
Math 104A - Homework 3
Due 7/7

2.4.6 Show that the following sequences converge linearly to p = 0. How large
must n be before we have |pn − p| ≤ 5 · 10−2?

a pn = 1/n.

Since
|pn+1 − 0|
|pn − 0|

=
1/(n+ 1)

1/n
=

n

n+ 1
→ 1

as n→∞, we have that pn converges linearly to 0. In order for |pn−p| <
5 · 10−2, we need

1

n
< 5 · 10−2

n >
102

5
= 20.

b pn = 1/n2.

Since
|pn+1 − 0|
|pn − 0|

=
1/(n+ 1)2

1/n2
=

n2

(n+ 1)2
→ 1

as n→∞, we have that pn converges linearly to 0. In order for |pn−p| <
5 · 10−2, we need

1

n2
< 5 · 10−2

n2 >
102

5

n >
10√

5
≈ 4.47.

2.4.7a Show that for any positive integer k, the sequence defined by pn = 1/nk

converges linearly to p = 0.

Since
|pn+1 − 0|
|pn − 0|

=
1/(n+ 1)k

1/nk
=

nk

(n+ 1)k
→ 1

as n→∞, we have that pn converges linearly to 0 for any integer k > 0.

2.4.8a Show that the sequence pn = 10−2
n

converges quadratically to 0.

Since
|pn+1 − 0|
|pn − 0|2

=
10−2

(n+1)

10−2·2n
=

102(n+1)

102(n+1)
→ 1

as n→∞, we have that pn converges quadratically to 0.

1

2.4.8b Show that the sequence pn = 10−n
k

does not converge quadratically, regard-
less of the size of the exponent k.

Since
|pn+1 − 0|
|pn − 0|2

=
10−(n+1)k

10−2nk = 102nk−(n+1)k →∞

as n → ∞, we have that pn does not converge quadratically to 0, for any
positive integer k.

2.4.9a Construct a sequence that converges to 0 of order 3.

Let pn = 10−3
n
. Then since

|pn+1 − 0|
|pn − 0|3

=
10−3

(n+1)

10−3·3n
=

103(n+1)

103(n+1)
→ 1,

we have that pn converges to 0 of order 3.

2.4.9b Suppose α > 1. Construct a sequence that converges to 0 of order α.

Let pn = 10−α
n
. Then since

|pn+1 − 0|
|pn − 0|α

=
10−α

(n+1)

10−α·αn =
10α

(n+1)

10α(n+1)
→ 1,

we have that pn converges to 0 of order α.

2.4.11 Show that the bisection method gives a sequence with an error bound that
converges linearly to 0.

By theorem 2.1, we know that the error bound for the bisection method
is b−a

2n
. Then since

(b− a)/2n+1

(b− a)/2n
=

1

2

we have that this error bound converges only linearly.

3.1.6 Use appropriate Lagrange interpolating polynomials of degrees one, two, and
three to approximate each of the following: Note: You can do these by hand,
but I highly suggest implementing Neville’s iterated interpolation.

a f(0.43) if f(0) = 1, f(0.25) = 1.64872, f(0.5) = 2.71828, f(0.75) =
4.48169

Using the attached code (neville.m), we get

>> x = [0;0.25;0.5;0.75];

>> f = [1;1.64872;2.71828;4.48169];

>> neville(0.43,x(2:3),f(2:3)) % degree one

ans =

2.418803200000000

2

>> neville(0.43,x(2:4),f(2:4)) % degree two

ans =

2.348863120000000

>> neville(0.43,x,f) % degree three

ans =

2.360604734080000

b f(0) if f(−0.5) = 1.93750, f(−0.25) = 1.33203, f(0.25) = 0.800781,
f(0.5) = 0.687500

Using the attached code (neville.m), we get

>> x = [-0.5;-0.25;0.25;0.5];

>> f = [1.93750;1.33203;0.800781;0.687500];

>> neville(0,x(2:3),f(2:3)) % degree one

ans =

1.066405500000000

>> neville(0,x(2:4),f(2:4)) % degree two

ans =

1.015624333333333

>> neville(0,x,f) % degree three

ans =

0.984374000000000

c f(0.18) if f(0.1) = −0.29004986, f(0.2) = −0.56079734, f(0.3) =
−0.81401972, f(0.4) = −1.0526302

