Math 5B - HW4 (Written Portion)

4.5.2 Show that the curve $\mathbf{c}(t) = (\frac{3}{5}\cos t + \frac{4}{5}\sin t, -\frac{3}{5}\sin t + \frac{4}{5}\cos t)$ is a flow line of the vector field $\mathbf{F}(x,y) = (\frac{y}{\sqrt{x^2+y^2}}, -\frac{x}{\sqrt{x^2+y^2}})$ going through the point $(\frac{4}{5}, -\frac{3}{5})$.

We show that $\mathbf{c}(t)$ satisfies the equation $F(\mathbf{c}(t)) = \mathbf{c}'(t)$:

$$\begin{aligned} \mathbf{F}(\mathbf{c}(t)) &= \mathbf{F} \left(\frac{3}{5} \cos t + \frac{4}{5} \sin t, -\frac{3}{5} \sin t + \frac{4}{5} \cos t \right) \\ &= \left(\frac{-\frac{3}{5} \sin t + \frac{4}{5} \cos t}{\sqrt{(\frac{3}{5} \cos t + \frac{4}{5} \sin t)^2 + (-\frac{3}{5} \sin t + \frac{4}{5} \cos t)^2}}, \right. \\ &- \frac{\frac{3}{5} \cos t + \frac{4}{5} \sin t}{\sqrt{(\frac{3}{5} \cos t + \frac{4}{5} \sin t)^2 + (-\frac{3}{5} \sin t + \frac{4}{5} \cos t)^2}} \right) \\ &= \left(-\frac{3}{5} \sin t + \frac{4}{5} \cos t, -\frac{3}{5} \cos t - \frac{4}{5} \sin t \right), \end{aligned}$$

$$\mathbf{c}'(t) = \left(-\frac{3}{5} \sin t + \frac{4}{5} \cos t, -\frac{3}{5} \cos t - \frac{4}{5} \sin t \right),$$

so $\mathbf{c}(t)$ is a flow line for \mathbf{F} . Finally, since $\mathbf{c}(\frac{\pi}{2}) = (\frac{4}{5}, -\frac{3}{5})$, we also see that \mathbf{c} goes through the correct point.

4.5.5 Find the flow line of the constant vector field $\mathbf{F}(x,y) = (a,b)$ (a and b are real numbers with $a \neq 0$ and/or $b \neq 0$) that goes through the origin.

We want to find a curve $\mathbf{c}(t)$ such that $\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t))$. Denoting $\mathbf{c}(t) = (x(t), y(t))$, we find that

$$x'(t) = a$$
 $y'(t) = b$
 $\Rightarrow x(t) = at + C_1$ $\Rightarrow y(t) = bt + C_2$

In order for $\mathbf{c}(t)$ to pass through the origin, $C_1 = 0$ and $C_2 = 0$, so our flowline is $\mathbf{c}(t) = (at, bt)$.

4.5.12 Show that the curve $\mathbf{c}(t) = (e^t, 2 \ln t, t^{-1}), t > 0$ is a flow line of the vector field $\mathbf{F}(x, y, z) = (x, 2z, -z^2)$.

1

We show that $\mathbf{c}(t)$ satisfies the equation $F(\mathbf{c}(t)) = \mathbf{c}'(t)$:

$$\mathbf{F}(\mathbf{c}(t)) = \mathbf{F}(e^t, 2 \ln t, t^{-1})$$

= $(e^t, 2t^{-1}, -t^{-2})$

$$\mathbf{c}'(t) = \left(e^t, 2t^{-1}, -t^{-2}\right),\,$$

so $\mathbf{c}(t)$ is a flow line for \mathbf{F} .

4.6.13 Find the curl and divergence of the vector field $\mathbf{F}(x,y,z) = (y^2z, -xz, xyz)$.

The curl:

$$\nabla \times \mathbf{F} = \left(\frac{\partial}{\partial y}xyz - \frac{\partial}{\partial z}(-xz), \frac{\partial}{\partial z}y^2z - \frac{\partial}{\partial x}xyz, \frac{\partial}{\partial x}(-xz) - \frac{\partial}{\partial y}y^2z\right)$$
$$= \left(xz + x, y^2 - yz, -z - 2yz\right),$$

and the divergence:

$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} y^2 z + \frac{\partial}{\partial y} (-xz) + \frac{\partial}{\partial z} xyz$$
$$= 0 + 0 + xy = xy.$$

4.6.14 Find the curl and divergence of the vector field $\mathbf{F}(x,y,z) = (0,0,\ln z + xy)$.

The curl:

$$\nabla \times \mathbf{F} = \left(\frac{\partial}{\partial y}(\ln z + xy) - \frac{\partial}{\partial z}0, \frac{\partial}{\partial z}0 - \frac{\partial}{\partial x}(\ln z + xy), \frac{\partial}{\partial x}0 - \frac{\partial}{\partial y}0\right)$$
$$= (x + 0, 0 - y, 0)$$
$$= (x, -y, 0),$$

and the divergence:

$$\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} 0 + \frac{\partial}{\partial y} 0 + \frac{\partial}{\partial z} (\ln z + xy)$$
$$= 0 + 0 + \frac{1}{z} = \frac{1}{z}.$$

4.6.25 Consider $\mathbf{F}(x,y,z) = (-y,-x,-3)$. Is \mathbf{F} a conservative vector field? If so, find a real-valued function V such that $\mathbf{F} = -\nabla V$.

F is defined on all of \mathbb{R}^3 , which is a simply connected set, and since

$$\nabla \times \mathbf{F} = \left(\frac{\partial}{\partial y}(-3) - \frac{\partial}{\partial z}(-x), \frac{\partial}{\partial z}(-y) - \frac{\partial}{\partial x}(-3), \frac{\partial}{\partial x}(-x) - \frac{\partial}{\partial y}(-y)\right)$$
$$= (0 - 0, 0 - 0, -1 + 1) = (0, 0, 0),$$

we see that **F** is a conservative vector field. Now we find V such that $\mathbf{F} = -\nabla V$:

$$\frac{\partial V}{\partial x} = y \qquad \qquad \frac{\partial V}{\partial y} = x \qquad \qquad \frac{\partial V}{\partial x} = -3$$

$$\Rightarrow V = xy + C(y, z)$$

$$\Rightarrow \frac{\partial V}{\partial y} = x + \frac{\partial C}{\partial y}(y, z) \Rightarrow x + \frac{\partial C}{\partial y}(y, z) = x$$

$$\Rightarrow \frac{\partial C}{\partial y}(y, z) = 0$$

$$\Rightarrow C(y, z) = C(z)$$

$$\Rightarrow V = xy + C(z)$$

$$\Rightarrow \frac{\partial V}{\partial z} = \frac{\partial C}{\partial z}(z) \Rightarrow \frac{\partial C}{\partial z}(z) = -3$$

$$\Rightarrow C(z) = -3z + C$$

$$\Rightarrow V = xy - 3z + C.$$