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tthecom. | P EXERCISES 2.4
ition of F, ! Exercises 1 to 6: Determine which of the following sets are open.
. L U={x|2<x*+y <3} CR? 2. U=lx,y,z)| x>0} CR
Examples (g 3. U={(xy)|x+y=2CR? 4 U={x,|x+y<2 R
y differen- ‘
lid, as the 5. U={(x.»,9)|xyz>0 CR 6. U={(x,y,2)|x#0,y>0CR’
‘ 7. Consider the function f(x, ¥) whose contour diagram is shown in Figure 2.45.

(a) Determine the sign of (&f/dx)(5, 3).
‘ (b) Which of the two numbers, (4f/dx)(10, 3) or (f/Ix)(10, 5), is larger?

8. Draw a contour diagram of a function f(x, y) that satisfies (3f/dx)(x, y) > 0 and (df/dy)(x, ¥)

: (&
‘,()Iiji'mli)l.lis < O forall (x, v).
I Exercises 9 to 18: Find the indicated partial derivatives.
9. flx,y)=x"+ylnx; f, f 10. f@x, y.2)=x; fo, fou fo
airly com- i 1. fe.y.)=ln(x+y+22 fo 12, f(x,y) = arctan (x/y); fx, [y
s to check ‘ 13. f(x,y)=e" cosxsiny fe, f, 14, f(x,y.2) = xJ/94Z For For 1
15.  Flony: adgd=xf 2] +oo ot a8 0n i =1iecum
‘ 16 flxy,....x,)=e " dffdx,i=1,....m
x 5
. 17. flx.y) = j te™"dt; fo, fy : 18. fx.y)={ @+17dt fo /s
(1] Iny
mtinuously ‘ 3
4 . Exercises 19 to 22:  The function z(x, ¥) is defined in terms of two differentiable real-valued func-
. tions f and g of one variable. Compute z, and z,.
i % 19. z=f(x)+g() 20. z= flx)egly)
‘adiagram,
adiag 21 z= f(x)/g(y) . z= fpo

“box” have { ;
‘ 23. A hiker is standing at the point (2, 1, 11) on a hill whose shape is given by the graph of the
function z = 14 — (x — 3)> — 2(y — 2)*. Assume that the x-axis points east and the y-axis points

10s¢ are in - —4 : .

_that is the north. In which of the two directions (east or north) is the hill steeper?

12.4). If a 24. The volume of a certain amount of gas is determined by V = 0.127P~!, where T is the

nclusion of temperature and P is the pressure. Compute and interpret dV/dP and dV /47 when P = 10 and |
T'=370. .

|
inction can ‘
o 25. Consider the function f(x, y) = —xe™ 2"
(a) Compute f,(2, 3).
| (b) Find the curve that is the intersection of the graph of f and the vertical plane x = 2 and compute
the slope of its tangent at y = 3.
(c) Using (a) and (b), give a geometric interpretation of f.(2, 3).
26. Letu(x, v,t) = e *sin (3x)cos (2y) denote the vertical displacement of a vibrating membrane
[ from the point (x, y) in the xy-plane at the time . Compute u,(x, y, 1), uy(x, y, 1), and u,(x, y, 1)
and give physical interpretations of your results.
Exercises 27 to 31: Compute the derivative of the function F at the point a.

tiability, and 27. F(x,y) = (y,x, 11),a = (0,0) 28. Fx,y) = (e, x>+ y), a = (a1, @)
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29, F(x,y.7)=(n(x? +y*+2%),2xy +2),a= (110

30. Flx,y) = (/5 + 3% y/V/xE+ ¥ a= (@, a) # (0.0) |

3. fx,y, 2) = |lxi+yj+ 2kl a= (a1, &, 03)

32. Compute V f(2, 1, —1)if f(x,y,2) =xyln (2% + xy).
|
|

33, The electrostatic force field F(r) and the electrostatic potential V(r) were defined in Example
2 11. Show that F(r) = —V ¥ (r). Compare with Example 2.40.

34. Let f(x,y,2) =xyz(x® +y* + 22y 2. Compute V f(x, ¥, 2) for (x, y, 2) # (0, 0, 0).
35. Define f: R® — Rby f(x) = |[x|]. Find V f(x) and state its domain.
Exercises 36 to 42:  Find the linear approximation of the function f at the point a. |
36, flx,y)= e""'gf“’z, a=1(0,0) 37. fO,y)=In(GBx+ 2y),a=(2,-1)
38, fe.y)=xyx*+y)"a=@01 39, f(x,y)=x>—xy+y/2+3,a=(3,2)
40. Flx,y,0)=hE>—y"+2,a=0331

.‘ 4. fey, D)= FyE+2a=(011)

I 42. f(x,y):]} edt, a=(L1)

i 43. Verify that xy(x +y)™' & &+ Z(x —2) + 4 (y —3), for (x, y) sufficiently close to (2, 3).
i 44, Prove thatln (2x? 43y —4) A~ dx + 3y =7, for (x, y) sufficiently close to (1, 1).

i 45. Assumethat f(x, y)is differentiable at (a, b)and letLix, y) = fla,b) +mlx —a)+ n(y —b)
! be a linear function that satisfies (2.17), that is,

| e -Ten

} lim —m———m-—==
I (eyah) f(x — a)? +(y - b)z

{a) Substitute y = b into the above formula to show that m = (3f/9x)(a, b).
() Prove thatn = (8f/dy)(a. b) and conclude that I must be equal to the linear approximation Ly

‘ 46. Consider the function f(x, y) = /x? + y* (see Example 2.44) and assume that it has a linear
approximation L oy(x, ») at (0, 0).

(a) Explain why L(x, y) = mx +ny for some real numbers m and z.

{(b) Use (2.17) to show that f is differentiable at the origin if and only if

1 p PETERY b

im ——] =0

(r,0)—(0,0) /x2 4+ y?

(c) Use the approach x — Oand y = 0 to show that the above limit is not equal to 0. Conclude that
f is not differentiable at the origin.

Exercises 47 to 51: Approximate the value of the given expression and compare it (except in
Exercise 51) with the calculator value.

47. +/0.993 +2.02° 48. —0.094/4.11% — 14,98

49, 7.951n1.02 50. sin (r/50) cos (497 /50)

e
51. f e drt
0.995
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X, ¥) = Now, replacing A(r, 8) by f(r, &), following the usual convention, we obtain
| of _af o
‘ E-ECOSHqLH—yan,
and
of _ of

'( in6) + af 9 .
= —{—Fsin —F COS{7.
a0 dx > 8er *

» EXAMPLE 2.74

Letx =rcosf, y =rsinf, and f(x,y) = xe" ™+ Find af/dr and 4f /98 directly, and then using
the chain rule.