Using the attached code (neville.m), we get

>> x = [0.1;0.2;0.3;0.4];

>> f = [-0.29004986;-0.56079734;-0.81401972;-1.0526302];

>> neville(0.18,x(1:2),f(1:2)) % degree one

ans =

-0.506647844000000

>> neville(0.18,x(1:3),f(1:3)) % degree two

ans =

-0.508049852000000

>> neville(0.18,x,f) % degree three

ans =

-0.508143074400000

d f(0.25) if f(−1) = 0.86199480, f(−0.5) = 0.95802009, f(0) = 1.0986123,
f(0.5) = 1.2943767

3

Using the attached code (neville.m), we get

>> x = [-1;-0.5;0;0.5];

>> f = [0.86199480;0.95802009;1.0986123;1.2943767];

>> neville(0.25,x(3:4),f(3:4)) % degree one

ans =

1.196494500000000

>> neville(0.25,x(2:4),f(2:4)) % degree two

ans =

1.189597976250000

>> neville(0.25,x,f) % degree three

ans =

1.188935146875000

3.1.11 Use Neville’s method to approximate
√

3 with the following functions and
values.

a f(x) = 3x and the nodes x0 = −2, x1 = −1, x2 = 0, x3 = 1, and x4 = 2.

Using the attached code (neville.m) and letting x = 0.5, we get

>> x = [-2;-1;0;1;2];

>> f = 3.^x;

>> neville(0.5,x,f)

ans =

1.708333333333333

b f(x) =
√
x and the nodes x0 = 0, x1 = 1, x2 = 2, x3 = 4, x4 = 5.

Using the attached code (neville.m) and letting x = 3, we get

>> x = [0;1;2;4;5];

>> f = sqrt(x);

>> neville(3,x,f)

ans =

1.690606764623116

c Compare the accuracy of the approximation in parts (a) and (b).

The actual value of
√

3 is 1.732050807568877. In part (a), the abso-
lute error was |1.708333333333333 −

√
3| = 0.023717, and in part (b),

the absolute error was |1.690606764623116 −
√

3| = 0.041444, so part
(a) was more accurate.

3.1.19 Construct the Lagrange interpolating polynomails for the following functions,
and find a bound for the absolute error on the interval [x0, xn].

4

a f(x) = e2x cos(3x), x0 = 0, x1 = 0.3, x2 = 0.6.

Using the attached code (divided_diff.m), we find the polynomial
to be

>> x = [0;0.3;0.6];

>> f = exp(2*x).*cos(3*x);

>> divided_diff(x,f);

Polynomial is:

1.000+0.442(x-0.000)-11.220(x-0.000)(x-0.300)

A bound for the error can be found via the error term in theorem 3.3:

|f(x)− P (x)| =
∣∣∣∣f (3)(ξ)

6
x(x− 0.3)(x− 0.6)

∣∣∣∣
=

∣∣∣∣−e2ξ(9 sin(3ξ) + 46 cos(3ξ))

6
x(x− 0.3)(x− 0.6)

∣∣∣∣
≤

∣∣∣∣−e2·0.6(9 sin(3 · 0.6) + 46)

6
0.0103923

∣∣∣∣
= 0.31493

b f(x) = sin(ln x), x0 = 2, x1 = 2.4, x2 = 2.6

Using the attached code (divided_diff.m), we find the polynomial
to be

>> x = [2;2.4;2.6];

>> f = sin(log(x));

>> divided_diff(x,f);

Polynomial is:

0.639+0.322(x-2.000)-0.131(x-2.000)(x-2.400)

An error bound is

|f(x)− P (x)| =
∣∣∣∣f (3)(ξ)

6
(x− 2)(x− 2.4)(x− 2.6)

∣∣∣∣
=

∣∣∣∣3 sin(ln(ξ)) + cos(ln(ξ))

6ξ3
(x− 2)(x− 2.4)(x− 2.6)

∣∣∣∣
≤

∣∣∣∣ 4

6 · 23
0.016901

∣∣∣∣
= 0.0014084

3.1.26 Inverse Interpolation Suppose f ∈ C1[a, b], f ′(x) 6= 0. Let x0, . . . , xn be
n + 1 distinct numbers in [a, b] with f(xk) = yk. To approximate the root
p of f , construct the interpolating polynomial of degreen n on the nodes

5

y0, . . . , yn for the function f−1. Since yk = f(xk) and 0 = f(p), it follows
that f−1(yk) = xk and f−1(0) = p. Using iterated interpolation to approxi-
mate f−1(0) is called iterated inverse interpolation.

