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Abstract. We study local and global well posedness of the k-generalized
Korteweg-de Vries equation in weighted Sobolev spaces Hs(R) ∩ L2(|x|2rdx).

1. Introduction

This work is concerned with the initial value problems (IVP) associated to the
k-generalized Korteweg-de Vries (k-gKdV) equation

(1.1)


∂tu+ ∂3

xu+ uk∂xu = 0, t, x ∈ R, k ∈ Z+,

u(x, 0) = u0(x).

Our goal is to study well posedness of the IVP (1.1) in weighted Sobolev spaces

(1.2) Zs,r ≡ Hs(R) ∩ L2( |x|2r), s ∈ R, r ≥ 0.

We shall follow the notion of well posedness given in [10]: the IVP (1.1) is said
to be locally well posed (LWP) in the function space X if for each u0 ∈ X there
exist T > 0 and a unique solution u ∈ C([−T, T ] : X)∩ .... = YT of the equation in
(1.1), with the map data → solution being locally continuous from X to YT .

This notion of LWP includes the “persistence” property, i.e. the solution de-
scribes a continuous curve on X. In particular, this implies that the solution flow
of (1.1) defines a dynamical system in X. If T can be taken arbitrarily large, then
the IVP (1.1) is said to be globally well posed (GWP).

We shall be mainly concerned with the modified Korteweg de Vries (mKdV)
equation, i.e. k = 2 in (1.1). In [11] Kenig, Ponce and Vega showed that the IVP
(1.1) with k = 2 is locally well posed in

Ḣ1/4(R) = (−∂2
x)−1/8L2(R) ⊃ H1/4(R) = J−1/4L2(R) = (1− ∂2

x)−1/8L2(R).

More precisely, the following result was established in [11]:

Theorem A. ([11]) For any u0 ∈ Ḣ1/4(R) there exist

(1.3) T = T (‖D1/4
x u0‖2) ∼ ‖D1/4

x u0‖−4
2 ,

and a unique solution u(t) of the IVP (1.1) with k = 2 such that

(1.4)

u ∈ C([−T, T ] : Ḣ1/4(R)),
and

‖D1/4
x ∂xu‖L∞x L2

T
+ ‖∂xu‖L20

x L
5/2
T

+ ‖D1/4
x u‖L5

xL
10
T

+ ‖u‖L4
xL
∞
T
<∞.

1
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For any T ′ ∈ (0, T ) there exists a neighborhood V of u0 in Ḣ1/4(R) such that
the map data → solution ũ0 → ũ(t) from V into the class defined by (1.4) with T ′

instead of T is smooth.
Moreover, if in addition u0 ∈ Hs(R) with s ≥ 1/4, then the solution

u ∈ C([−T, T ] : Hs(R)),

and
‖Ds

x ∂xu‖L∞x L2
T

+ ‖Js−1/4
x ∂xu‖L20

x L
5/2
T

+ ‖Jsxu‖L5
xL

10
T
<∞.

Remarks: (a) The fact that the map data → solution is smooth is a direct
consequence of the proof of Theorem A, based on the contraction principle, and
the implicit function theorem. The estimate for the length of the time interval of
existence (1.3) is inside the proof in [11] (which is partially reproduced in the proof
of Theorem 1 below) or can also be obtained by a scaling argument.

(b) It was shown in [13], and [2] that in an appropriate sense the value 1/4 in
Theorem A is optimal.

(c) In [4] Colliander, Keel, Staffilani, Takaoka, and Tao showed that this LWP
extends to a GWP if s > 1/4. The GWP for the limiting case s = 1/4 was
established by Guo [9] and Kishimoto [14].

Theorem B. ([9], [14]) Let u0 ∈ Hs(R) with s ≥ 1/4. Then for any T ∗ > 0 the
IVP (1.1) with k = 2 has a unique solution

(1.5) u ∈ C([−T ∗, T ∗] : Hs(R)) ∩ ............

Remark: (a) The proof of Theorem B relies on the so called “I-method” intro-
duced in [3], on the Miura transformation [16], and on sharp LWP for the Korteweg-
de Vries (KdV) k = 1 in (1.1). This optimal LWP result for the KdV requires the
use of the so called Bourgain spaces Xs,b, introduced in the context of non-linear
dispersive equations in [1]. Consequently, the precise description of the class in
(1.5) involves those spaces.