SOLUTION Since f(x, y) = xe" 7 = rcos 8¢, we get f(r,0) = rcosfe” (both functions are called f— LN ;
recall the notational convention!) and hence df/dr = (¢ + 2r%¢” )Ycosf and df/d9 = —re" sin@. I
Using the result of the previous example, we obtain )

o _of of

cosf + ()_ sinfd = (e,\,2+_\-3 + 2)(26’124')'2) cosd + zxye,\-lﬁ.z sind
¥

ar ax
= (e"?' + 2r% cos® 96"3} cos6 + 2r%e" siné cosd sin§ = (e'"2 - ZrZe”Z) cosf.
where
The expression for 4f/d6 is obtained similarly.
Notice that in this case the direct computation was faster (and easier). However, there w
are situations where not only does the chain rule provide a more efficient way, but the direct
computation cannot be applied at all; see Exercise 27.
» EXERCISES 2.6
1. Assume that g is a differentiable, real-valued function of two variables and let f(x, y) = g(x* —
¥2, ¥? — x%). Prove that x(df/dy) + y(3f/dx) = 0.
2. Assume that g is a differentiable real-valued function of one variable, such that g(1) = 2 and
g'(l)=3. '
4 il (a) If £(x, y) = g(x) + g(xDg(y), find (3f/x)x, ) and (8f/3x)(L, 1). i
(b) I fx,y) = g(x)*Y, find (3f/dx)(1, 1) and (3f/dy)(1, 1). ’
. 3. Find g'(r) if g(t) = f(rsint, tcost, 1), where f is a differentiable function. \
R- ‘ i
= 4. Assume that f is a differentiable function and let g(¢) = sin{ f{—t, f, 21)). Find g'(¢). I
I
Exercises 5 to 7:  In each case, compute (f o ¢)'(7) in two different ways: by computing the com- \
position first and then differentiating, and by using formula (2.25). I
lied to 5. flx,y)=x%y, e(t) = (sint, cos?). f
6. flx,y)=ye", c(t) =(t,Int).
7. flx,¥,z)=xy+cos(x®+z%), e(t) = (tsint, t, 7 cos t).

8. Assume that f is a differentiable function of two variables, and D, f(2,2) = —2 and
D:f(2,2)=4.

(a) Find g'(2) if g(x) = f(x, 2).
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(b) Let g(x) = f(x, x). Find g'(2).

(c) Let g(x) = f(x?, x%). Find g’(x).

9. Let f(x,y) = g(x*y, 2x + 5y, x, y), where g is a differentiable function of four variables. Find
[y and f,.

10. Let f: B2 — RPbegivenby f(x. y) = (h{x), g(¥), k(x, y)), where i, g, and k are differentiable
functions of variables indicated. Find Df.

11. Let F(x, y) = f(h(x). g(3), k(x, ¥)), where f: R* — R, andall functions involved are assumed
to be differentiable. Find F; and F,.

12. Letz = F(r), where r = /x? ++ y? and f is a differentiable function. Prove that yz, — xz, =0
for all (x, ¥) # (0, 0).

13, Let f(x,y) = x? 4+ xyand g(x, y) = Inx + Iny. Compute V(fg)(x, y) and V(f/g)2,2).
14. Let G(x, y) = (2xy, y* — x?). Compute DG(x, y) and DG(3, 0).

15. Let f(x, y,z) = x% + sin(yz) — 3. Find D(f/x)(1, 7, —1) and D(x?*yf)(2,0, 1).

16. Letw = f(x,y,z2), where x = rcos# and y = r siné. Find dw /dr, dw /36, and dw /.

17. Letw = f(x, v, z), where x = psingcosd, y = psingsin@, and z = pcos¢. Find dw /dp,
dw /36, and dw /3.

18. Let v(t) = fi+ (> + 1)j and w(z) = i — 2tj + e'k. Compute (v - w)'(z) directly (i.e., by com-
puting the dot product first and then differentiating) and then check your answer using the product
rule.

19, Let v(t) = 31 + re'k and w(r) = —2¢j. Compute (v x w)'(¢) directly (i.e., by computing the
cross product first) and then check your answer using the product rule.

20. Letu(r) =sinti+ costj+tk, v(t) =i+ ¢j +k, and w(z) = 3@ + j + k). Compute (u - (v x
w))'(t).

21. The function F: R?2 — R? is given by F(x, y) = (¢*, xy, e*). Compute D(g o F)(0, 0}, where
¢ R —» Ris given by glu, v, w) = uw +v>.

22. Let R R and ¢ R— R® be given by f(x,y.2)=+/x>+y*+2* and ¢(r)=
(cost,sint, 1). Compute (f o ¢)(z) and (f o )'(0).

23. Compute dw/dx and dw/dz if w = f(x, y,2) and y = g(x, z) are differentiable functions.
24, Letw = 1In(r® + 1), where r = /x? + 2. Find dw /dy.

25. Define a function F: B? — R? by F(x) = A - x, where A isa 2 x 2 matrix, and the dot indicates
matrix multiplication. Compute DF(x). Prove that F is differentiable at any point (a, b) e B2

26. LetAand Bbe?2 x 2matrices. Define F, G: R? — R’ byF(x) = A - xand G(x) = B - x, where
x € B2, and the dot indicates matrix multiplication. Find D(G o F)(x).

27. Let f(x, y) = x*y, where x* + tx = 8 and ye’ = t. Find (df/dt)(0).
28. In Examples 2.46 and 2.47 in Section 2.4, we studied the function

Fo = Fay  TENAO
0 if (x, ) =(0,0)

Let c(t) = (¢, t%).
(a) Compute the composition (f o ¢)() and show that (f o )(0)=1.

» 2.7 GRi

> EXAMP

SOLUTION

» EXAMEF

SOLUTION
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for V(x, v, z) into 8V /dy, thus obtaining
JC(y,z
gy 4 2E0E)
I ay

which implies that dC(y, z)/dy = L and C(y,z) =y + C(z), by integration with respect to y (the
variable z was kept fixed, so the integration “constant” might still depend on z). Hence,

=—xz+1,

Vix,y, z) =—xyz +y+ C).
Finally, substituting this expression into the equation for dV/dz, we get
—xy + C'(z) = —xy,
so that C{z) = C after integrating with respect to z. (C is a real number, not a function any longer.)
It follows that any function of the form
[t Vi, y,0)=—xyz+y+C

(where C is a real number) is a potential function for the given vector field.

» EXERCISES 2.7

Exercises 1 to 5: Consider a contour diagram of a function f(x, y) in Figure 2.69. Estimate the
directional derivative D, f(a, b) at the given point in the given direction.

1. (@) =02, v=j 2. (a,b)=@2,1),v=—i+]

3. (a,b)=(3,2), v=—2i+]j 4. (a,h)=(3,2),v=i

L

5 (a.b)y=@ 1), v=—i

6. Consider the contour diagram in Figure 2.69. Draw gradient vectors at several points on the level
curve f(x, y) = 16.

Exercises 7 to 11:  Find the directional derivative of the function f at the point p in the direction of
the vector v.

