Math 104A - Homework 2

Due 6,30

Section 1.3 - 1, 7a, 7d, 11
Section 2.1 - 6, 8, 20
Section 2.2 - 5, 8, 14
Section 2.3 - 5, 33

1.3.1a Use three-digit chopping arithmetic to compute the sum Zgl %2 first by

1.3.1b

%+4—11+-~-+ﬁ, and then by ﬁ—i—g—ll—l—---qL%. Which method is more

accurate, and why?

Using three-digit chopping arithmetic,

L (10040.250) £ 0.111) 4 -+ ) +0.0100) = 1.53
17179 100 ‘ S ' S
while

111

1
—t—+—++-=(---((0.01 012 01 -+ )+1.00) = 1.54.
oo s teat T (+--((0.01004-0.0123)+0.0156 ) +- - - )+1.00) 5
The actual value is 1.5498. The first sum is less accurate because the smaller
numbers are added last, resulting in significant round-off error.

Write an algorithm (pseudocode) to sum the finite series sz\il x; in reverse
order. (Here, the input is N, z1,..., 2y, and the output is the sum).

INPUT: N,xq,...,zn
OUTPUT: 3"V x;

Step 1: Set i = N,s = 0.

Step 2: While ¢ > 0 do Steps 3-4
Step 3: Set s = s+ 1/42.
Step 4: Set i =1 — 1.

Step 5: OUTPUT s.

sin h

1.3.7a Find the rate of convergence of lim,_,o ®3* = 1 (Hint: use Taylor series).

1.3.7b

sin(h) h — 1 cos(¢) h? 5
= T = | =O(h
-] : sin(e)| = o(n)
Find the rate of convergence of limy,_,o 1_heh =—1.
1— el 1—1—h—1e h
‘ h - ' h N ' 2 ‘ (h)




1.3.11

2.1.6

Construct an algorithm (pseudocode) that has as input an integer n > 1,
numbers xg, x1,...,T,, and a number z that produces as output the product

(x —zo)(x —21) -+ - (T — p).

INPUT: n,zg,...,2,, 2.
OUTPUT: [[\_,(z — ;).

Step 1: Set i =0,p = 1.

Step 2: While i < n do Steps 3-4
Step 3: Set p =px* (z — x;).
Step 4: Set i =1+ 1.

Step 5: OUTPUT p.

Use the Bisection method to find solutions accurate to within 10~° for the
following problems:

a3r—e" =0,2€]l,2].

Using the attached code (bisection_method.m), we got

>> bisection_method(’3*x-exp(x)’,1,2,1000,107-5)
ans =
1.512138366699219

b x+3cosz —e® =0,z €0,1].

Using the attached code (bisection_method.m), we got

>> bisection_method(’x+3*cos(x)-exp(x)’,0,1,1000,107-5)
ans =
0.976768493652344

c 2’ —4r+4—Inz =0,z € [1,2] and = € [2,4].

Using the attached code (bisection_method.m), we got

>> bisection_method(’x~2-4*x+4-log(x)’,1,2,1000,107-5)
ans =

1.412391662597656
>> bisection_method(’x"2-4*x+4-1log(x)’,2,4,1000,107-5)
ans =

3.057106018066406

d z+1—2sin(mz) =0,2 € [0,0.5] and = € [0.5, 1].

Using the attached code (bisection_method.m), we got

>> bisection_method (’x+1-2*sin(pi*x)’,0,0.5,1000,107-5)
ans =

0.206031799316406
>> bisection_method(’x+1-2*sin(pi*x)’,0.5,1,1000,107-5)
ans =

0.681968688964844



2.1.8a Sketch the graphs of y =z and y = tanx.

2.1.8b

2.1.20

10 T T T T

Use the bisection method to find an approximation to within 107° to the
first positive value of x with x = tanx.

From the sketch, we see that the first positive fixed-point occurs somewhere
between 4 and 5. Using the attached code (bisection_method.m), we got

>> bisection_method(’x-tan(x)’,4,5,1000,107-5)
ans =
4.493415832519531

A particle starts at rest on a smooth inclined plane whose angle 6 is changing

at a constant rate 9 = w < 0. At the end of ¢ seconds, the position of the

dt
object is given by

wt —wt
g (et —e ,
x(t) = ~5. < 5 — sm(wt)) :

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 1075, the rate
w at which 0 changes. Assume that g = 32.17 ft/ s,

Substituting the appropriate values, we find w by finding the root of

f(z) = 3227“127 <€ZL) _26_:1; - sin(:z:)) — 1.7

Using the attached code (bisection_method.m), we got

>> bisection_method(’-32.17/(2%x"2) * ((exp(x)-exp(-x))/2...
-sin(x))-1.7’,-1,-0.1,1000,10"-5)
ans =
-0.317055511474609



2.2.5

2.2.8

Use a fixed-point iteration method to determine a solution accurate to within
1072 for 2* — 322 =3 =0 on [1,2]. Use py = 1.