Concerning LWP in the weighted spaces Zs,r defined in (1.2) T. Kato [10] showed
that persistent properties holds for solutions of the IVP (1.1) for any m ∈ Z+ in

Zs,m = Hs(R) ∩ L2( |x|2m), s ≥ 2m, m = 1, 2, .......

More precisely:

Theorem C. ([10]) Let m ∈ Z+. Let u ∈ C([−T, T ] : Hs(R)) ∩ ..... with s ≥ 2m
be the solution of the IVP (1.1). If u(x, 0) = u0(x) ∈ L2(|x|2mdx), then

u ∈ C([−T, T ] : Zs,m).

Remarks : (a) We recall the best known LWP and GWP results in Hs(R) for
the IVP (1.1) with k 6= 2:

- for k = 1 LWP is known for s ≥ −3/4 (see [12] for the case s > −3/4 and [2],
[9] and [14] for the limiting case s = −3/4), and GWP is known for s ≥ −3/4 (see
[4] for the case s > −3/4 and [9] and [14] for the limiting case s = −3/4),

- for k = 3 LWP is known for s ≥ −1/6 (see [7] for the case s > −1/6 and [20]
for the limiting case s = −1/6) and GWP is known for s > −1/42 (see [8]),

-for k ≥ 4 LWP is known for s ≥ (k− 4)/2k (see [11]). In [15] for the case k = 4
it is shown that there exist local smooth solutions which develop singularities in
finite time.
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(b) The proof of Theorem C in [10] is based on the commutative property of the
operators

(1.6) Γ = x− 3t∂2
x, L = ∂t + ∂3

x, so [Γ;L] = 0.

In particular, if {U(t) : t ∈ R} denotes the unitary group of operators describing
the solution of the linear IVP

(1.7) ∂tv + ∂3
xv = 0, t, x ∈ R, v(x, 0) = v0(x),

i.e.

(1.8) U(t)v0(x) = (e−itξ
3
v̂0)∨(x),

then from (1.6) one has that

(1.9)

xU(t)v0(x) = U(t)(xv0)(x) + 3tU(t)(∂2
xv0)(x),

i.e.

ΓU(t)v0(x) = U(t)(xv0)(x).

(c) The form of the operator Γ suggests that one should expect persistence in
Zs,r only if s ≥ 2r.

In [17] for the case of the mKdV, J. Nahas extended locally the result in Theorem
C to the optimal range of the parameter s, r accordingly to Theorem A and (1.6),
i.e. s ≥ 1/4 and s ≥ 2r > 0. Also in [17] for the case k ≥ 4 in (1.1) Theorem C
was extended to the optimal range s ≥ (k − 4)/4k and s ≥ 2r > 0.

Our first result gives a significantly simplified proof and slightly stronger version
of these results. We shall concentrate in the case of the mKdV equation k = 2 in
(1.1).

Theorem 1. Let u ∈ C([−T, T ] : Ḣ1/4(R)) denote the solution of the IVP (1.1)
with k = 2 provided by Theorem A. If u0, |x|ru0 ∈ L2(R) with r ∈ (0, 1/8], then

(1.10)

u ∈ C([−T, T ] : H1/4(R) ∩ L2(|x|2rdx)),
and

‖|x|ru‖L5
xL

10
T
<∞.

For any T ′ ∈ (0, T ) there exists a neighborhood V of u0 in H1/4(R)∩L2(|x|2rdx)
such that the map ũ0 → ũ(t) from V into the class defined by (1.4) and (1.10) with
T ′ instead of T is smooth.

Moreover, if in addition u0 ∈ Zs,r′ with s > 1/4 and s ≥ 2r′ > 2r, then the
solution

u ∈ C([−T, T ] : Zs,r′)
with

‖Jsx ∂xu‖L∞x L2
T

+ ‖Jsxu‖L5
xL

10
T

+ ‖Js−1/4
x ∂xu‖L20

x L
5/2
T

+ ‖|x|r
′
u‖L5

xL
10
T
<∞.