7. fx,y)=e (cosx +siny), p=(7/2,0), v=2i—]

n
P
\-—.—__ [ =

3 A 1/ 4
L~

1 -
1 /
/
0 1 2 3 4 5 6

Figure 269 Contour diagram used in Exercises 1 o 6.
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8. fla, ) =x*y+ 2%y —xy’, p=(2,3), v=(1,-1)
9. fr,y=e T p=(0.-1.2), v=i+j+k
10.  f{x, y) = arctan{y/x), p=(1,1), v=1—4j

1. f(,y)=xlny*+2y -3, p=(1,2), v=3i+4j

Exercises 12 to 14:  Find the directional derivative of the function f at the point p in the direction
given by the angle 8, measured from the positive direction of the x-axis in the counterclockwise
direction.

12, fir,yy=xy*+x2y?—2,p=(0,-1),8 =n/4
13, flx,y)=e7,p=(0,1),0 =n/2

14. f(x,y)=cos@x + y),p= (2,3} 0 =—m/3
15. Let f: R? — IR be given by

2xy
fe, =1 * ryz if (e, 2 # 0.0
0 if (x, ) = (0,0)

Compute D, (0, 0), where u = (i, v) is a unit vector in RZ.

16. Show that the function f(x, ¥) = x'/y'/? is continuous at (0, 0) and has partial derivatives f,
and f, at (0, 0), but the directional derivative of f in any other direction does not exist.

Exercises 17 to 21:  Determine the maximum rate of change of the function f at the point p, and
the direction in which it occurs.

17. f(x,y)=secxtany, p = (7/4, w/4) 18. f(x,y)=2ye"+e ", p=(0.0)
19. foy.D)=xy'+yzr '+ p=(,2,-1)
20. flx,y,2)=. /2y, p=03.32) 2L flx.y)=lxyl.p=03,-2)

22. The temperature inside an object is given by T(x, y,z) = 30(x* + y* + 22", at all points
(5, 3,2) #(0,0,0).

(a) Find the rate of change of the temperature at the point (1, 2, 0) inside the object in the direction
toward the point (2, —1, —1).

(b) Find the direction of the largest rate of increase in temperature at the point (0, 0, 1).

(¢) Find the direction of the most rapid decrease in temperature al a point (x, v, z) inside the object,
if (x, v, 2) # (0,0,0).

23. The pressure P(x,y) at a point (x, y) € B? on a metal membrane is given by the function
Px,y) = 100e™ —27,

() Find the rate of change of the pressure at the point p = (0, 1} in the direction i + j.

(b) In what direction away from the point p does the pressure increase most rapidly? Decrease most
rapidly?

(¢) Find the maximum rate of increase of pressure at p.

(d) Locate the direction(s) at p in which the rate of change of pressure is zero.

24. Let f(x,y) = ¢ cos(2x — y). Find the directional derivative of f at the point (0, 1) in the
direction of the line y = 3x -+ 1, for increasing values of x.

25. Consider the function f(x, y) =2xy. In what directions at the point (1, 2) is the directional
derivative of f equal to 47

B Oy

i

PS4

SIHivi
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p EXAMPLE 3.22 Torque Equals the Rate of Change of Angular Momentum

1at Let r(z) be the position vector of a particle moving in R’. The angular momentum is defined as the
m vector

L(t) = r(r) % plr),

where p(z) = mv(t) is the momentum vector [ is the mass of the particle and v(¢) is its velocity].

ee ‘ The torgue of a force F(r) = mal(t) exerted at the point r(t) is
eir

ate | T(r) = r(t) x F(1).
es |

Since (with the use of the product rule for the cross product of vector functions)

dLzy d _dr(®) d(mv(t))
| S = () < B) = 2 x (V) E(0) x
_ N dvif)
= mv(t) X v(t) +r() x m o

() x ma(t) = r(t) x F(t) = T(x),

it follows [because v x v = 0 for any vector v and v'(z) = a(r)] that the torque T(t) on a particle
equals the rate of change of the particle’s angular momentum.

| » EXERCISES 3.2

21. |
arid | 1. Compute the velocity and speed of the cycloid defined in Example 3.2 in Section 3.1. Identify
tart ‘ points where the speed is the largest.
ling 2. Show that the speed of the logarithmic spiral e(t) = (¢* cost, ¢* sint), @ # 0, t = 0, is equal to
will e /1 + a?. Compute the angle that ¢(7) makes with the velocity vector and give an interpretation of
‘ your answer. =
3. Show that the speed of the helix e(t) = (acost, asint, bt), a > 0, b > 0, is constant. Compute
' the dot product ¢/ () - ¢”'(#) and give a physical interpretation.
. ‘ 4. Find the maximum speed of the projectile in Example 3.14 and the time when it is reached.
n of Exercises 5t09: Find the velocity ¥(z) and the position e(¢) of a particle, given its acceleration a(),

 the initial velocity, and initial position.
5. a()=(-1,1,0), v(0) =(1.2,0). e(0) = (0, 2,0)

6. a()= 98k v(O)=i+j c@)=i+2j—k

7. alt)=(t,1,1), v(0) = (0, 1, 0), e(0) = (2,0, 3)

8. a(r) =e'(1,0, 1), v(0) = (1,0, —2), e(0) = (0, 1, 0)

9, a(r) =i+ 2+ tk, v(0) = 2j — 3k, ¢(0) = 4i + 2j — 6k

10. Find a parametrization of the circle x* + y* = | of nonconstant speed. Find another parametriza-
tion ¢(¢) such that [|¢”(¢)]| is nonconstant and ||¢”(#)|| O for all ¢.

_ 11. The position of a particle is given by ¢(t) = (¢7', 1, 1*), where ¢ € [L, 4]. When and where does
the the particle reach its maximum speed?

12. The position of a particle is given by ¢(r) = (3¢ " cost, 3¢~ sint), where ¢ € [1, 3]. When and
where does the particle reach its maximum speed?
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13.  Aparticle moves with accelerationa(f) = (3, 0, 1), where 0 < ¢ < 12, Assuming that the particle
18 initially located at the origin and its initial velocity is (1, 3, 2), find the time needed for the particle
to reach its highest position.

14. Prove that if a particle moves with constant speed, then its velocity and acceleration vectors are
always perpendicular.

15. A projectile is fired from the origin with an initial speed of 700 m/s at an angle of eleva-
tion of 60°, Find the range of the projectile, the maximum height reached, the time needed to
reach it, and the speed and the time of impact. Assume that no forces other than gravity act on the
projectile.

16. An object is thrown upward from a point 10 m above the ground at an angle of 30” and with an
initial speed of 100 m/s. Find a parametric equation of the path of the object. When does it reach its
highest point? Where and when does it hit the ground? Assume that no forces other than gravity act
on the object.

17. Find a parametrization of the line tangent to the ellipse x% +4y? = 3 at the point where
% =+/3.

Exercises 18 to 21: Find a parametrization of the line tangent to the given curve c(z) at the point
indicated.

18. e(r) = (2¢,+°,0), at the point (4, 8, 0)

19. «c(t) = (3cost, 3sint, 4¢), at the point (0, 3, 27)

20. () = (7, 1%, 1%), at the point (1, 1, 1)

21. c(t) = (—cosht, 1 4 sinht) at the point (—1, 1)

22. Letc(z) = (x(t), y(z)) be a curve in R? and let e(fy) = (xq, yo). Find an equation and the slope
of the tangent line at (xg, yg).