Use iterated inverse interpolation to find an approximation to the solution
of f(x) = x− e−x = 0, using the data

x 0.3 0.4 0.5 0.6
e−x 0.740181 0.670320 0.606531 0.548812

Using the attached code (neville.m) and the data

y = x− e−x -0.440818 -0.270320 -0.106531 0.0511884
x 0.3 0.4 0.5 0.6

we get

>> x = [-0.440818;-0.270320;-0.106531;0.0511884];

>> f = [0.3;0.4;0.5;0.6];

>> neville(0,x,f)

ans =

0.567142492111250

3.2.2 Use Algorithm 3.2 (Newton’s divided differences) to construct interpolating
polynomials of degree one, two, and three for the following data. Approxi-
mate the specified value using each of the polynomials.

a f(0.43) if f(0) = 1, f(0.25) = 1.64872, f(0.5) = 2.71828, f(0.75) =
4.48169

Using the attached code (divided_diff.m), we get

>> x = [0;0.25;0.5;0.75];

>> f = [1;1.64872;2.71828;4.48169];

>> divided_diff(x(2:3),f(2:3)); % degree one

Polynomial is:

1.649+4.278(x-0.250)

>> divided_diff(x(2:4),f(2:4)); % degree two

Polynomial is:

1.649+4.278(x-0.250)+5.551(x-0.250)(x-0.500)

>> divided_diff(x,f); % degree three

Polynomial is:

1.000+2.595(x-0.000)+3.367(x-0.000)(x-0.250)...

+2.912(x-0.000)(x-0.250)(x-0.500)

6

Substituting x = 0.43 into these expressions give

P1,2(0.43) = 2.41880

P1,2,3(0.43) = 2.34886

P0,1,2,3(0.43) = 2.36060

b f(0) if f(−0.5) = 1.93750, f(−0.25) = 1.33203, f(0.25) = 0.800781,
f(0.5) = 0.687500

Using the attached code (divided_diff.m), we get

>> x = [-0.5;-0.25;0.25;0.5];

>> f = [1.93750;1.33203;0.800781;0.687500];

>> A = divided_diff(x(2:3),f(2:3)); % degree one

Polynomial is:

1.332-1.062(x+0.250)

>> A = divided_diff(x(2:4),f(2:4)); % degree two

Polynomial is:

1.332-1.062(x+0.250)+0.812(x+0.250)(x-0.250)

>> A = divided_diff(x,f); % degree three

Polynomial is:

1.938-2.422(x+0.500)+1.813(x+0.500)(x+0.250)...

-1.000(x+0.500)(x+0.250)(x-0.250)

Substituting x = 0 into these expressions give

P1,2(0.43) = 1.06641

P1,2,3(0.43) = 1.01562

P0,1,2,3(0.43) = 0.984374

3.2.19 Given

Pn(x) = f [x0] + f [x0, x1](x− x0) + a2(x− x0)(x− x1)
+ · · ·+ an(x− x0) · · · (x− xn−1),

use Pn(x2) to show that a2 = f [x0, x1, x2].

7

Substituting x2 for x into Pn gives

f [x2] = Pn(x2) = f [x0] + f [x0, x1](x2 − x0) + a2(x2 − x0)(x2 − x1)

⇒ a2 =
f [x2]− f [x0]

(x2 − x0)(x2 − x1)
− f [x0, x1]

x2 − x1

=
f [x2]− f [x1] + f [x1]− f [x0]

(x2 − x0)(x2 − x1)
− f [x0, x1]

x2 − x1

=
f [x1, x2]

x2 − x0
+

f [x1]− f [x0]

(x2 − x0)(x2 − x1)
− f [x0, x1]

x2 − x1

=
f [x1, x2]

x2 − x0
+
f [x0, x1]

x2 − x0

(
x1 − x0
x2 − x1

− x2 − x0
x2 − x1

)
=
f [x1, x2]

x2 − x0
− f [x0, x1]

x2 − x0
= f [x0, x1, x2]

3.3.2 Use algorithm 3.3 (Hermite interpolation) to construct an approximating
polynomial for the following data.

a
x f(x) f ′(x)
0 1 2

0.5 2.71828 5.43656

Using the attached code (hermite.m), we get

>> x = [0;0.5];

>> f = [1;2.71828];

>> fp = [2;5.43656];

>> hermite(x,f,fp);

Polynomial is:

1.000+2.000(x-0.000)+2.873(x-0.000)(x-0.000)...

