphericity equal to 0.0625 and prolateness equal to —1. In
contrast, with the same asphericity of 0.0625, one has the other
extreme, a prolate ellipsoid with one axis of length 1 and two
axes of length 1/2, giving a prolateness equal to +1 (see Figure
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1). When the asphericity is very close to zero, i.e., the semiaxis
lengths are almost equal, the variation between the most and
least prolate shapes is extremely small as the shape is con-
strained by the asphericity. For example, an ellipsoid with
semiaxis lengths 1, 1, and 0.99 has A ~ 1.13 x 1075 and P =
—1 while an ellipsoid with semiaxis lengths 1, 0.99, and 0.99
has A ~ 1.12 x 107> and P = 1.

Therefore, the asphericity provides a first-order measurement
of the shape of the polymer, and prolateness is a second-order
descriptor of how the asphericity value is attained. Note that
for a given asphericity value not all prolateness values are
possible. For example, a rodlike shape has asphericity close to
1, thereby forcing the prolateness to take values close to 1 as
well. In fact, a prolateness of —1 is possible only with shapes
where A < 1/4.

3. Computations

We have analyzed equilateral random polygons from 6 to 48
edges with a step size of 2 and from 50 edges to 500 edges by
a step size of 10 edges. For each number of edges, we generated
400 000 random knots using the hedgehog method.*® To identify
the knot type of each of the polygons, we calculated the
HOMFLY polynomial®’ using the program of Ewing and
Millett.*® As the HOMFLY polynomial is not faithful to the
knot type (i.e., there exist knots which are distinct but which
have the same HOMFLY polynomial), we actually determine
the distribution of HOMFLY polynomials of the random
polygons and employ this as a surrogate for the knot type.
However, the probability of finding other knots with the same
HOMFLY polynomials as the simple knot types analyzed here
is orders of magnitude lower than the probability of these simple
knot types. Therefore, Figure 5 gives a faithful presentation of
the probabilities of knots studied here. This set of random knots
was also used in refs 10 and 11, and a more detailed description
of the generation method can be found there.

We calculate the asphericity and prolateness for each of the
random knots and keep a running list of the asphericity and
prolateness values for the given HOMFLY polynomial with the
given number of edges. Average asphericity and prolateness
values are then computed for the knots 0y, 31, 41, 51, 52, 61, 62,
and 63 and for the entire knot population (i.e., phantom
polygons) at each number of edges. Because the average
asphericity and prolateness for the two versions of chiral knots
will be the same, we combine those data sets. For example,
43, and —3, the right- and left-handed versions of the trefoil
knot, are combined into a common 3; file to provide more robust
data. The other chiral knots in this study are 5;, 52, 61, and 6.

One of the goals of this research is to describe the asymptotic
shape of knotted and phantom polygons. To this end, we have
estimated the asymptotic values of the asphericity, for both the
axis length and the eigenvalue definitions, for the different
classes of polygons. We used a Monte Carlo Markov chain
analysis, described in more detail in ref 11 and its Supporting
Information, to compute 95% confidence intervals for the
asymptotic value. The fitting function’” A + B/v/x + Clx is
used and applied to the data for 100 edges and larger, wishing
to minimize small edge effects. For a fixed number of edges,
the asphericity values are not normally distributed for a given
knot type nor for the phantom polygons, so the grouping
procedure described in ref 11 was used. Gibbs sampling®® was
utilized to minimize computation time. In the end, we computed
~3500 likely fitting functions for the phantom polygons and
each of the knot types. The values shown in Table 1 correspond
to the mean and 95% confidence ranges for the value of A in
the likely fitting functions.

Macromolecules, Vol. 41, No. 21, 2008

Figure 4. A hexagonal equilateral 3; is shown with A ~ 0.05 and P ~
—0.3, the mean values for 6-edge trefoils. Because the minimum number
of edges required to construct a trefoil is 6, the configurations tend to
be nearly planar, forcing the characteristic inertial ellipsoid to be oblate.
The thickened polygon and ellipsoid are shown from a position slightly
off the longest principal axis.

4. Asphericity and Prolateness of Knotted Polymers

The random polygons were divided into the individual knot
types, and their shapes were analyzed in terms of asphericity
and prolateness. Figures 6—8 show how the average asphericity
and prolateness depend on the knot type and the size of the
polygon. It is interesting to analyze some of these profiles in
order to understand better their meaning. The asphericity profile
for unknots (see Figure 6) shows that for small number of
segments (say 6 and 8 segments) the unknotted polygons deviate
strongly from spherical symmetry. However, the asphericity
values in this range do not tell us whether the polygons are
aspherical due to adopting discoidal planar configurations or
due to forming very elongated shapes. Inspection of Figure 7
reveals, however, that unknotted polygons with 6 or 8 segments
have on average positive prolateness. Therefore, we can
conclude that the dominant deviation from spherical symmetry
for unknotted polygons with small number of segments is toward
forming elongated configurations. This contrasts with the
negative prolateness of polygons with 6 segments that form
trefoil knots (see Figure 7) and have on average an oblate shape
(negative prolateness). In fact, isosegmental hexagons forming
trefoil knots are quite restricted in their freedom to change
shapes and adopt rather regular planar configurations. Figure 4
shows a hexagonal trefoil with a typical shape (A =~ 0.05, P ~
—0.3) together with its characteristic inertial ellipsoid. However,
polygons forming trefoil knots with increasing number of
segments quickly become prolate on average (see Figure 7),
and their asphericity increases (see Figure 6).