Remarks: (a) We observe that Theorem 1 guarantees that the persistent property
in the weighted space Zs,r holds in the same time interval [−T, T ] given by Theorem
A, where T depends only on ‖D1/4

x u0‖2 (see (2.10)).
(b) In [6] Ginibre and Tsutsumi obtained results concerning the uniqueness and

existence (in an appropriate class) of local solutions of the IVP (1.1) with k = 2
and data u0 in the weighted space L2((1 + |x|)1/4dx). Theorem 1 shows that for
data u0 ∈ Z1/4,1/8 the solution provided by Theorem A and that obtained in [6]
agree.
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(c) Our simplification of the proof of Theorem 1 comes from the use of a new
point-wise formula deduced by Fonseca, Linares, and Ponce in [5]. Roughly, this
formula extends the operator Γ in (1.6), (1.8) and (1.9) to the case of fractional
weights |x|r, r ∈ (0, 1). More precisely, the following result was established in [5]
(Lemma 1.2) :

Lemma A. ([5]) Let {U(t) : t ∈ R} be the unitary group of operators defined in
(1.8). If

u0 ∈ Zs,r = Hs(R) ∩ L2(|x|2rdx), s ≥ 2r with r ∈ (0, 1),

then for all t ∈ R and for almost every x ∈ R
(1.11) |x|rU(t)u0(x) = U(t)(|x|ru0)(x) + U(t){Ψt,r(û0)(ξ)}∨(x),

with

(1.12) ‖Ψt,r(û0)‖2 ≤ c(1 + |t|)(‖u0‖2 + ‖D2ru0‖2).

The proof of Lemma A given in [5] is a consequence of a characterization of the
Sobolev space

Lα,p(Rn) = (1−∆)−α/2Lp(Rn), α ∈ (0, 2), p ∈ (1,∞),

due to E. M. Stein, see [19].
(d) As in [17] the result in Theorem 1 extends to the local solutions of the IVP

(1.1) with k ≥ 4 the optimal range of the parameters s, r accordingly to remark
(a) after Theorem C, i.e. s ≥ 2r > 0 with s ≥ (k − 4)/2k. This will be clear from
our proof of Theorem 1 given below, so we omit the details. For the cases k = 1
and k = 3 a weaker version of these results was proven in [18]. The main difference
between the cases k = 2, 4, 5, ... and k = 1, 3 is that for the later the “optimal”
well-posedness results are based on the spaces Xs,b which makes fractional weights
difficult to handle.

As a consequence of Theorem B and our proof of Theorem 1 we obtain the
following global version of Theorem 1:

Theorem 2. Let s ≥ 1/4 and T ∗ > 0. If u0 ∈ Zs,r with s ≥ 2r > 0, then the
solution u of the IVP (1.1) with k = 2 provided by Theorem 1 extends to the time
interval [−T ∗, T ∗] with

u ∈ C([−T ∗, T ∗] : Zs,r).

2. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1:
We shall restrict our attention to the most interesting case s = 1/4 and r = 1/8,

i.e. u0 ∈ Z1/4,1/8.
We begin with a brief review of the argument used in the proof of Theorem A in

[11]. The details of this proof will be used latter to complete the proof of Theorem
1.

First, let us assume that
u0 ∈ Ḣ1/4(R).

For w : R× [−T, T ]→ R with T to be fixed below, define

(2.1)
µT1 (w) =‖D1/4

x w‖L∞T L2
x

+ ‖∂xw‖L20
x L

5/2
T

+ ‖D1/4
x w‖L5

xL
10
T

+ ‖D1/4
x ∂xw‖L∞x L2

T
+ ‖w‖L4

xL
∞
T
.
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Denote by Φ(v) = Φu0(v) the solution of the linear inhomogeneous IVP

(2.2) ∂tu+ ∂3
xu+ v2∂xv = 0 u(x, 0) = u0(x).

The idea is to apply the contraction principle to the integral equation version of
the IVP (2.2), i.e.

(2.3) u(t) = Φ(v(t)) = U(t)u0 −
∫ t

0

U(t− t′)(v2 ∂xv)(t′)dt′.

From the linear estimates concerning the group {U(t) : t ∈ R} established in
[11] one has that

(2.4) µT1 (U(t)u0) ≤ c0‖D1/4
x u0‖2, ∀T > 0.

