## Math 104A - Homework 2 Due 6/30

Section 1.3 - 1, 7a, 7d, 11 Section 2.1 - 6, 8, 20 Section 2.2 - 5, 8, 14 Section 2.3 - 5, 33

**1.3.1a** Use three-digit chopping arithmetic to compute the sum  $\sum_{i=1}^{10} \frac{1}{i^2}$  first by  $\frac{1}{1} + \frac{1}{4} + \cdots + \frac{1}{100}$ , and then by  $\frac{1}{100} + \frac{1}{81} + \cdots + \frac{1}{1}$ . Which method is more accurate, and why?

Using three-digit chopping arithmetic,

$$\frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{100} = (\dots ((1.00 + 0.250) + 0.111) + \dots) + 0.0100) = 1.53,$$

while

$$\frac{1}{100} + \frac{1}{81} + \frac{1}{64} + \dots + \frac{1}{1} = (\dots ((0.0100 + 0.0123) + 0.0156) + \dots) + 1.00) = 1.54.$$

The actual value is 1.5498. The first sum is less accurate because the smaller numbers are added last, resulting in significant round-off error.

**1.3.1b** Write an algorithm (pseudocode) to sum the finite series  $\sum_{i=1}^{N} x_i$  in reverse order. (Here, the input is  $N, x_1, \ldots, x_N$ , and the output is the sum).

INPUT:  $N, x_1, \dots, x_N$ OUTPUT:  $\sum_{i=1}^N x_i$ Step 1: Set i = N, s = 0. Step 2: While i > 0 do Steps 3-4 Step 3: Set  $s = s + 1/i^2$ . Step 4: Set i = i - 1. Step 5: OUTPUT s.

**1.3.7a** Find the rate of convergence of  $\lim_{h\to 0} \frac{\sin h}{h} = 1$  (Hint: use Taylor series).

$$\left|\frac{\sin(h)}{h} - 1\right| = \left|\frac{h - \frac{h^3}{6}\cos(\xi)}{h} - 1\right| = \left|-\frac{h^2}{6}\sin(\xi)\right| = O(h^2).$$

**1.3.7b** Find the rate of convergence of  $\lim_{h\to 0} \frac{1-e^h}{h} = -1$ .

$$\left|\frac{1-e^{h}}{h}+1\right| = \left|\frac{1-1-h-\frac{h^{2}}{2}e^{\xi}}{h}+1\right| = \left|-\frac{h}{2}e^{\xi}\right| = O(h).$$

**1.3.11** Construct an algorithm (pseudocode) that has as input an integer  $n \ge 1$ , numbers  $x_0, x_1, \ldots, x_n$ , and a number x that produces as output the product  $(x - x_0)(x - x_1) \cdots (x - x_n)$ .

```
INPUT: n, x_0, \dots, x_n, x.

OUTPUT: \prod_{i=0}^{n} (x - x_i).

Step 1: Set i = 0, p = 1.

Step 2: While i \le n do Steps 3-4

Step 3: Set p = p * (x - x_i).

Step 4: Set i = i + 1.

Step 5: OUTPUT p.
```

- **2.1.6** Use the Bisection method to find solutions accurate to within  $10^{-5}$  for the following problems:
  - **a**  $3x e^x = 0, x \in [1, 2].$

Using the attached code (bisection\_method.m), we got

```
>> bisection_method('3*x-exp(x)',1,2,1000,10^-5)
ans =
    1.512138366699219
```

**b**  $x + 3\cos x - e^x = 0, x \in [0, 1].$ 

```
Using the attached code (bisection_method.m), we got
```

c  $x^2 - 4x + 4 - \ln x = 0, x \in [1, 2]$  and  $x \in [2, 4]$ .

```
Using the attached code (bisection_method.m), we got
```

```
>> bisection_method('x^2-4*x+4-log(x)',1,2,1000,10^-5)
ans =
    1.412391662597656
>> bisection_method('x^2-4*x+4-log(x)',2,4,1000,10^-5)
ans =
    3.057106018066406
```