A more general comparison of the asphericity of polygons
forming different knot types reveals that for a given number of
segments the polygons forming more complex knots are on
average more spherical, i.e., have lower asphericity, than
polygons forming less complex knots (see Figure 6). We expect
however that for very long polymers the asphericity values of
various simple knots will approach the same universal value.
A general comparison of prolateness of polygons forming
various knot types (see Figure 7) reveals that, for a given number
of segments, the prolateness of less complex knots is lower than
that of more complex knots. It is interesting to note that for the
individual knot types analyzed here the prolateness reaches its
maximal value for relatively short polygons (n < 70) and then
shows a decrease. It may seem contradictory that the decrease
in prolateness with the increasing chain length is associated with
increasing asphericity (compare Figures 6—8). However, there
is no real contradiction as the flattening of a rugby ball shape
from its sides decreases its prolateness and increases its
asphericity.

After exploring the asphericity and prolateness profiles for
polygons forming individual knot types, let us analyze the
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Figure 5. Relative probabilities of obtaining the knot types through
SiX crossings.

corresponding profiles for the ensemble average of all polygons
grouped together. Such a statistical set represents phantom
polygons that can freely undergo intersegmental passages such
as those exemplified by circular DNA molecules in the presence
of type Il DNA topoisomerase. Of course, the profile of all
polygons is the weighted average of profiles for individual knot
types where the relative probability of a given knot type is taken
into account. Therefore, for very small number of segments,
where unknots dominate, the profile for phantom polygons
closely follows that of the unknots. As polygon sizes increase
and nontrivial knots become frequent, the asphericity and
prolateness of phantom polygons rapidly approach their respec-
tive characteristic constant values.

As discussed earlier, our asphericity definition is different
from the one used in a number of previous studies of polymer
shapes.'®2>2¢ However, for the purpose of comparison, we have
also used the traditional definition. Since the number of tested
configurations was highest for phantom polygons, that statistical
sample provides us with the highest accuracy in the asphericity
asymptote estimation. Using that sample, we have obtained the
value of 0.2461 % 0.0013 (see Table 1) as the asymptotic value
of asphericity for non-self-avoiding random polygons. Our
numerical estimation shows a perfect agreement with the
previously reported theoretically predicted value of 0.2464 for
this type of polygons®® and outperforms in this respect some
earlier numerical studies.?*

Our second best statistical sample consists of unknotted
polygons. For the asymptotic value of the asphericity for
polygons forming unknotted rings, we have obtained the value
of 0.2550 4 0.0023 (see Table 1). This value is essentially the
same as those obtained in earlier simulation studies investigating
the asphericity of polygons with excluded volume (0.255 +
0.010*° and 0.2551 % 0.0005)."° It is important to stress here
that in our study the modeled polygons had their effective
diameter set to zero. However, if one investigates how various
statistical properties depend on the polygon size while maintain-
ing the same knot type, this is equivalent to introducing
topological excluded volume.® The topological excluded volume
has been shown to behave like the standard excluded volume
when analyzing the scaling of overall dimensions of poly-
gons. >’ The results presented here indicate that both the
standard and topological excluded volumes affect universal
shape descriptors, e.g., the asphericity, in the same way. Our
statistical samples for individual knot types decrease with the
complexity of the knot type (see Figure 5), and this increases
the error in estimating the asymptotic value of the asphericity
for modeled polymers forming a given knot type (see Table 1).
However, our data are consistent with the hypothesis that all
individual knot types reach the same asymptotic value, a value
that is characteristic of self-avoiding polygons, although the
speed with which the asymptotic value is reached decreases with
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the complexity of the knot (see Figure 6). This hypothesis also
is consistent with observations that, on average, as the polymer
length increases, the knotted portion of the chain gets smaller
in comparison to the overall length of the chain, and therefore,
the large unknotted portion of the polymer dominates the
average configuration.*”** There is numerical evidence that
knotting is, on average, weakly local.*® Thus, the influence of
simple knots, such as a single trefoil, on the average shape is
quite small asymptotically. From another perspective, although
it has been shown that global knotting is also present in large
polymers,** it appears that this presence is quite rare and does
not contribute substantially to the average measures for a given
knot type or for that of the phantom polygons.

