
Math 104A - Homework 1

Section 1.1 - 2, 4a, 4c, 8, 12a, 12b, 24

2 Find intervals containing solutions to the following equations.

(a) f(x) = x− 3−x = 0.

Since f(0) = −1 and f(1) = 2
3
, by the intermediate value theorem,

there is some solution of f in the interval [0, 1].

(b) f(x) = 4x2 − ex = 0.

Since f(0) = −1 and f(1) = 4 − e, by the intermediate value theo-
rem, there is some solution of f in the interval [0, 1].

(c) f(x) = x3 − 2x2 − 4x+ 2 = 0.

Since f(0) = 2 and f(1) = −3, by the intermediate value theorem,
there is some solution of f in the interval [0, 1].

(d) f(x) = x3 + 4.001x2 + 4.002x+ 1.101 = 0.

Since f(−3) = −1.896 and f(−2) = 1.101, by the intermediate value
theorem, there is some solution of f in the interval [−3,−2].

4a Find maxa≤x≤b |f(x)| for f(x) = (2− ex + 2x)/3, x ∈ [0, 1].

We first find the critical points where the derivative is zero:

f ′(x) =
2− ex

3
= 0

x = ln(2).

Then by the extreme value theorem, max0≤x≤1 |f(x)| occurs at one of x =
0, ln(2), 1. Substituting these values into |f(x)| gives

|f(0)| = 1

3
, |f(ln(2))| ≈ 0.46209812, |f(1)| = 4− e

3
≈ 0.427239391,

and so we see the maximum occurs at x = ln(2).

4c Find maxa≤x≤b |f(x)| for f(x) = 2x cos(2x)− (x− 2)2, x ∈ [2, 4].

We first find the critical points where the derivative is zero:

f ′(x) = 2 cos(2x)− 4x sin(2x)− 2(x− 2) = 0

x ≈ 3.13111.

Then by the extreme value theorem, max0≤x≤1 |f(x)| occurs at one of x =
2, 3.13111, 4. Substituting these values into |f(x)| gives

|f(2)| ≈ 2.61457448, |f(3.13111)| ≈ 4.98143396, |f(4)| ≈ 5.16400027,

and so we see the maximum occurs at x = 4.
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8 Find the third Taylor polynomial P3(x) for the function f(x) =
√
x+ 1

about x0 = 0. Approximate
√

0.5,
√

0.75,
√

1.25, and
√

1.5 using P3(x), and
find the actual (absolute and relative) errors.

To find P3(x), we first find the values of the derivatives at x0 = 0:

f(0) =
√

0 + 1 = 1

f ′(0) =
1

2
(0 + 1)−1/2 =

1

2

f ′′(0) = −1

4
(0 + 1)−3/2 = −1

4

f ′′′(0) =
3

8
(0 + 1)−5/2 =

3

8
.

Then

P3(x) = 1 +
1

2
x− 1

8
x2 +

1

16
x3.

x -0.5 -0.25 0.25 0.5
f(x) 0.70711 0.86603 1.1180 1.2247
P3(x) 0.71094 0.86621 1.1182 1.2266

Absolute Error 0.0038307 0.00018553 0.00013007 0.0018176
Relative Error 0.0054175 0.00021424 0.00011634 0.0014841

12a Find the third Taylor polynomial P3(x) for f(x) = 2x cos(2x)− (x− 2)2 and
x0 = 0, and use it to approximate f(0.4).

To find P3(x), we first find the values of the derivatives at x0 = 0:

f(0) = 2(0) cos(0)− (0− 2)2 = −4

f ′(0) = 2 cos(0)− 4(0) sin(0)− 2(0− 2) = 6

f ′′(0) = −8 sin(0)− 8(0) cos(0)− 2 = −2

f ′′′(0) = −24 cos(0) + 16(0) sin(0) = −24.

Then
P3(x) = −4 + 6x− x2 − 4x3

and
f(0.4) ≈ P3(0.4) = −2.016.

12b Use the error formula in Taylor’s theorem to find an upper bound for the
absolute error |f(0.4)− P3(0.4)|. Compute the actual absolute error.

The error formula gives

R3(x) =
64 sin(2ξ) + 32ξ cos(2ξ)

24
x4,
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and so

|R3(0.4)| =
∣∣∣∣64 sin(2ξ) + 32ξ cos(2ξ)

24
0.44

∣∣∣∣
≤
∣∣∣∣64 + 32(0.4)

24
0.44

∣∣∣∣
= 0.08192.

The actual absolute error is

|f(0.4)− P3(0.4)| = | − 2.00263463 + 2.016| = 0.013365

which is within the predicted error bound.

24 The error function defined by

erf(x) =
2√
π

∫ x

0

e−t
2

dt

gives the probability that any one of a series of trials will lie within x units
of the mean, assuming that the trials have a normal distribution with mean
0 and standard deviation

√
2
2

. This integral cannot be evaluated in terms of
elementary functions, so an approximating technique must be used.

(a) Integrate the Maclaurin series for e−x
2

to show that

erf(x) =
2√
π

∞∑
k=0

(−1)kx2k+1

(2k + 1)k!
.

Since the Maclaurin series for ex is

ex = 1 + x+
x2

2
+
x3

6
+ · · ·

we know that

e−x
2

= 1− x2 +
x4

2
− x6

6
+ · · ·

=
∞∑
k=0

(−1)kx2k

k!
.

Integrating this sum gives

erf(x) =
2√
π

∫ x

0

∞∑
k=0

(−1)kt2k

k!
dt

=
2√
π

∞∑
k=0

(−1)k

k!

∫ x

0

t2k dt

=
2√
π

∞∑
k=0

(−1)kx2k+1

k!(2k + 1)
.
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(b) The error function can also be expressed in the form

erf(x) =
2√
π
e−x

2
∞∑
k=0

2kx2k+1

1 · 3 · 5 · · · (2k + 1)
.

Verify that the two series agree for k = 1, 2, 3, and 4. (Hint: Use the
Maclaurin series for e−x

2
).

Substituting the Maclaurin series for e−x
2

into the above expression,
we get

2√
π
e−x

2
∞∑
k=0

2kx2k+1

1 · 3 · 5 · · · (2k + 1)

=
2√
π

[
1− x2 +

x4

2
− x6

6
+
x8

24
+ · · ·

]
·
[
x+

2x3

3
+

4x5

15
+

8x7

105
+

16x9

945
+ · · ·

]
=

2√
π

[
x− x3

3
+
x5

10
− x7

42
+

x9

216
+ · · ·

]
=

2√
π

∞∑
k=0

(−1)kx2k+1

k!(2k + 1)
= erf(x).

(c) Use the series in part (a) to approximate erf(1) to within 10−7.

Summing 11 terms in the series gives us erf(1) ≈ 0.842700794090834.

(d) Use the same number of terms as in part (c) to approximate erf(1) with
the series in part (b).

Summing 11 terms in the second series gives erf(1) ≈ 0.842700790029219.

(e) Explain why difficulties occur using the series in part (b) to approxi-
mate erf(1).

The first series is alternating, so we may apply the alternating series
test to get an idea of how far off our approximation is. The second is
not alternating, so we have no such guide.
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