Here and below c0 will denote a universal constant whose value may change
(increase) from line to line. Hence,

(2.5)

µT1 (
∫ t

0

U(t− t′)v2∂xv(t′)dt′)

≤ c0‖D1/4
x (v2∂xv)‖L1

TL
2
x
≤ c0T 1/2‖D1/4

x (v2∂xv)‖L2
xL

2
T
.

Using the calculus of inequalities in the Appendix in [11] (Theorem A.8) one gets
that

(2.6)

‖D1/4
x (v2 ∂xv)‖L2

xL
2
T

≤ c0‖D1/4
x (v2)‖

L
20/9
x L10

T

‖∂xv‖L20
x L

5/2
T

+ c0‖v2‖L2
xL
∞
T
‖D1/4

x ∂xv‖L∞x L2
T

≤ c0‖v‖L4
xL
∞
T
‖D1/4

x v‖L5
xL

10
T
‖∂xv‖L20

x L
5/2
T

+ c0‖v‖2L4
xL
∞
T
‖D1/4

x ∂xv‖L∞x L2
T

≤ c0(µT1 (v))3.

Inserting the estimates (2.4), (2.5), and (2.6) in the integral equation (2.3) it
follows that

(2.7)

µT1 (Φ(v)) ≤ c0‖D1/4
x u0‖2 + c0

∫ T

0

‖D1/4
x (v2 ∂xv)‖2(t)dt

≤ c0‖D1/4
x u0‖2 + c0 T

1/2‖D1/4
x (v2 ∂xv)‖L2

xL
2
T

≤ c0‖D1/4
x u0‖2 + c0 T

1/2(µT1 (v))3.

A similar argument leads to the estimate

(2.8) µT1 (Φ(v)− Φ(ṽ)) ≤ c0 T 1/2(µT1 (v) + µT1 (ṽ))2 µT1 (v − ṽ).

This basically proves the main part of Theorem A. More precisely, one has that
the operator Φ = Φu0 in (2.3) defines a contraction in the set

(2.9) {v : R× [−T, T ]→ R : µT1 (v) ≤ 2c0‖D1/4
x u0‖2},

with

(2.10) T =
1

64 c60 ‖D
1/4
x u0‖42

.

Hence, the IVP (1.1) with k = 2 has a unique solution u ∈ C([−T, T ] : Ḣ1/4(R))
satisfying

(2.11) µT1 (u) ≤ 2c0‖D1/4
x u0‖2,
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with T as in (2.10).
Now, we assume that

u0 ∈ H1/4(R),
and define

µT0
2 (w) = ‖w‖L∞T0

L2
x

+ ‖∂xw‖L∞x L2
T0

+ µT0
1 (w),

with µT0
1 defined in (2.1) and T0 > 0 to be fixed below. By (2.4) one has that

(2.12) ‖U(t)u0‖L∞T0
L2

x
+ ‖ ∂xU(t)u0‖L∞x L2

T0
≤ c0‖u0‖2, ∀ T0 > 0.

Therefore

(2.13)

‖
∫ t

0

U(t− t′)v2∂xv(t′)dt′ ‖L∞T0
L2

x
+ ‖ ∂x

∫ t

0

U(t− t′)v2∂xv(t′)dt′ ‖L∞x L2
T0

≤ c0 ‖v2∂xv‖L1
T0
L2

x
≤ c0 T 1/2

0 ‖v2∂xv‖L2
xL

2
T0

≤ c0 T 1/2
0 ‖v2‖L2

xL
∞
T0
‖∂xv‖L∞x L2

T0
≤ c0 T 1/2

0 ‖v‖2L4
xL
∞
T0
‖∂xv‖L∞x L2

T0

≤ c0 T 1/2
0 (µT0

2 (v))3,

and similarly,
‖Φ(v)− Φ(ṽ)‖L∞T0

L2
x

+ ‖Φ(v)− Φ(ṽ)‖L∞x L2
T0

≤ c0 T 1/2
0 (µT0

2 (v) + µT0
2 (ṽ))2 µT0

2 (v − ṽ).
Hence, collecting the above result one has that the operator Φ = Φu0 defines a

contraction in the set

{v : R× [−T0, T0]→ R : µT0
2 (v) ≤ 2c0(‖u0‖2 + ‖D1/4

x u0‖2)},
with

T0 =
1

64 c60 (‖u0‖2 + ‖D1/4
x u0‖2)4

< T,

with T as in (2.10). This proves the existence of a unique solution

u ∈ C([−T0, T0] : H1/4(R)),

satisfying
µT0

2 (u) ≤ 2c0(‖u0‖2 + ‖D1/4
x u0‖2),

with the map data → solution smooth.
We recall that the L2-norm of this solution is preserved. Also we observe that

formally (2.12)-(2.13) and (2.11) and the integral equation shows that the solution
u in the time interval [−T, T ] satisfies

(2.14)

‖∂xu‖L∞x L2
T
≤ c0‖u‖2 + c0‖u2∂xu‖L1

TL
2
x

≤ c0‖u‖2 + c0T
1/2‖u2∂xu‖L2

xL
2
T

≤ c0‖u‖2 + c0T
1/2‖u‖2L4

xL
∞
T
‖∂xu‖L∞x L2

T

≤ c0‖u‖2 + c0T
1/2(µT1 (u))2‖∂xu‖L∞x L2

T

≤ c0‖u‖2 +
1
2
‖∂xu‖L∞x L2

T
.