23. Lete(r) = (r(t)cos@(), r(t)sin 8(1)) be the trajectory of a particle moving in IR?. Show that
its velocity and acceleration are given by the expressions (drop the notation for the dependence
on 1) v=r'(cos8, sing) + ro'(—sind, cosd) and a= (" — r{@)cos 8, sin8) + (2r'e’ + ré")
(—sin#, cosB).

24. Show that if a particle moves along the spiral (2¢ cost, 2¢' sin t), then the angle between its
position and velocity vectors is constant.

25. Thecurvec(r) = (e~ cost, e 'sint), 0 < ¢ < 37, represents the trajectory of a particle moving
in IR%. Compute its velocity and find all points at which the velocity is horizontal or vertical.

26. Let F(x, y) = (—y, x). Compute the curve that is the image under F of c(t) = (sint, cost),
t € [0, ]. Describe in words the map DF.

27. Define the map F: R* - R? by F(x, y) = (x%y — x?, ye* — 2). Find the tangent vector to the
image of the curve e(t) = (sint, 2 — ) under F at t = 0.

28. Letc(t)bea curve such that ¢(0) = (1, 1) and ¢’(0) = (2, —1). Find the tangent vector to the
image of ¢ under the map F = (—y//x2 + ¥2, x//x2 + y2) at t = 0.

29. Define the map F: R? — R? by F(x) = A - x, where A is a nonzero 2 x 2 matrix and the dot
denotes matrix multiplication. Find the tangent vector to the image under F of the curve e(z) atr = 0
such that ¢(Q) = (0, 0) and ¢/(0) = (¢}, c2).

30.  Assume that the curve given in polar coordinates by r = A /(1 + Bcos#), where A and B are
positive constants, represents the orbit of a planet revolving around the Sun.

» 33 LE
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» EXERCISES 3.3

1. Consider the curve parametrized by ¢(¢) = (¢, 1/1), ¢t € |1, 2]. Divide [1, 2] into 5 subintervals
of equal length, and sketch the curve ¢ and polygonal path ps that approximates it. Approximate the
length of ps using formula (3.13).

2. Consider the curve parametrized by e(t) = (¢, e¥), t € [0, 1]. Divide [0, 1] into 4 subintervals
of equal length, and sketch the curve ¢ and polygonal path p, that approximates it. Approximate the
length of p, using formula (3.13). Compare your approximation with the length of ps computed using
the formula for the distance between two points.

3. Assume that e(): [a, b] — R? is a differentiable path in R?, and consider the partition [a =
i b, [f2. 1]y <o oy [fas ey = B] of [a, B], as in the beginning of the section. Let £(c;) = [le(fi1) —
¢(;)| be the length of the line segment from ¢(#;) to e(ti11).

(@) Show that £(¢;) = /Cx(fi) — x(6)) + (0(tia) — y(E)P

(b} Apply the Mean Value Theorem from one-variable calculus to show that there exist £, £ in
[4;, ti41] such that x(t; 1) — x(1;) = x'(;7 )AL and y(t41) — ¥{6) = YU AL, where Af =t — £,
Conclude that £(c;) = /(') + (' (57))? At.

{¢) Using (b), find a formula for the length of the polygonal path p, [see (3.13)]. Compute the limit
as 1 — o< to obtain the formula from Definition 3.3.

4. Two students run around a circular track, given by ¢(f) = (50sin#, 50cos ), t € [0, 2 ]. Student
A runs according to ¢4(f) = (50sin{t/5), 50 cos (¢/5)), ¢ € [0, 30x], and student B according to
ep(t) = (50sin (¢/4), 50 cos (£/4)), ¢ € [0, 327]. Note that both A and B start and end at the point
(0, 50).

(a) What is the length of the track?

(b) Which student is running faster? Compute the distance covered by each student.

5. Consider the curve that is the graph of the function y = x*? on [-1, 1].

(2) Show that y is not differentiable at 0. Conclude that the parametrization ¢(r) = (¢, 1*7),
t € [—1, 1], is not differentiable.

(b) Show that e(t) = (cost, cos®t), ¢ € [—m, ], is a differentiable parametrization of the given
curve.

(c) Prove that the parametrization in (b) is not smooth.

6. Prove that the statement we made in Example 3.27 is true; that is, by “unfolding” the helix, we
obtain a straight-line segment (see Figure 3.27).

Exercises 7 to 14: Find the length of the path c(z).

7. e(f) = (sin2t, cos2t), ¢ € [0, Z] 8. c(r) = (2632, 21), from (0, 0) to (2,2)
9. c(t)=¢'cosrit+e sintj,0<t<mw 10, e(n)=r+7%, 2=<t1=<1
1L ) = (140, 1+, r 0,1 12. e(t) = (¥, ™, /81), 1 €]0,1]

13. e(t) = 2t — )i+ 572+ k, fromt = 1tor =3

14. e(¥) = cos? ti +sin®¢j, fromz =0tot =27

15, Show that the length of a logarithmic spiral e(f) = (e* cos f, ¢* sint), wherea < Qand s > 0,
is finite.

16. Find the length of the catenary curve given by c(t) = (¢, acosh(t/a)), a > 0, t € [—a, al.

17. Is it true that the curve v = 2sinx, x € [0, 27] is twice as long as y = sinx, x € [0, 27]?
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> EXAMPLE 3.42

Find the curvature and osculating circle of the parabola y = x* at the point (0, 0}.

SOLUTION All computations that are needed here have been already done in Example 3.39. The osculating circle

has radius of 1/« = 1/2, since the curvature of y = x* at the origin is « = 2. It has to lie above

| (i.e., “inside™) the parabola, since the normal N(0) = T(0)/|| T'(0)|| = (0, 1) = j points that way; see

j Figure 3.34. The center of the osculating circle has to lie on the line normal to the tangent at (0, 0); that

I is, on the y-axis. Tt follows that the equation x? + (y — 1/2)* = 1/4 represents the desired osculating
i circle.

172 ¢ ‘

. i i . Figure 3.34 The parabola y = x? and its osculating | |
=k o ! circle at the origin.

We are now ready to give a geometric interpretation of the normal acceleration ay.
Start with ay = ||c/(2)|| T'(¢), and divide and multiply the right side by ||e'(6)]| |T'(z)]| to
get
a2 ITOI T
ay = || |

el 1T

We recognize the first factor as the square of the speed ||¢'(¢)|| = ds/dt. The second factor
is the curvature «(¢), and the third is the principal normal vector. Hence,

L ds\? N(H):
ay =\ K(N(); |

that is, the magnitude of the normal component of acceleration is the product of the square
of the speed and the curvature.

» EXERCISES 3.4

Exercises 1 to 6: Find the tangential and normal components of acceleration for the motion of a
particle described by its position vector e(t).