+2.254(x-0.000)(x-0.000)(x-0.500)

b
x f(x) f ′(x)

-0.25 1.33203 0.437500
0.25 0.800781 -0.625000

Using the attached code (hermite.m), we get

>> x = [-0.25;0.25];

>> f = [1.33203;0.800781];

>> fp = [0.437500;-0.625000];

>> hermite(x,f,fp);

Polynomial is:

1.332+0.438(x+0.250)-3.000(x+0.250)(x+0.250)...

+7.750(x+0.250)(x+0.250)(x-0.250)

c

x f(x) f ′(x)
0.1 -0.29004996 -2.8019975
0.2 -0.56079734 -2.6159201
0.3 -0.81401972 -2.4533949

8

Using the attached code (hermite.m), we get

>> x = [0.1;0.2;0.3];

>> f = [-0.29004996;-0.56079734;-0.81401972];

>> fp = [-2.8019975;-2.6159201;-2.4533949];

>> hermite(x,f,fp);

Polynomial is:

-0.290-2.802(x-0.100)+0.945(x-0.100)(x-0.100)...

-0.297(x-0.100)(x-0.100)(x-0.200)...

-0.479(x-0.100)(x-0.100)(x-0.200)(x-0.200)...

+0.050(x-0.100)(x-0.100)(x-0.200)(x-0.200)(x-0.300)

d

x f(x) f ′(x)
-1 0.86199480 0.15536240

-0.5 0.95802009 0.2326954
0 1.0986123 0.33333333

0.5 1.2943767 0.45186776

Using the attached code (hermite.m), we get

>> x = [-1;-0.5;0;0.5];

>> f = [0.86199480;0.95802009;1.0986123;1.2943767];

>> fp = [0.15536240;0.2326954;0.33333333;0.45186776];

>> hermite(x,f,fp)

Polynomial is:

0.862+0.155(x+1.000)+0.073(x+1.000)(x+1.000)...

+0.016(x+1.000)(x+1.000)(x+0.500)...

-0.000(x+1.000)(x+1.000)(x+0.500)(x+0.500)...

-0.001(x+1.000)(x+1.000)(x+0.500)(x+0.500)(x-0.000)...

-0.000(x+1.000)(x+1.000)(x+0.500)(x+0.500)(x-0.000)(x-0.000)...

+0.000(x+1.000)(x+1.000)(x+0.500)(x+0.500)(x-0.000)(x-0.000)(x-0.500)

ans =

0.861994800000000

0.155362400000000

0.073376360000000

0.015826559999999

-0.000138159999999

-0.000910680000004

-0.000058479999996

0.000050399999996

We include the coefficients because the last few are so close to zero that
they were rounded off in the printout.

3.3.4 The data in 3.3.2 were generated using the following functions. Use the
polynomials constructed in 3.3.2 for the given value of x to approximate
f(x), and calculate the absolute error.

9

a f(x) = e2x; approximate f(0.43).

Using the polynomial constructed in 3.3.2a, we have that

H3(0.43) = 2.36207,

with an absolute error of

|f(0.43)−H3(0.43)| = 0.00109122.

b f(x) = x4 − x3 + x2 − x+ 1; approximate f(0).

Using the polynomial constructed in 3.3.2a, we have that

H3(0) = 1.09453,

with an absolute error of

|f(0)−H3(0)| = 0.0945305.

c f(x) = x2 cos(x)− 3x; approximate f(0.18).

Using the polynomial constructed in 3.3.2a, we have that

H5(0.18) = −0.508123,

with an absolute error of

|f(0.18)−H3(0.18)| = 5.34234× 10−9.

d f(x) = ln(ex + 2); approximate f(0.25).

