
Math 104A - Homework 5
Due 7/21

1 Write a code that implements Gaussian quadrature with 3 nodes. The
quadrature is given by∫ −1

1

f(x)dx ≈ a0f(x0) + a1f(x1) + a2f(x2),

where x0 = −
√

3
5
, x1 = 0, x2 =

√
3
5

and a0 = 5
9
, a1 = 8

9
, a2 = 5

9
. The code

should take as input the interval [a, b] and the integrand f . An example code
template:

function I = Gaussian_quadrature(a,b,fstring)

f = inline(fstring);

% code for Gaussian quadrature goes here.

end

Note: you will need to do the change of variables described in lecture/the
book in order to get an approximation over the arbitrary interval [a, b].

See attached code (Gaussian_quadrature.m).

2 Write a code that implements a composite Gaussian quadrature. What this
means is the code should break the total interval into smaller subintervals,
perform Gaussian quadrature on each subinterval, and sum the results. The
code should take as input the interval [a, b], the number of subintervals N ,
and the integrand f . An example code template:

function I = composite_Gaussian_quadrature(a,b,N,fstring)

f = inline(fstring)

intervals = linspace(a,b,N+1);

% Code for composite Gaussian quadrature goes here.

% This should involve the code from the previous problem.

end

See attached code (composite_Gaussian_quadrature.m). As a check to see
if the code is working correctly, we test it on the integral

∫ π
0

sin(x)dx:

>> composite_Gaussian_quadrature(0,pi,10,’sin(x)’)

ans =

2.000000000956971

1

which agrees closely with the actual value 2.

3 Test your composite Gaussian quadrature using the function f(x) = ex−e−x

ex+e−x =
tanh(x) on the interval [0, 1] (the antiderivative of tanh(x) is ln(cosh(x))) for
values N = 2, 4, 8, 16, 32, 64. Make a log-log plot of the absolute error versus
the step-size h = b−a

N
. As before, be sure to label your plot clearly.

How does this quadrature compare to composite Simpson’s method from the
previous homework?

Using the attached code (plot_composite_Gaussian_quadrature_error.m),
with the following arguments:

>> [h,E] = plot_composite_Gaussian_quadrature_error ...

(0,1,’tanh(x)’,’log(cosh(x))’,[2 4 8 16 32 64]);

we get the following plot:

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
−40

−35

−30

−25

−20

−15
Log−Log Plot of Error vs. Stepsize

log(h)

lo
g

(e
rr

o
r)

We find the slope of the line via

>> (log(E(6))-log(E(1)))/(log(h(6))-log(h(1)))

ans =

6.135422302774067

Thus, the order of convergence of composite Gaussian quadrature is approx-
imately O(h6), which is two orders higher than that of composite Simpson’s
rule, which was found to be O(h4).

4 Write a code that implements Euler’s method (algorithm 5.1 in the book).
The code should take as input the interval [a, b], the number of subintervals
N , the initial condition α, and the r.h.s. of the differential equation f(t, y).
The code should return the approximate solution wi at the meshpoints ti =
a+ ih. An example code template:

2

function w = Eulers_method(a,b,N,alpha,fstring)

% This converts the string representation of f into

% an actual function. An example function string would

% be ’y - t.^2 + 1’

f = inline(fstring,’t’,’y’);

% This sets up the mesh points. N+1 because if there are

% N subintervals, there are N+1 meshpoints.

t = linspace(a,b,N+1);

% This initializes the output vector. Initially, it

% contains all zeros for each of the mesh points. The

% first solution point is set to the initial condition.

w = zeros(size(t));

w(1) = alpha;

%%%%% Code for Euler’s method goes here. %%%%%

end

See the attached code (Eulers_method.m).

5 Test your code on the initial value problem

y′(t) = −y + sin(t), 0 ≤ t ≤ 10, y(0) = 1.

Plot your approximation with number of subintervals N = 20, 40, 80, along
with a plot of the exact solution y(t) = 1

2
(3e−t + sin(t) − cos(t)). Again, be

sure to label your plot clearly.

Using the attached code (plot_Eulers_method.m), and using the following
inputs:

>> plot_Eulers_method(0,10,1,’-y+sin(t)’,’(3*exp(-t)+sin(t)-cos(t))/2’);

we get the following plot:

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y

Euler’s Method Approximations

Exact

N=20

N=40

N=80

3

Code
%%%%% begin Gaussian_quadrature.m %%%%%

function I = Gaussian_quadrature(a,b,fstring)

f = inline(fstring);

nodes = [-sqrt(3/5) 0 sqrt(3/5)];

weights = [5/9 8/9 5/9];

I = 0;

for i=1:3

I = I + weights(i)*f((b-a)/2*nodes(i)+(a+b)/2);

end

I = (b-a)/2*I;

end

%%%%% end of Gaussian_quadrature.m %%%%%

%%%%% begin composite_Gaussian_quadrature.m %%%%%

function I = composite_Gaussian_quadrature(a,b,N,fstring)

intervals = linspace(a,b,N+1);

I = 0;

for i=1:N

I = I + Gaussian_quadrature(intervals(i),intervals(i+1),fstring);

end

end

%%%%% end of composite_Gaussian_quadrature.m %%%%%

%%%%% begin plot_composite_Gaussian_quadrature_error.m %%%%%

function [hvec,Evec] = plot_composite_Gaussian_quadrature_error ...

(a,b,fstring,Fstring,Nvec)

F = inline(Fstring);

hvec = (b-a)./Nvec;

Evec = zeros(size(hvec));

4

for i=1:length(Nvec)

Evec(i) = abs(composite_Gaussian_quadrature(a,b,Nvec(i),fstring) ...

- (F(b) - F(a)));

end

plot(log(hvec),log(Evec),’bo-’,’LineWidth’,3);

title(’Log-Log Plot of Error vs. Stepsize’);

xlabel(’log(h)’);

ylabel(’log(error)’);

end

%%%%% end of plot_composite_Gaussian_quadrature_error.m %%%%%

%%%%% begin Eulers_method.m %%%%%

function [t,w] = Eulers_method(a,b,N,alpha,fstring)

f = inline(fstring,’t’,’y’);

h = (b-a)/N;

t = linspace(a,b,N+1);

w = zeros(size(t));

w(1) = alpha;

for i=1:N

w(i+1) = w(i) + h*f(t(i),w(i));

end

end

%%%%% end of Eulers_method.m %%%%%

%%%%% begin plot_Eulers_method.m %%%%%

function [t,w] = plot_Eulers_method(a,b,alpha,fstring,solstring)

sol = inline(solstring,’t’);

t = linspace(a,b,500);

y = sol(t);

5

[t1,w1] = Eulers_method(a,b,20,1,fstring);

[t2,w2] = Eulers_method(a,b,40,1,fstring);

[t3,w3] = Eulers_method(a,b,80,1,fstring);

plot(t,y,’b-’,t1,w1,’r:’,t2,w2,’r-.’,t3,w3,’r--’,’LineWidth’,2);

legend(’Exact’,’N=20’,’N=40’,’N=80’,’Location’,’Best’);

xlabel(’t’);

ylabel(’y’);

title(’Euler’’s Method Approximations’);

end

%%%%% end of plot_Eulers_method.m %%%%%

6