L e)=(*119 2. o) =(¢',v/2t,7) > 35 IN
3. e(r)=>5ri+ 12sintj+ 12cosrk 4. e(r) =2+ 2sin’1j — 2cos? tk |
5. ¢(t)=( —sint)i+ (1 —cost)j 6. c¢(t) = (cos3t,sin3t, 41)

7. Lete(t) = (x(1), y(t)) be a smooth C? parametrization of a curve ¢ in RR2. Show that its curvature
is i(r) = [x'(0)y"(£) — x" (@)Y O/ [ OF + ' OP12.

8. Using the formula from Exercise 7, compute the curvature of ¢(#) = (¢sint, rcost) and
e(n) = (¢, 1%). '
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9. Compute the curvature of ¢(z) = (2 — 2%, £ + 1), r € R, Identify the curve, thus checking your

answer.
10. Compute the curvature of ¢(z) = (r, sint), t € R, and plot the curve and its curvature function '
fig it using the same coordinate system. Identify the points (if any) where the curvature is zero and where %
it is lar, .
e it is largest ;
way; see | 11. Find the curvature of the plane curve ¢(r) = (¢%, 3 — 7). Identify the point(s) where the curvature
), 0): that is largest. What happens as t — oo? ‘
sculating ‘ Exercises 12 to 17: For each parametrization, find the unit tangent and the unit normal vector, the !
curvature, and the normal component of acceleration. '
12.  ¢(t) = (sin2t, cos 2t, 51) 13. c¢(t) = (e'sint, 0, ¢ cost)
14. e(t) =3+ 2, -1, —3) 15. e(t) = (¢, cost, 1 —sint)
‘ 16. ¢(t)=(1,0,:*/2) 17. ¢(t) = (e 'cost, e " sint, e™)
18. Find equations of the lines tangent and normal Lo the curve e(t) = (+3/3 — )i + ¢ at the
| point (0, 3).
‘ 19.  Find an equation of the osculating circle of e(t) = #’i + ¢j at the point (8, 2). ‘
ulating | 20. Find an equation of the osculating plane of the curve e(r) = (1/7 + 1,1/t — 1,1) at a point !
c(to), 1o # 0.
\ 21. Find an equation of the osculating plane of the helix e(r) = (2 cos ¢, 2sin ¢, £) at the point ¢{r /2).
. 1
wion ay. 22. Prove that the curvature of the graph of a C? function y = f(x) is given by the formula

T'(t)| to w(x) = | ") /(L + (F'(x)*¥. Show that this formula is a special case of the formulas in
Exercises 7 and 28.

Exercises 23 to 26:  Use the formula of Exercise 22 to solve the following problems.

i 23. Find the curvature of y = x? at a point (xg, yg).
nd factor | 24. Find the curvature of y = x +1Inx at (1, 1). What happens to the curvature as x — oo?
25. Where does the graph of y = In x have maximum curvature? .
26. Find the curvature of the graph of y = sinx at (/2, 1) and at (77, 0).
27.  Find the equation of the osculating plane of the curve e(z) = (¢, 1 — ¢, 2¢%) at the point (1),

he square 28. Prove that the curvature of a smooth C? curve ¢(#) in R? can be computed from the formula
k() = |lK'(r) x "O]/1le(7)]*. Show that the equation of Exercise 7 is a special case of this formula.

29. Find the equation of the osculating circle of the graph of v = sinx at (r/2, 1).
30. Find the equation of the osculating circle of the graph of y = &* at (1, e).

notion of a
» 3.5 INTRODUCTION TO DIFFERENTIAL GEOMETRY OF CURVES
: The material we have covered so far in this chapter shows that a large amount of information
can be represented visually as a curve (or algebraically as its parametric representation).
s curvature This is certainly a good reason to study curves in more depth. In this section, we only
indicate one possible approach, the so-called differential geometry of curves. In Section
-cost) and 4.5, we will relate curves to vector fields by defining a flow line of a vector field. Concepts

relevant to integration along paths will be discussed at the beginning of Chapter 5.
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» EXERCISES 4.1

Exercises 1 to 4: Looking at the level curves of a function f(x, y), determine whether the partial
derivatives f(P), f/y(P), fex(P), fry(P), and f,,(P) are positive, negative, or zero.

1. ¥ A 2. b
10 9 8 765
6
Z -5
“P
Pg 3
| we 2
1
0 x 0
| 3 4
1 4 5 6 !
3
[ \ |
2
\ N E .
O
1
four \
\ |
ol N N N\ \=z
ction

Exercises 5 to 13: Find the indicated second (or higher-order) partial derivatives of the given

function.
5. z=e"+ 2y 2er, Zeys Zyxs Doy 6. z=x"4+(InYY; Zexy Zuys Zyxs Cyy |
7. = (x2 -+ )"2)5/2; Zyxs nya Z)‘x: Z,\'y 8' 7 = x arctan (}’/X); Lxxs Z-")" Z)'I’ Z)’}’

9. 7 =Sin?(x + )5 Zuxs Tuys Tyxs Loy |
10. z= f(x)g(V); Zuxs Zuys Zye: Tyy (f and g are differentiable real-valued functions) I
11. z= f(ax +by) + g(ax/y); Zex, Zeys Zyrs Zyy (f and g are differentiable real-valued functions

of one variable and a and & are constants)

12. 7 =& Zoe Tages Tuveny Sivey

13. w =y In(x® +3x +€”) + 2327 Wiy

14. A differential equation of the form u, = cu,, where 1 = u(x, t) and ¢ is a constant, is called a

diffusion equation. '

(a) Show that u(x, 1) = ™+ (a and b are constants) satisfies the diffusion equation with ¢ = b/a®. |
(b) Show that u(x, t) = t~2e=*'/* satisfies the diffusion equation with ¢ = 1/4.

15. Show that z = xe” + ye* satisfies the equation Zy, + Zyyy = XZrpy + YZyur-

16. Explain why there is no C? function f(x,y) such that f.(x, y) =" +xy and fy(x,y) =

e’ +xy.
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l j Generalizing (4.22), we obtain the Hessian matrix of a fonction f = f(xX1, %2, .« s Xim)
1 | ‘ of m variables:

|
| fx]xl(XO) fxlxz(xf)) “ee fxlxm (XO)

i Fun®0)  fron®o) - frx, (%)

Hf (xq) = (4.23)

ffmxi(xﬂ) fx,,,xg (X()) e fx,,,x,,, (XO)

‘ In order to obtain certain form of the remainder, we will need to assume that the function

f in Theorem 4.4 is C* (see Exercise 19).

THEOREM 45 Second-Order Taylor Formula for Functions of m Variables

Assume that f: U € R” — Rhas continuous second partial derivatives at Xo € U. Then

£(xo + h) = Ta(x0, h) + Ra(x0, h),

where
Ty(xo, h) = f(%0) + Vf(Xo) - h+ 3 ' Hf (o) b
The second-order remainder Ra(Xo, h) satisfies | Rz (%0, )|/ |h|?> - Oash — 0.
The main reason why we developed second-order Taylor formula is to analyze extreme
values of functions of several variables (see Section 4.3).
Formula (4.17) can be generalized to

F"(0 F®(0
F(1) = F(0) + F'(0) + —2(7) +- 4 ﬁ;f——) + R,(0, 1).

| Therefore, it is possible to compute nth-order Taylor formula (for n > 1) fora function of

‘ any number of variables (see Exercise 17). Since we will not use it in this book, we do not

jitt | state it here. In Exercises 19 and 20, we derive formulas for remainders for the first-order
| and second-order Taylor formulas.

