
Math 104A - Homework 2
Due 6/30

Section 1.3 - 1, 7a, 7d, 11
Section 2.1 - 6, 8, 20
Section 2.2 - 5, 8, 14
Section 2.3 - 5, 33

1.3.1a Use three-digit chopping arithmetic to compute the sum
∑10

i=1
1
i2

first by
1
1

+ 1
4

+ · · · + 1
100

, and then by 1
100

+ 1
81

+ · · · + 1
1
. Which method is more

accurate, and why?

Using three-digit chopping arithmetic,

1

1
+

1

4
+

1

9
+ · · ·+ 1

100
= (· · · ((1.00 + 0.250) + 0.111) + · · ·) + 0.0100) = 1.53,

while

1

100
+

1

81
+

1

64
+· · ·+1

1
= (· · · ((0.0100+0.0123)+0.0156)+· · ·)+1.00) = 1.54.

The actual value is 1.5498. The first sum is less accurate because the smaller
numbers are added last, resulting in significant round-off error.

1.3.1b Write an algorithm (pseudocode) to sum the finite series
∑N

i=1 xi in reverse
order. (Here, the input is N, x1, . . . , xN , and the output is the sum).

INPUT: N, x1, . . . , xN
OUTPUT:

∑N
i=1 xi

Step 1: Set i = N, s = 0.
Step 2: While i > 0 do Steps 3-4

Step 3: Set s = s+ 1/i2.
Step 4: Set i = i− 1.

Step 5: OUTPUT s.

1.3.7a Find the rate of convergence of limh→0
sinh
h

= 1 (Hint: use Taylor series).

∣∣∣∣sin(h)

h
− 1

∣∣∣∣ =

∣∣∣∣∣h− h3

6
cos(ξ)

h
− 1

∣∣∣∣∣ =

∣∣∣∣−h26 sin(ξ)

∣∣∣∣ = O(h2).

1.3.7b Find the rate of convergence of limh→0
1−eh
h

= −1.

∣∣∣∣1− ehh
+ 1

∣∣∣∣ =

∣∣∣∣∣1− 1− h− h2

2
eξ

h
+ 1

∣∣∣∣∣ =

∣∣∣∣−h2 eξ
∣∣∣∣ = O(h).

1

1.3.11 Construct an algorithm (pseudocode) that has as input an integer n ≥ 1,
numbers x0, x1, . . . , xn, and a number x that produces as output the product
(x− x0)(x− x1) · · · (x− xn).

INPUT: n, x0, . . . , xn, x.
OUTPUT:

∏n
i=0(x− xi).

Step 1: Set i = 0, p = 1.
Step 2: While i ≤ n do Steps 3-4

Step 3: Set p = p ∗ (x− xi).
Step 4: Set i = i+ 1.

Step 5: OUTPUT p.

2.1.6 Use the Bisection method to find solutions accurate to within 10−5 for the
following problems:

a 3x− ex = 0, x ∈ [1, 2].

Using the attached code (bisection_method.m), we got

>> bisection_method(’3*x-exp(x)’,1,2,1000,10^-5)

ans =

1.512138366699219

b x+ 3 cosx− ex = 0, x ∈ [0, 1].

Using the attached code (bisection_method.m), we got

>> bisection_method(’x+3*cos(x)-exp(x)’,0,1,1000,10^-5)

ans =

0.976768493652344

c x2 − 4x+ 4− lnx = 0, x ∈ [1, 2] and x ∈ [2, 4].

Using the attached code (bisection_method.m), we got

>> bisection_method(’x^2-4*x+4-log(x)’,1,2,1000,10^-5)

ans =

1.412391662597656

>> bisection_method(’x^2-4*x+4-log(x)’,2,4,1000,10^-5)

ans =

3.057106018066406

d x+ 1− 2 sin(πx) = 0, x ∈ [0, 0.5] and x ∈ [0.5, 1].

Using the attached code (bisection_method.m), we got

>> bisection_method(’x+1-2*sin(pi*x)’,0,0.5,1000,10^-5)

ans =

0.206031799316406

>> bisection_method(’x+1-2*sin(pi*x)’,0.5,1,1000,10^-5)

ans =

0.681968688964844

2

2.1.8a Sketch the graphs of y = x and y = tanx.

0

2

4

6

8

10

0 2 4 6 8 10

x
tan(x)

2.1.8b Use the bisection method to find an approximation to within 10−5 to the
first positive value of x with x = tanx.

From the sketch, we see that the first positive fixed-point occurs somewhere
between 4 and 5. Using the attached code (bisection_method.m), we got

>> bisection_method(’x-tan(x)’,4,5,1000,10^-5)

ans =

4.493415832519531

2.1.20 A particle starts at rest on a smooth inclined plane whose angle θ is changing
at a constant rate dθ

dt
= ω < 0. At the end of t seconds, the position of the

object is given by

x(t) = − g

2ω2

(
eωt − e−ωt

2
− sin(ωt)

)
.

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 10−5, the rate
ω at which θ changes. Assume that g = 32.17 ft/s2.

Substituting the appropriate values, we find ω by finding the root of

f(x) = −32.17

2x2

(
ex − e−x

2
− sin(x)

)
− 1.7.

Using the attached code (bisection_method.m), we got

>> bisection_method(’-32.17/(2*x^2)*((exp(x)-exp(-x))/2...

-sin(x))-1.7’,-1,-0.1,1000,10^-5)

ans =

-0.317055511474609

3

2.2.5 Use a fixed-point iteration method to determine a solution accurate to within
10−2 for x4 − 3x2 − 3 = 0 on [1, 2]. Use p0 = 1.

