Math 104A - Homework 2 Due 6/30

Section 1.3 - 1, 7a, 7d, 11 Section 2.1 - 6, 8, 20 Section 2.2 - 5, 8, 14 Section 2.3 - 5, 33

- **1.3.1a** Use three-digit chopping arithmetic to compute the sum $\sum_{i=1}^{10} \frac{1}{i^2}$ first by $\frac{1}{1} + \frac{1}{4} + \cdots + \frac{1}{100}$, and then by $\frac{1}{100} + \frac{1}{81} + \cdots + \frac{1}{1}$. Which method is more accurate, and why?
- **1.3.1b** Write an algorithm (pseudocode) to sum the finite series $\sum_{i=1}^{N} x_i$ in reverse order. (Here, the input is N, x_1, \ldots, x_N , and the output is the sum).
- **1.3.7a** Find the rate of convergence of $\lim_{h\to 0} \frac{\sin h}{h} = 1$ (Hint: use Taylor series).
- **1.3.7b** Find the rate of convergence of $\lim_{h\to 0} \frac{1-e^h}{h} = -1$.
- **1.3.11** Construct an algorithm (pseudocode) that has as input an integer $n \ge 1$, numbers x_0, x_1, \ldots, x_n , and a number x that produces as output the product $(x x_0)(x x_1) \cdots (x x_n)$.
- **2.1.6** Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:
 - **a** $3x e^x = 0, x \in [1, 2].$ **b** $x + 3\cos x - e^x = 0, x \in [0, 1].$ **c** $x^2 - 4x + 4 - \ln x = 0, x \in [1, 2]$ and $x \in [2, 4].$ **d** $x + 1 - 2\sin(\pi x) = 0, x \in [0, 0.5]$ and $x \in [0.5, 1].$
- **2.1.8a** Sketch the graphs of y = x and $y = \tan x$.
- **2.1.8b** Use the bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x = \tan x$.
- **2.1.20** A particle starts at rest on a smooth inclined plane whose angle θ is changing at a constant rate $\frac{d\theta}{dt} = \omega < 0$. At the end of t seconds, the position of the object is given by

$$x(t) = -\frac{g}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin(\omega t)\right)$$

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 10^{-5} , the rate ω at which θ changes. Assume that g = 32.17 ft/s².

2.2.5 Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} for $x^4 - 3x^2 - 3 = 0$ on [1, 2]. Use $p_0 = 1$.

- **2.2.8** Use theorem 2.2 to show that $g(x) = 2^{-x}$ has a unique fixed point on $[\frac{1}{3}, 1]$. Use fixed-point iteration to find an approximation to the fixed point accurate to within 10^{-4} . Use corollary 2.4 to estimate the number of iterations required to achieve 10^{-4} accuracy, and compare this theoretical estimate to the number actually needed.
- **2.2.14** Use a fixed-point iteration method to determine a solution accurate to within 10^{-4} for $x = \tan x$, for $x \in [4, 5]$.
 - **2.3.5** Use Newton's method to find solutions accurate to within 10^{-4} for the following problems:
 - **a** $x^3 2x^2 5 = 0, x \in [1, 4].$ **b** $x^3 + 3x^2 - 1 = 0, x \in [-3, -2].$ **c** $x - \cos x = 0, x \in [0, \pi/2].$ **d** $x - 0.8 - 0.2 \sin x = 0, x \in [0, \pi/2].$
- **2.3.33** Player A will shut out (win by a score of 21-0) player B in a game of raquetball with probability

$$P = \frac{1+p}{2} \left(\frac{p}{1-p+p^2}\right)^{21},$$

where p is the probability that A will win any specific rally (independent of the server). Determine, to within 10^{-3} , the minimal value of p that will ensure that A will shut out B in at least half the matches they play.