‘ In Theorem 4.5 we assumed that f is c?

' I the remainder, we need to assume that f is C 3

_However, in order to obtain certain forms of
. see Bxercises 16 and 20.

» EXERCISES 4.2

[l 1. In computing the estimate for Ri(xo, /) in (4.10), we used the formula lf;;’-Hﬂ FfHde] <

f_:J”M' | £(t)| dt. Explain why this formula works for & = 0 only. If £ < 0, then xg + k < Xxp, SO We
start the cstimate by (Ru(xo, W)| = | [ (o + i = 00 de] = | [aro +h - 0f"()dt]. Bx
plain why this step is correct. Proceed as in (4.10) to complete the estimate.

2. Assuming that | f"'(#)] < M for all & [xg, Xp + k], prove that the second-order remainder (4.14)
satisfies |Ra(xo, )| = M|h|*/2. What condition(s) must f satisfy so that |f) < M forallt €

I [JCQ, Xo + h}q
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Exercises 4.2

3. Apply integration by parts [with u = f"(¢) and dv = (xy + h — £)*d¢] to the formula (4.12) to
obtain the third-order Taylor formula. Find an integral formula for the remainder R3(xp, ), and show
that | R3(xg, W)|/|A]> — Oash — 0.

4. Check that T5(x) = x — x*/6 is the third-order Taylor polynomial of sinx at xo = 0. Find an
estimate for the error if T5(x) is used to compute sinx for —0.1 < x < 0.1.

5. Find the second-order Taylor polynomial for the function f(x) = /x at xo = 3. Find an estimate
for the error when 2 < x < 4.

6. Find Taylor polynomials T3(x), T3(x), and 74(x) for the function f(x) = e* cosx at xg = 0.
Graph f(x) and all three polynomials on [—z /2, m/2].

Exercises 7 to 10:  Find the second-order Taylor formula for the function f(x) at the given point xo.
Give the remainder in integral form.

7. flx)=sinx, xo=m/4 8. f(x)=cosx,xg=m/3
9. fx)=Inx, xg=4 10. f(x)=+/1+x2, xo=1

11. Using the second-order Taylor polynomial, give an estimate for sin 0.1 4 cos 0.1. Estimate the
same expression using the third-order Taylor polynomial, and compare the two approximations.

12. Using the second-order Taylor polynomial, give an estimate for 0.087 In{1.087). Estimate the
same expression using the first-order Taylor polynomial, and compare the two approximations.

13. Show that the equation F(x, y) = y* — 4y + x? = 0 defines y implicitly as a function of x,
¥ = g(x), near the point x = 0, y = 2. Find the second-order Taylor polynomial of g(x) at x = 0.

14. Show that the equation F(x, y) = cosy —xy = 0 defines implicitly, near the point x = 0,
v = m/2, the function y = g(x). Find the second-order Taylor polynomial of g(x) at x = 0.

15. Find an approximation of 0.2 %2 using the second-order Taylor polynomial at x; = 0. Estimate
the error term R(0, 0.2).

16. Assume that f = f(x, y) is of class C*. Continuing the calculations preceding the staternent
of Theorem 4.3, obtain a formula for F'“(z). Using (4.18), show that R,(%p, h) = %fol (t—1)7°
G{nydr, where G{t) = frx(%o + th)h] + 3 frulxo + th)VAThy + 3 fioy (% + ) A2 + (X0 +
th)id. Show that | Ra(xp, h)| < C|lh|*, where C is a positive constant.

17. Assume that f = f(x, v, ) is of class C?, and let Xy = (X, yo, 2o) and b = (#;, ks, h3). Write
down the formula for T5(xg, h). If f = F(x1,x2,...,x,) is of class C%, and h = (h, s, ..., h,),
show thath! Hf (xg)h = Y10 5™ it (%g) h;iFr ;. Write down the formula for T5(xy, h) in this case.

= J=l dxpdey

18. If f = f(xy,x0,...,%,) is of class C?, how many entries in its Hessian matrix Hf (xp) are
repeated?

19. Assume that £: U € R? — Risa C? function.

(a) Imitate the derivation of the formula (4.17) to obtain the first-order remainder R,(%g, h) =
R0, 1) = fy (1 = t)F"(t)dt. Show that R (x,h) = [, (1 —)G(1)dt, where G(r) = fo (%o +
Th)hf + th}‘(xu + ﬂl)hﬂ'@z + f_v_\-(xﬂ i+ fh)h%-

(b) Recall the Second Mean-Value Theorem for integrals: if g and % are continuous functions and
h(t) > 0 on [a, b], then j:’g(t)h{'t) dt = g(c) f; h(z)dt, where ¢ is a number in [a, b]. Use this
theorem to show that R (Xg, h) = 1 (fr(e1)i] + 2 fiy(ci)hihy + fiy(e22)h?) , where ¢y, ¢€)5, and
€22 lie on the line joining X and x5 + h. .

(c) Generalize (b) to obtain the formula for R,(xg, h) in the case of a differentiable function of m
variables.
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20. Apply the Second Mean-Value Theorem for integrals [see (b) in Exercise 19] to the re-

mainder from Exercise 16 to obtain a formula for R,(xg, h) for a function of two variables,

Show that, if f = f(x1. %2, ..., %) is of class C*, and h = (A, Iz, ..., hy), then Ry(x, h) =
Pf

L ?-?T N‘l m

3 Z,=1 Z_,::I le:l Jx; 0x ; O

21. Derive the third-order Taylor formula for a C* function f(x, y) of two variables.

(€ijx) ik jhy, where all ¢;;; lie on the line joining Xo and X5 + h.

Exercises 22 to 27: Find the second-order Taylor formula for the function f at the given point x,.
22. f(x,y)=eFsiny, (2,0) 23, flx, ) =x24+y*—2xy+1,(1,1)
2. flx, )=+ + 1,0, 1D 25. f(x,y) =sinx +sin2y, (0, 7/2)

26. f(x,y)=(x—2(y+4% (0,0 27, flx,y) =Gy (L2)

28. Find the first-order and second-order Taylor polynomials of the function f(x, y) = arctan (xy)
at (1, 1). Compare the two approximations of f(1.15, 0.93) with the value of the function.

29. Find the first-order and second-order Taylor polynomials of the function f(x, y) = «/x +4y — 1
at (5, 3). Compare the two approximations of f(4.9,3.1) with the value of the function.

30. Compute linear and guadratic approximations of f(x, y) = (x +y + 3)~" at (0, 0). Compare
the values of the two approximations at (0.1, 0.04) with the value f(0.1, 0.04).