After first rearranging the equation to get (3x2 + 3)1/4 = x, we use attached
code (fixed_point_method.m) to get

>> fixed_point_method(’(3*x^2+3)^(1/4)’,1,1000,10^-2)

Took 6 iterations.

ans =

1.943316929898677

2.2.8 Use theorem 2.2 to show that g(x) = 2−x has a unique fixed point on [1
3
, 1].

Use fixed-point iteration to find an approximation to the fixed point accu-
rate to within 10−4. Use corollary 2.4 to estimate the number of iterations
required to achieve 10−4 accuracy, and compare this theoretical estimate to
the number actually needed.

Since g is decreasing, we know that

max g(x) = g(
1

3
) ≈ 0.793700526 < 1,

min g(x) = g(1) = 0.5 >
1

3
,

and so g(x) ∈ [1
3
, 1]. Since g′(x) = −2−x ln(2) is negative and increasing, we

know that |g′(x)| ≤ |g′(1
3
)| ≈ 0.550151282 = k < 1. Then g satisfies the con-

ditions of theorem 2.2, and so g has a unique fixed point on the interval [1
3
, 1].

Using the attached code (fixed_point_method.m), we get

>> p = 0.641185744504985984;

>> abs(p-fixed_point_method(’2^(-x)’,2/3,7))

ans =

1.951777565947221e-04

>> abs(p-fixed_point_method(’2^(-x)’,2/3,8))

ans =

8.673817179283283e-05

so 8 iterations are necessary to be within 10−4 of the true fixed point p =
0.641185744504986. By corollary 2.4, |pn − p| ≤ kn

3
, and so

kn

3
≤ 10−4

ln(kn) ≤ ln(3 · 10−4)

n ≥ ln(3 · 10−4)

ln(k)
≈ 13.5747058.

4

2.2.14 Use a fixed-point iteration method to determine a solution accurate to within
10−4 for x = tanx, for x ∈ [4, 5].

Rearranging the equation so that g(x) = 1
tan(x)

− 1
x

+ x and using the at-

tached code (fixed_point_method.m), we get

>> fixed_point_method(’1/tan(x)-1/x+x’,4.5,1000,10^-4)

Took 2 iterations.

ans =

4.493409457929371

2.3.5 Use Newton’s method to find solutions accurate to within 10−4 for the fol-
lowing problems:

a x3 − 2x2 − 5 = 0, x ∈ [1, 4].

Using the attached code (newtons_method.m), we get

>> newtons_method(’x^3-2*x^2-5’,’3*x^2-4*x’,2.5,1000,10^-4)

Took 4 iterations

ans =

2.690647448028615

b x3 + 3x2 − 1 = 0, x ∈ [−3,−2].

Using the attached code (newtons_method.m), we get

>> newtons_method(’x^3+3*x^2-1’,’3*x^2+6*x’,-2.5,1000,10^-4)

Took 5 iterations

ans =

-2.879385241571822

c x− cosx = 0, x ∈ [0, π/2].

Using the attached code (newtons_method.m), we get

>> newtons_method(’x-cos(x)’,’1+sin(x)’,pi/4,1000,10^-4)

Took 3 iterations

ans =

0.739085133215161

d x− 0.8− 0.2 sinx = 0, x ∈ [0, π/2].

Using the attached code (newtons_method.m), we get

>> newtons_method(’x-0.8-0.2*sin(x)’,’1-0.2*cos(x)’,pi/4,1000,10^-4)

Took 3 iterations

ans =

0.964333887695271

5

2.3.33 Player A will shut out (win by a score of 21-0) player B in a game of raque-
tball with probability

P =
1 + p

2

(
p

1− p+ p2

)21

,

where p is the probability that A will win any specific rally (independent
of the server). Determine, to within 10−3, the minimal value of p that will
ensure that A will shut out B in at least half the matches they play.

From a sketch of the graph, we see that p is close to 0.8, so we use the
bisection method (bisection_method.m) with an initial interval [0.7, 0.9]

with function f(x) = 1+x
2

(
x

1−x+x2
)21 − 0.5:

>> bisection_method(’(1+x)/2*(x/(1-x+x^2))^21-0.5’,...

0.7,0.9,1000,10^-4)

ans =

0.842968750000000

6

Code

%%% bisection_method.m %%%

function p = bisection_method(fstring,a,b,N,TOL)

i=1;

f = inline(fstring);

FA = f(a);

while (i <= N)

p = (a+b)/2;

FP = f(p);

if(FP == 0 || (b-a)/2 < TOL)

return;

end

if(FA*FP > 0)

a = p;

FA = FP;

else

b = p;

end

i = i+1;

end

end

%%% end of bisection_method.m %%%

%%% fixed_point_method.m %%%

function p = fixed_point_method(fstring,p0,N,TOL)

i = 1;

f = inline(fstring);

while i < N

p = f(p0);

if(nargin == 4 && abs(p-p0) < TOL)

7

fprintf(’Took %i iterations.’,i);

return;

end

p0 = p;

i = i+1;

end

end

%%% end of fixed_point_method.m %%%

%%% newtons_method.m %%%

function p = newtons_method(fstring,fpstring,p0,N,TOL)

i = 1;

f = inline(fstring);

fp = inline(fpstring);

while(i <= N)

p = p0-f(p0)/fp(p0);

if(abs(p-p0) < TOL)

fprintf(’Took %i iterations’,i);

return;

end

i = i+1;

p0=p;

end

end

%%% end newtons_method.m %%%

8