1/4

After first rearranging the equation to get (322 + 3)Y/* = z, we use attached

code (fixed_point_method.m) to get

>> fixed_point_method(’ (3*x72+3)~(1/4)’,1,1000,10°-2)
Took 6 iterations.
ans =

1.943316929898677

Use theorem 2.2 to show that g(x) = 27" has a unique fixed point on 3, 1].
Use fixed-point iteration to find an approximation to the fixed point accu-
rate to within 107%. Use corollary 2.4 to estimate the number of iterations
required to achieve 10~* accuracy, and compare this theoretical estimate to
the number actually needed.

Since g is decreasing, we know that
max g(x) = g(%) ~ 0.793700526 < 1,
min g(z) = g(1) = 0.5 > %,
and so g(z) € [5,1]. Since ¢'(x) = —27"1n(2) is negative and increasing, we

know that |¢'(z)] < |¢/(3)| ~ 0.550151282 = k < 1. Then g satisfies the con-
ditions of theorem 2.2, and so g has a unique fixed point on the interval [%, 1].

Using the attached code (fixed_point_method.m), we get
>> p = 0.641185744504985984 ;

>> abs(p-fixed_point_method(’2”~(-x)’,2/3,7))
ans =
1.951777565947221e-04

>> abs(p-fixed_point_method(’2"~(-x)’,2/3,8))
ans =
8.673817179283283e-05

so 8 iterations are necessary to be within 10~* of the true fixed point p =
0.641185744504986. By corollary 2.4, |p, — p| < &, and so

kn

— <10

3 =

In(k") <In(3-107*)
In(3- 1074

")

~ 13.5747058.



2.2.14

2.3.5

Use a fixed-point iteration method to determine a solution accurate to within
107* for x = tanz, for z € [4,5].

1
tan(z)
tached code (fixed_point_method.m), we get

Rearranging the equation so that g(z) = — % + = and using the at-

>> fixed_point_method(’1/tan(x)-1/x+x’,4.5,1000,107-4)
Took 2 iterations.
ans =

4.493409457929371

Use Newton’s method to find solutions accurate to within 10~* for the fol-
lowing problems:

ard—212—-5=0,2¢€l,4]

Using the attached code (newtons_method.m), we get

>> newtons_method (’x"3-2*x"2-5’,73*x"2-4%*x’,2.5,1000,10"-4)
Took 4 iterations
ans =

2.690647448028615

b 23 +322 —1=0,z € [-3,-2].

Using the attached code (newtons_method.m), we get

>> newtons_method (’x~3+3%x"2-1’,’3*x"2+6*x’,-2.5,1000,107-4)
Took 5 iterations
ans =

-2.879385241571822

c z—cosx =0,z €[0,7/2].

Using the attached code (newtons_method.m), we get

>> newtons_method(’x-cos(x)’,’1+sin(x)’,pi/4,1000,10°-4)
Took 3 iterations
ans =

0.739085133215161

d z—08—-02sinz =0,z € [0,7/2].

Using the attached code (newtons_method.m), we get

>> newtons_method(’x-0.8-0.2%sin(x)’,’1-0.2*cos(x)’,pi/4,1000,107-4)

Took 3 iterations
ans =
0.964333887695271



2.3.33 Player A will shut out (win by a score of 21-0) player B in a game of raque-
thall with probability
21
p_1tp P ’
2 1—p+p?

where p is the probability that A will win any specific rally (independent
of the server). Determine, to within 1072, the minimal value of p that will
ensure that A will shut out B in at least half the matches they play.

From a sketch of the graph, we see that p is close to 0.8, so we use the
bisection method (bisection_method.m) with an initial interval [0.7,0.9]

with function f(z) = 112 (I_Zf/ﬂg)21 —0.5:

>> bisection_method(’ (1+x)/2*(x/(1-x+x"2))"21-0.5", ...
0.7,0.9,1000,10"-4)
ans =
0.842968750000000



Code

%%% bisection_method.m %%%

function p = bisection_method(fstring,a,b,N,TOL)
i=1;

f = inline(fstring);
FA = f(a);

while ( 1 <= N )

p = (a+b)/2;
FP = f(p);

if( FP == 0 || (b-a)/2 < TOL )
return;

end

if ( FAXFP > 0 )
a =rp;
FA = FP;

else
b = p;

end

i = i+1;

end

end

%%%h end of bisection_method.m %%%

%hte fixed_point_method.m %%%
function p = fixed_point_method(fstring,pO,N,TOL)

i=1;
inline(fstring);

Hh
Il

while 1 < N
p = £(p0);

if( nargin == 4 && abs(p-p0) < TOL )



fprintf (’Took %i iteratiomns.’,i);

return;
end
PO = p;
i = i+1;

end
end

%%h% end of fixed_point_method.m %%%

%%h% newtons_method.m %%%

function p = newtons_method(fstring,fpstring,p0,N,TOL)

i=1;
f = inline(fstring);
fp = inline(fpstring);

while( 1 <= N )
p = p0-£(p0)/fp(p0);

if ( abs(p-p0) < TOL )
fprintf (*Took %i iterations’,i);

return;
end
i = i+1;
pO=p;
end

end

%%% end newtons_method.m %%%