Using the polynomial constructed in 3.3.2a, we have that

H7(0.25) = 1.18907,

with an absolute error of

|f(0.25)−H7(0.25)| = 2.53426× 10−7

3.3.10 A car traveling along a straight road is clocked at a number of points. The
data from the obsercations are given in the following table, where the time
is in seconds, the distance is in feet, and the speed is in feet per second.

Time 0 3 5 8 13
Distance 0 225 383 623 993

Speed 75 77 80 74 72

10

a Use a Hermite polynomial to predict the position of the car and it’s
speed when t = 10 s.

Using the attached code (hermite.m), we get

>> x = [0;3;5;8;13];

>> f = [0;225;383;623;993];

>> fp = [75;77;80;74;72];

>> hermite(x,f,fp);

with Hermite polynomial

H9(t) = 75t+ 0.222t2(t− 3)− 3.11 · 10−2t2(t− 3)2

− 6.44 · 10−3t2(t− 3)2(t− 5)

+ 2.26 · 10−3t2(t− 3)2(t− 5)2

− 9.13 · 10−4t2(t− 3)2(t− 5)2(t− 8)

+ 1.31 · 10−4t2(t− 3)2(t− 5)2(t− 8)2

− 2.02 · 10−5t2(t− 3)2(t− 5)2(t− 8)2(t− 13).

Evaluating at t = 10 gives

H9(10) = 742.503.

The derivative is given by

H ′9(t) = −0.000182013t8 + 0.00832472t7 − 0.15313t6

+ 1.45825t5 − 7.69148t4 + 22.0325t3

− 30.2859t2 + 14.3238t+ 75

which gives the speed of the car as

H ′9(10) = 48

b Use the derivative of the Hermite polynomial to determine whether the
car ever exceeds a 55 mi/h speed limit on the road. If so, what is the
first time the car exceeds this speed?

Plotting the derivative,

11

40

50

60

70

80

90

100

110

120

0 2 4 6 8 10 12

H ′9(t)

we see that the speed of the car does exceed 55 mi/h (80.67 ft/s) some-
where between t = 5 and t = 6. Using the bisection method (see
previous homework for code), we find that the car first exceeds 55 mi/h
at t = 5.64492.

c What is the predicted maximum speed for the car?

From the sketch of the velocity, we see that the maximum speed of the
car occurs somewhere between t = 12 and t = 13. Using the bisection
method on the second derivative

H ′′9 (t) = −0.0014561t7 + 0.0582731t6 − 0.918778t5 + 7.29124t4

− 30.7659t3 + 66.0974t2 − 60.5719t+ 14.3238,

we find that the car reaches is maximum speed of 119.417 ft/s (81.4207
mph) at t = 12.3737 s.

3.4.30 The 2004 Kentucky Derby was won by a horse named Smarty Jones in a
time of 2:04.06 (2 minutes and 4.06 seconds) for the 11

4
-mile race. Times at

the quarter-mile, half-mile, and mile poles were 0:22.99, 0:46.73, and 1:37.35.

a Use these values together with the starting time to construct a free cu-
bic spline for Smarty Jones’ race.

Using the attached code (natural_cubic_spline.m), we get

>> x = [0;0.25;0.5;1;1.25];

>> f = [0;22.99;46.73;97.35;124.06];

>> [a,b,c,d] = natural_cubic_spline(x,f)

a =

12

0

2.299000000000000e+01

4.673000000000000e+01

9.734999999999999e+01

b =

9.139016393442623e+01

9.309967213114754e+01

9.697114754098361e+01

1.054537704918033e+02

c =

0

6.838032786885259e+00

8.647868852458965e+00

8.317377049180427e+00

d =

9.117377049180346e+00

2.413114754098274e+00

-2.203278688523582e-01

-1.108983606557390e+01

where the a, b, c, and d give the coefficients in each piece of the spline.

b Use the spline to predict the time at the three-quarter-mile pole, and
compare this to the actual time of 1:11.80.

We use the third piece of the spline

S3(x) = 46.73 + 96.97(x− 0.5) + 8.648(x− 0.5)2 − 0.2203(x− 0.5)3

to obtain the approximation S3(0.75) = 71.5098, which has absolute
error

|f(0.75)− S3(0.75)| = |71.80− 71.5098| = 0.2902.

c Use the spline to approximate Smarty Jones’ starting speed and speed
at the finish line.