**d**  $x + 1 - 2\sin(\pi x) = 0, x \in [0, 0.5]$  and  $x \in [0.5, 1]$ .

```
Using the attached code (bisection_method.m), we got
>> bisection_method('x+1-2*sin(pi*x)',0,0.5,1000,10^-5)
ans =
        0.206031799316406
>> bisection_method('x+1-2*sin(pi*x)',0.5,1,1000,10^-5)
ans =
        0.681968688964844
```

**2.1.8a** Sketch the graphs of y = x and  $y = \tan x$ .



**2.1.8b** Use the bisection method to find an approximation to within  $10^{-5}$  to the first positive value of x with  $x = \tan x$ .

From the sketch, we see that the first positive fixed-point occurs somewhere between 4 and 5. Using the attached code (bisection\_method.m), we got

**2.1.20** A particle starts at rest on a smooth inclined plane whose angle  $\theta$  is changing at a constant rate  $\frac{d\theta}{dt} = \omega < 0$ . At the end of t seconds, the position of the object is given by

$$x(t) = -\frac{g}{2\omega^2} \left( \frac{e^{\omega t} - e^{-\omega t}}{2} - \sin(\omega t) \right).$$

Suppose the particle has moved 1.7 ft in 1 s. Find, to within  $10^{-5}$ , the rate  $\omega$  at which  $\theta$  changes. Assume that g = 32.17 ft/s<sup>2</sup>.

Substituting the appropriate values, we find  $\omega$  by finding the root of

$$f(x) = -\frac{32.17}{2x^2} \left(\frac{e^x - e^{-x}}{2} - \sin(x)\right) - 1.7.$$

Using the attached code (bisection\_method.m), we got

>> bisection\_method('-32.17/(2\*x^2)\*((exp(x)-exp(-x))/2... -sin(x))-1.7',-1,-0.1,1000,10^-5)
ans =

-0.317055511474609

**2.2.5** Use a fixed-point iteration method to determine a solution accurate to within  $10^{-2}$  for  $x^4 - 3x^2 - 3 = 0$  on [1, 2]. Use  $p_0 = 1$ .

After first rearranging the equation to get  $(3x^2+3)^{1/4} = x$ , we use attached code (fixed\_point\_method.m) to get

```
>> fixed_point_method('(3*x^2+3)^(1/4)',1,1000,10^-2)
Took 6 iterations.
ans =
    1.943316929898677
```

**2.2.8** Use theorem 2.2 to show that  $g(x) = 2^{-x}$  has a unique fixed point on  $[\frac{1}{3}, 1]$ . Use fixed-point iteration to find an approximation to the fixed point accurate to within  $10^{-4}$ . Use corollary 2.4 to estimate the number of iterations required to achieve  $10^{-4}$  accuracy, and compare this theoretical estimate to the number actually needed.

Since g is decreasing, we know that

$$\max g(x) = g(\frac{1}{3}) \approx 0.793700526 < 1,$$
  
$$\min g(x) = g(1) = 0.5 > \frac{1}{3},$$

and so  $g(x) \in [\frac{1}{3}, 1]$ . Since  $g'(x) = -2^{-x} \ln(2)$  is negative and increasing, we know that  $|g'(x)| \leq |g'(\frac{1}{3})| \approx 0.550151282 = k < 1$ . Then g satisfies the conditions of theorem 2.2, and so g has a unique fixed point on the interval  $[\frac{1}{3}, 1]$ .

Using the attached code (fixed\_point\_method.m), we get

so 8 iterations are necessary to be within  $10^{-4}$  of the true fixed point p = 0.641185744504986. By corollary 2.4,  $|p_n - p| \le \frac{k^n}{3}$ , and so

$$\frac{k^n}{3} \le 10^{-4}$$
$$\ln(k^n) \le \ln(3 \cdot 10^{-4})$$
$$n \ge \frac{\ln(3 \cdot 10^{-4})}{\ln(k)} \approx 13.5747058.$$

**2.2.14** Use a fixed-point iteration method to determine a solution accurate to within  $10^{-4}$  for  $x = \tan x$ , for  $x \in [4, 5]$ .