31. Find the second-order Taylor polynomial of the function f(x, y) = ysinx at (0, 1) and use it to
draw an approximation of the contour diagram of f(x, y) near (0, 1).

32. Find the second-order Taylor polynomial of the function f(x, y) = ye"’2 at (0, 0) and use it to
draw an approximation of the contour diagram of f(x, y) near (0, 0).

Exercises 33 to 36:  Use the quadratic approximation (i.c., the second-order Taylor formula) to give
estimates for the following expressions.
33, Q003095 34. 0.981In1.03

35. 3.98 arctan 0.02 36. sin0.96 cos0.04

» 4.3 EXTREME VALUES OF REAL-VALUED FUNCTIONS

In the mid-18th century, French mathematician and astronomer Pierre Louis Moreau de
Maupertius formulated a so-called “metaphysical principle” that could serve as a guiding
mechanism driving the laws of nature. The principle states that every “action” of nature is
actually an attempt to minimize or maximize a certain quantity. An animal, sleeping in the
snow, curls up—in doing so, it minimizes the surface area of its body that is exposed to
cold temperatures and loses the least amount of heat. A river, flowing down a mountain,
follows the curve of steepest descent (provided that there are no obstructions in its way).
A large number of celestial objects have the (approximate) shape of a ball—and a ball
can be shown to possess a remarkable number of minimizing and maximizing properties.
Moreover, a “bottom line” in economics is usually a synonym for a maximum profit or a
minimum loss. Our daily actions sometimes follow “the line of least resistance.”

In this section, we develop tools that will allow us to investigate extreme values of
functions of several variables. For simplicity, we focus our investigation on functions of
two variables. Most results we state hold, however, for a function of any number of variables.
The two problems we study are finding relative (or local) extreme values of a function on
its domain and finding absolute (or global) extreme values of a function on a closed and
bounded set contained in its domain.
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Parametrize ¢; by ¢2(¢) = (cost, sint), ¢ € [7/2, 2], The values of f along ¢; are given by
go(t) = e~(es’=6in” — o=l Thus, f is a constant function when viewed as a function on ¢, only
(we say that the restriction of f to ¢; is a constant function).

Consequently, the absolute maximum of f is f(0, 0) = 1 and the absolute minimum is e ! (it
occurs at all points on ¢;, including its endpoints).

Let us mention that results stated in this section generalize to functions of an arbitrary
number of variables. The most important result is the generalization of the Extreme Value
Theorem (see Theorem 4.11). It states that a continuous function f defined on a closed and
bounded set D € RB™, m > 1, attains its maximum and minimum values at some points a;
and a; in D. (“Closed” is defined as in Definition 4.4, and “bounded” as in Definition 4.5,
by replacing “open ball in R*” by “open ball in R ")

There is an analogue of the Second Derivatives Test (with the same philosophy: second
partials are used to determine what is happening at a critical point). Unfortunately, technical
intricacies and difficulties increase proportionally to the number of variables.

» EXERCISES 4.3

1. Show that if f:R— R is an even differentiable function, then x =0 is a critical point of f. A
function f:R? — R is called even if f(—x, —y) = f(x, y)forall (x, y) € R?. Assuming that f is
differentiable, show that (0,0) is a critical point of f.
2. We discuss an alternative proof of the Second Derivatives Test, case (a).
{(a) By Theorem 2.8 in Section 2.7, the directional derivative of f in the direction of a unit vector u =
(11, us)is given by Dy f = Vf -u = fou, + fyuz. By the same theorem, Dy (Dy f) = V{Dyf) u=
£(Dy fur + %(Duf)[{g. Continue this calculation to show that Dy(Dy f) = fertt + 2 fepttitiz +
f .v.v”%-

& ? 2 U ?'.
(b) Complete the square to get Dy(Dy f) = fur (uj + ;—m) L g By T
(¢) Explain why we can find an open ball B centered at (xg, yo) such that Fexlx, ¥) < Oand D(x, y) >
0 for all (x, y) in B. Show that Dy(Dy f)(x, y) < 0 for all (x, y) in B. Conclude that f(xg, yo) is a
local maximum.

Exercises 3 to 6: Looking at the gradient vector field of a differentiable function f(x, y), identify
points (or say there are none) where f has a local minimum, local maximumni, or saddle point.
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Exercises 7 to 16:  Find all critical points (if any) of a given function f(x, y) and determine whether
they are local extreme points or saddle points.

T fE ) =24y oy 8. fam=x+y+ %

9. flx,y)=xy+ % 10. f(x,») =x"+y*+3x7y -3y

1L f(x,y) = xye™ 12, f(x,y)=¢"siny

13. JGx y)=xcosy 4. fr, ) =63 +y2+2) |
15, flx,y)=xsin(x + ) 16.  f(x, ) = (x + y)(xy — 1)

17. Find the shortest distance from the point (2, 0, 3) to the plane x — y 4+ z = 4.

18.  Find the shortest distance between the surface z = 1/xy and the origin.

19. Find the dimensions of a closed, rectangular box of given volume V > 0 that has minimum
surface area.

20.  Find the point(s) on the surface xyz + 1 = 0 that are closest to the origin.

21. Find the volume of the largest (i.e., of maximum volume) rectangular box that can be inscribed
into the sphere of radius R > 0,

22. Suppose that you have to build a rectangular box (with a lid) using S > 0 units? of material.
Find the dimensions of the box that has the largest possible volume.

23. It was shown that the function g(x, y) = x* — y* of Example 4.28 has a saddle point at (0, 0).
Draw the contour curve that goes through (0, 0). Add a few more level curves to your picture.

24.  Find all points where the magnitude of the vector field F = (x — )i + (2x + v + 3)j attains its
local minimum.

25. A plane in a three-dimensional space, which is not parallel to any of the three coordinate
planes, can be analytically described using the equation x /a + y/b + z/c = 1, whete a, b, and ¢ are
its x-intercept, y-intercept, and z-intercept, respectively. Find the plane that passes through (1, 1, 1)
and is such that the solid in the first octant bounded by that plane has the smallest volume.

Exercises 26 to 29:  Find the absolute minimum and absolute maximum of a given function f(x, ¥)
onaset D.

26.  f(x,y) =xy —3x+ y; D is the triangular region with vertices (0, 0), (2, 0), and (0, 2)
27, f(x,y) =In(x* + y + 1); D is the triangular region with vertices (0, 0), (1, 0), and (1, 1)

» 4.4 OPTI
LAGRANGE

> EXAMPLE

> EXAMPLE 4

SOLUTION
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SOLUTION

P EXAMPLE 4.45

that satisfy
V f(xo, Yo, 20) = A1 Vgi(xo, Yo, 20) + 22V g2(x0. Yo, z0), (4.30)

where A, and X, are real numbers and g;(xg, yg, 7o) = k; and ga(x0, Yo, 20) = k2. It is
assumed that Vg (xg, yo, zo) and Vga(xq, ¥o, zo) are not parallel vectors.