We know that S ′1(0) = b1 = 91.39 s/mi, which corresponds to about
39.39 mph. To get his finishing speed, we compute

S ′4(1.25) = 105.45 + 2 · 8.3174(1.25− 1)− 3 · 11.090(1.25− 1)

= 101.2912 s/mi

which corresponds to about 35.54 mph. That’s one fast horse!

13

Code

%%% neville.m %%%

function [p,Q] = neville(x0,x,f)

n = length(x);

Q = zeros(n,n);

Q(:,1) = f;

for j=2:n

for i=j:n

Q(i,j) = ((x0-x(i))*Q(i-1,j-1) - (x0-x(i-j+1))*Q(i,j-1))/(x(i-j+1)-x(i));

end

end

p = Q(n,n);

end

%%% end of neville.m %%%

%%% divided_diff.m %%%

function F = divided_diff(x,f)

n = length(x);

Q = zeros(n,n);

Q(:,1) = f;

for i=2:n

for j=2:i

Q(i,j) = (Q(i,j-1)-Q(i-1,j-1))/(x(i)-x(i-j+1));

end

end

F = diag(Q);

fprintf(’Polynomial is:\n’);

fprintf(’%.3f’,F(1));

for i=2:n

fprintf(’%+.3f’,F(i));

for j=1:(i-1)

fprintf(’(x%+.3f)’,x(j));

end

end

14

fprintf(’\n’);

end

%%% end of divided_diff.m %%%

%%% hermite.m %%%

function [A,Q] = hermite(x,f,fp)

n = length(x);

z = zeros(2*n,1);

Q = zeros(2*n,2*n);

for i=1:n

z(2*i-1) = x(i);

z(2*i) = x(i);

Q(2*i-1,1) = f(i);

Q(2*i,1) = f(i);

Q(2*i,2) = fp(i);

if i ~= 1

Q(2*i-1,2) = (Q(2*i-1,1)-Q(2*i-2,1))/(z(2*i-1)-z(2*i-2));

end

end

% below is a more efficient way to initialize z and Q

%z(1:2:2*n-1) = x;

%z(2:2:2*n) = x;

%Q(1:2:2*n-1,1) = f;

%Q(2:2:2*n,1) = f;

%Q(2:2:2*n,2) = fp;

%for i=3:2:2*n-1

%Q(i,2) = (Q(i,1)-Q(i-1,1))/(z(i)-z(i-1));

%end

for i=3:2*n

for j=3:i

Q(i,j) = (Q(i,j-1)-Q(i-1,j-1))/(z(i)-z(i-j+1));

end

end

A = diag(Q);

fprintf(’Polynomial is:\n’);

fprintf(’%.3f’,A(1));

for i=2:2*n

15

fprintf(’%+.3f’,A(i));

for j=1:(i-1)

fprintf(’(x%+.3f)’,-z(j));

end

end

fprintf(’\n’);

end

%%% end of hermite.m %%%

%%% natural_cubic_spline.m %%%

function [a,b,c,d] = natural_cubic_spline(x,a)

n = length(x)-1;

h = zeros(n,1);

alpha = zeros(n-1,1);

l = zeros(n,1);

mu = zeros(n,1);

z = zeros(n+1,1);

b = zeros(n+1,1);

c = zeros(n+1,1);

d = zeros(n+1,1);

for i=0:n-1

h(i+1) = x(i+2)-x(i+1);

end

for i=1:n-1

alpha(i) = 3/h(i+1)*(a(i+2)-a(i+1)) - 3/h(i)*(a(i+1)-a(i));

end

l(1) = 1;

mu(1) = 0;

z(1) = 0;

for i=1:n-1

l(i+1) = 2*(x(i+2)-x(i)) - h(i)*mu(i);

mu(i+1) = h(i+1)/l(i+1);

z(i+1) = (alpha(i)-h(i)*z(i))/l(i+1);

end

z(n+1) = 0;

c(n+1) = 0;

16

for j=n-1:-1:0

c(j+1) = z(j+1)-mu(j+1)*c(j+2);

b(j+1) = (a(j+2)-a(j+1))/h(j+1)-h(j+1)*(c(j+2)+2*c(j+1))/3;

d(j+1) = (c(j+2)-c(j+1))/(3*h(j+1));

end

end

%%% end of natural_cubic_spline.m %%%

17