Rearranging the equation so that  $g(x) = \frac{1}{\tan(x)} - \frac{1}{x} + x$  and using the attached code (fixed\_point\_method.m), we get

- **2.3.5** Use Newton's method to find solutions accurate to within  $10^{-4}$  for the following problems:
  - **a**  $x^3 2x^2 5 = 0, x \in [1, 4].$

Using the attached code (newtons\_method.m), we get

```
>> newtons_method('x^3-2*x^2-5','3*x^2-4*x',2.5,1000,10^-4)
Took 4 iterations
ans =
        2.690647448028615
```

**b**  $x^3 + 3x^2 - 1 = 0, x \in [-3, -2].$ 

Using the attached code (newtons\_method.m), we get

```
>> newtons_method('x^3+3*x^2-1','3*x^2+6*x',-2.5,1000,10^-4)
Took 5 iterations
ans =
    -2.879385241571822
```

**c**  $x - \cos x = 0, x \in [0, \pi/2].$ 

Using the attached code (newtons\_method.m), we get

```
>> newtons_method('x-cos(x)','1+sin(x)',pi/4,1000,10^-4)
Took 3 iterations
ans =
        0.739085133215161
```

**d**  $x - 0.8 - 0.2 \sin x = 0, x \in [0, \pi/2].$ 

Using the attached code (newtons\_method.m), we get

```
>> newtons_method('x-0.8-0.2*sin(x)','1-0.2*cos(x)',pi/4,1000,10^-4)
Took 3 iterations
ans =
        0.964333887695271
```

**2.3.33** Player A will shut out (win by a score of 21-0) player B in a game of raquetball with probability

$$P = \frac{1+p}{2} \left(\frac{p}{1-p+p^2}\right)^{21},$$

where p is the probability that A will win any specific rally (independent of the server). Determine, to within  $10^{-3}$ , the minimal value of p that will ensure that A will shut out B in at least half the matches they play.

From a sketch of the graph, we see that p is close to 0.8, so we use the bisection method (bisection\_method.m) with an initial interval [0.7, 0.9] with function  $f(x) = \frac{1+x}{2} \left(\frac{x}{1-x+x^2}\right)^{21} - 0.5$ :

```
>> bisection_method('(1+x)/2*(x/(1-x+x^2))^21-0.5',...
0.7,0.9,1000,10^-4)
```

ans =

0.84296875000000

## Code

```
%%% bisection_method.m %%%
```

```
function p = bisection_method(fstring,a,b,N,TOL)
```

```
i=1;
    f = inline(fstring);
    FA = f(a);
    while ( i <= N )
        p = (a+b)/2;
        FP = f(p);
        if( FP == 0 || (b-a)/2 < TOL)
            return;
        end
        if( FA*FP > 0 )
            a = p;
            FA = FP;
        else
            b = p;
        end
        i = i+1;
    end
end
%%% end of bisection_method.m %%%
%%% fixed_point_method.m %%%
function p = fixed_point_method(fstring,p0,N,TOL)
    i = 1;
    f = inline(fstring);
    while i < N
        p = f(p0);
        if ( nargin == 4 \&\& abs(p-p0) < TOL )
```

```
fprintf('Took %i iterations.',i);
            return;
        end
        p0 = p;
        i = i+1;
    end
end
%%% end of fixed_point_method.m %%%
%%% newtons_method.m %%%
function p = newtons_method(fstring,fpstring,p0,N,TOL)
    i = 1;
    f = inline(fstring);
    fp = inline(fpstring);
    while( i <= N )</pre>
        p = p0-f(p0)/fp(p0);
        if( abs(p-p0) < TOL )</pre>
            fprintf('Took %i iterations',i);
            return;
        end
        i = i+1;
        p0=p;
    end
end
```

```
%%% end newtons_method.m %%%
```