5. Size and Shape of Knotted Polymers

We have concentrated on scale independent measures of
overall shape adopted by modeled polymers like asphericity and
prolateness. However, size also matters, and to completely
describe inertia preserving ellipsoids that characterize the shapes
of knotted polymers with a given length, one needs to consider
the absolute sizes of these ellipsoids, where the natural size
measure is the statistical segment length. Figure 9 presents the
characteristic inertial ellipsoids for the average shapes of the
knots 0y, 3, and 4, and also of phantom chains formed by 500
edge polygons. This form of presentation (nested ellipsoids)
allows visual comparison of average shapes of polygons with
different topology. We can see that the ellipsoid characterizing
unknots forms the external shell and therefore is bigger than
ellipsoids characterizing nontrivial knots. As the knots get more
complicated, the ellipsoids representing them become smaller.
However, they maintain very similar aspect ratios, and it is
hardly visible that 4, knots are on average more spherical than
unknots (see Figure 6). The most internal shell in Figure 9
represents phantom polygons as these have the smallest overall
dimensions from this set of knots. However, more complex
knots, e.g., the 10,65 knot, would be smaller than phantom knots
for polygons with 500 edges.

The situation presented in Figure 9 illustrates the particular
case of 500 edge polygons. What would be the corresponding
image for very long chains? We conjecture that for such a
situation the nested ellipsoids would be very closely spaced,
like onion skins. The external skin would be still that of the
unknot, and the sequential skins would be ordered according
to the complexity of the knot 3y, 4, five crossing knots, six
crossing knots, etc. Toward the center of the onion, one would
have extremely complex knots, while the skin representing the
average size of phantom knots would be placed between the
external skin representing unknots and the internal skins
representing most complex knots possible for this size of the
polygon. We also conjecture that the external skins (i.e.,
ellipsoids) representing simple prime knots would all be
asymptotically close to the aspect ratio attained by the ellipsoid
representing unknots, while very complex knots would be more
spherical. At this point, we are uncertain whether the order of
the skins for all knots will be the same for all chain sizes, i.e.,
whether there could be an example of two knot types where
one would have its overall dimensions smaller than the other
at 500 segments, for example, but not at 1000 segments.
However, it is probably safe to conjecture that the order of skins
(ellipsoids) representing knots belonging to the same family of
knots (like simple torus knots 3, 51, 75, etc.) will always follow
the order of the minimal crossing number, provided that the
number of segments in the polygon is significantly bigger than
the minimal number of segments needed to form most complex
knots under consideration.
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Asphericity

Figure 6. Scaling profiles for the average asphericity of knotted polygons and phantom polygons. In the right panel, we restrict the vertical dimension
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Figure 9. Average ellipsoids for 500 edge 0; (in blue), 3, (in green), 4, (in red), and phantom polygons (in yellow) as seen along the two shortest

0.4 T - -
03} =™ o -
g2y " ’ :
o1f ]
0 L o
-0.1 1
02+ phantom 1
;o
03 - 8y
44
04
0.05 0.06 0.07 0.08 0.09
Asphericity

Asphericity

Prolateness

Prolateness

Macromolecules, Vol. 41, No. 21, 2008

0.078
0.077 |
0.076 |
0.075 }
0.074
0.073 } ;
0.072 |7
0.071 t*
0.07 |
0.069 |

X

as 34 x|

.-- 51 -

0.068
0

100 200 300 400 500
Edges

0.37
0.36 |
0.35 |
0.34 | %
0.33 |

032 | ¥
0.31
0.3t
0.29 |

0.28
0

100 200 300 400 500

Edges

0.36 |
0.34 [
0.32 |

03 r

0.28

0.26

0.066

0.070 0.074 0.078

Asphericity

axes of inertia. The black bar below the ellipsoids represents the size of 10 statistical segments.



Macromolecules, Vol. 41, No. 21, 2008

6. Conclusions

The notion that the overall shape of randomly fluctuating
polymeric molecules can be approximated by prolate ellipsoids
rather than by spheres was published in 1934 by Kuhn.'*> Over
the years theoretical and numerical studies have established that
as the chain size tends to infinity, the asphericities of ellipsoids
describing the inertial properties of modeled polymers asymp-
totically approach characteristic constant values.”!¢:17-20722:24726
These values are known to be different for linear and circular
chains and are, in addition, influenced by the solvent quality.
Here we have provided unbiased measures of inertial shape and
established that the topology of the chains also affects their
overall shape. We have shown that for a fixed chain size the
modeled polymer molecules forming less complex knots are,
on average, more spherical than configurations of more complex
knotted chains. Furthermore, for each knot type, there is a chain
length starting with which polygons representing this knot type
will be on average less spherical than the average shape of
phantom polygons for every number of segments beyond this
length.
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