Geometrically, the two constraints g1(x, y, z) = ki and ga(x, v, 7) = k; represent the
intersection (call it D) of the surfaces g;(x, ¥, z) = ky and g2(x, y, z) = k; in space. If D is
aclosed and bounded setin R?, then f must have a maximum and minimum (subject to the
given constraints). Otherwise, additional arguments may be needed to determine whether a
point (xg, yo, 2o) is a minimum point, a maximum point, or neither.

We now illustrate this in an example.

Find the maximum and minimum values of f(x, y, z) = 2x + y — z subject to the constraints 2x -+
7=2/+5and y? + 72 =1,

Label the constraints as g,(x, y,z) = 2x +z = 2/+/5 and g;(x, y,2) = y* + > = 1. From Vf =
(2,1, 1), Vg; = (2,0, 1), and Vg, = (0, 2, 2z) (notice that Vg, and Vg, are not parallel), using
Vf=0Vg + A Vg, weget (2,1, —1) = 1(2,0, 1) + 2,(0, 2y, 2z). Thus, we obtain the system

2:2).], 1:2\})@, —]_:}\4 +22}\.2_.

which, combined with the two constraints 2x + z = 2/+/3 and y2 + 2% = 1, will give points where
extreme values might occur. The constraint g, represents a plane and the constraint g, represents a
cylinder. Their intersection is an ellipse, which is a closed and bounded set—thus, the minimum value
and maximum value must exist.

From the first equation, A; = 1. The second and the third equations imply that &y = 1/2y and
Az = —1/z; thus, z = —2y. Using the constraint y* +z> = 1, we get 5y = 1 and y = £1/+/5. It
follows that z = F2/4/5. If z = 2/+/3, then from 2x + z = 2/+/5, we get x = 0. Similarly, from
z=—2/+/5 (using 2x +z = 2/+/3), we obtain 2x = 4/+/5 and x = 2/+/5. Thus, there are two
candidates: (2/+/5, 1/+/5. ~2/+/3) and (0, —1/+/3, 2/+/3). It follows that the maximum of f is
F(2/+/5,1/+/5, ~2/~/5) = T/+/5 and the minimum of £ is £(0, —1/+/3, 2/+/5) = —3//3.

Itis possible to further generalize the method of Lagrange multipliers (so that it applies
to functions of four, five, and more variables, and to more than two constraints).

1 » EXERCISES 4.4

1. Explain geometriéally (ie., by sketching level curves) why the function f(x, y) = (x> + y*)~!
cannot have a minimum or maximum subject to the constraint x — y = 0.

2. Minimize the function f(x, y) = /(x —2)2 + (y — 2)? subject to x + y = 0. Give a geometric

interpretation of your answer.

Exercises 3 to 6: Shown is the gradient field of a € function f. Find the approximate locations of
the minimum and maximum of f subject to the given constraint curve.
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7. Sketch the level curves f(x, y) = cof f(x, y) = x* + y*forc=1,2,4,6,9, and 10.In the same
coordinate system, sketch the graph of the constraint (x — 1)* + y* = 4.

(a) Looking at your picture, identify the minimum and maximum of f subject to the given constraint.
(b) Use the method of Lagrange multipliers to confirm your geometric reasoning.

8. Sketch the level curves f(x, y) =cof f(x,y)=2x —yforc=-3,-2,-1.0,1,2,and 3. In
the same coordinate system, sketch the graph of the constraint x* + ¥ =1

(a) Looking at your picture, identify the minimum and maximum of f subject to the given constraint.
(b) Use the method of Lagrange multipliers to obtain the desired constrained minimum and maximum
algebraically.

9, State the problem in Example 4,26 in Section 4.3 as a constrained optimization problem and solve
it using Lagrange multipliers.

10. Explain why it does not make much sense to develop the Lagrange multipliers method to
optimize afunction f(x, y) of two variables subject to two constraints g, (x, ¥} = kyand go(x, ¥) = ka.
Exercises 11 to 19: Find the extreme values (if any) of a function f subject to the given constraint.
1. fl,y)=3xy;x>+y' =4

12. fix,y)=4—x*>—y* y —2x = 1 (Hins: Find the maximum; argue that a minimum does not
exist.)

13. flx, =2 —yhx*+y* =1
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4. fl,y.2)=x—y+dgx?+y2+72=2

15. flx,y)=x—yhx'—y»?=0,-1=<y=<l1

16. f(x,y,2) =x+2y"x” + y* — 27 = 1 (Hint: Find the minimum; argue that a maximum doeg
not exist.)

17. flr,y.0)=x+2y —dz;x* +y* +272 =4

18. flx,y.0)=xyz;x*+y*+:2=9

19, flx,V)=xy+2y:x2+2y2 =4

20. Find all points on the curve y*x = 16 that are closest to the origin.

21. Find the minimum distance from the surface x> + y? — z% = 4 (o the origin.

22. The temperature at a point (x, y) on a metal plate in the shape of the disk x* + y* < 50 ig
T(x, y) = 2x* — xy + 2v* + 10. Find the coldest point on the rim of the plate.

23. Find the point in the plane x 4+ y + 2z = 11 that is closest to the point (0, 1, 1).

24. Find the dimensions of a cylindrical can (with a lid) with a volume of 10 units® and minimum
surface area.

25.  Find the minimum of the function f(x, y, z) = x* + y* + z* subject to the constraints 2y + 7 =
Gandx — 2y = 4.

26. Find the minimum and maximum of f(x, ¥, z) = xy + z* subject to the constraints x 4 y = ()
and x* +y* + 72 = 4.

27. TFind the point closest to the origin that belongs to the intersection of the planes 2z — y = 0 and
x+y—z=4

28. Tind the extreme values of the function f(x,y, z) = x + y + 4z along the ellipse that is the
intersection of the cylinder x? 4 y? = 82 and the plane z = 2x.

29. Solve Exercise 21 in Section 4.3 using the method of Lagrange multipliers.

30. Solve Exercise 22 in Section 4.3 vsing the method of Lagrange multipliers.

31. Solve Exercise 25 in Section 4.3 using the method of Lagrange multipliers.

32. Let (xg, yp) be the point where a differentiable function f(x, y¥) attains its maximum subject to
the constraint g(x, y) = k.

(a) As k changes, so does the location of the constrained maximum; that is, xy and y, become

functions of k. Consequently, f(xq, yo) is a function of k. Show that, at the point (xq. o). df/dk
satisfies & = & dx | & dyo

dk = Br dk ay dk

i ; s g g d g dy Sl
(b) Show that at (xq, yo), the right side is equal to A (ﬁ% + ;—f%) = ;ﬁ%

(c) Explain why (dg/dk)(xo, yo) = 1. Conclude that A = (df/dk)xq, yo), and interpret the result.

Il > 4.5 FLOW LINES

Assume that the motion of a fluid is described by a vector field F (i.e., the value of F at
a point gives the velocity of the fluid at that point). One way of visualizing F is to isolate
a point in the fluid and follow its trajectory under the influence of the field. The path thus
obtained is called a flow line.

A familiarity with basic concepts in the theory of ordinary differential equations is
needed in this section.