This gives the a priori estimate

‖∂xu‖L∞x L2
T
≤ 2c0‖u0‖2.
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By uniqueness we have

u ∈ C([−T, T ] : Ḣ1/4(R)) ∩ C([−T0, T0] : H1/4(R)),

therefore, using the L2-conservation law and the a priori estimate in (2.14) we can
reapply the above argument to extend our solution u to the whole interval [−T, T ]
with T as in (2.10) to get that

u ∈ C([−T, T ] : H1/4(R)),

with
µT2 (u) ≤ 4c0(‖u0‖2 + ‖D1/4

x u0‖2).

Now we turn our attention to the most interesting case in Theorem 1

u0 ∈ Z1/4,1/8 = H1/4(R) ∩ L2(|x|1/4 dx),

and introduce the notation

µ
eT
3 (w) = ‖ |x|1/8w(t)‖L∞eT L2

x
+ ‖ |x|1/8w‖L5

xL
10eT ,

with T̃ > 0 to be fixed below.
From Lemma A (see (1.11)-(1.12)) and the linear estimates in (2.4) it follows

that

(2.15) µ
eT
3 (U(t)u0) ≤ c0‖|x|1/8u0‖2 + c0(1 + T̃ )(‖u0‖2 + ‖D1/4

x u0‖2).

Hence,

(2.16)

µ
eT
3 (
∫ t

0

U(t− t′)v2∂xv(t′)dt′) ≤ c0‖|x|1/8(v2∂xv)‖L1eTL2
x

+ c0(1 + T̃ )(‖v2∂xv‖L1eTL2
x

+ ‖D1/4
x (v2∂xv)‖L1eTL2

x
)

≤ c0T̃ 1/2‖|x|1/8(v2∂xv)‖L2
xL

2eT
+ c0(1 + T̃ )T̃ 1/2(‖v2∂xv‖L2

xL
2eT + ‖D1/4

x (v2∂xv)‖L2
xL

2eT ).

We shall use that

(2.17)

‖|x|1/8(v2 ∂xv)‖L2
xL

2eT
≤ c0‖v‖L4

xL
∞eT ‖|x|

1/8v‖L5
xL

10eT ‖∂xv‖L20
x L

5/2eT
≤ c0(µeT

1 (v))2 µeT
3 (v).

Inserting the estimates (2.15)-(2.17), (2.6), and (2.13) in the integral equation
(2.3) it follows that

(2.18)

µ
eT
3 (Φ(v)) ≤ c0‖|x|1/8u0‖2 + c0(1 + T̃ )(‖u0‖2 + ‖D1/4

x u0‖2)

+ c0

∫ eT
0

‖|x|1/8(v2 ∂xv)‖2(t)dt

+ c0 (1 + T̃ )
∫ eT

0

(‖v2∂xv‖2 + ‖D1/4
x (v2 ∂xv)‖2)dt

≤ c0‖|x|1/8u0‖2 + c0(1 + T̃ )(‖u0‖2 + ‖D1/4
x u0‖2)

+ c0 T̃
1/2(µeT

1 (v))2 µeT
3 (v) + c0(1 + T̃ )T̃ 1/2(µeT

1 (v))3.
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At this point, we observe that the estimate (2.18) provides an a priori esti-
mate of µT3 (u) with T as in (2.10) and u the solution constructed in (2.1)-(2.11).
More precisely, the above argument applied to the solution u = u(x, t) yields the
inequalities

µT3 (u) ≤ c0‖|x|1/8u0‖2 + c0(1 + T )(‖u0‖2 + ‖D1/4
x u0‖2)

+ c0 T
1/2(µT1 (u))2 µT3 (u) + c0(1 + T )T 1/2(µT1 (u))3

≤c0‖|x|1/8u0‖2 + c0(1 + T )(‖u0‖2 + ‖D1/4
x u0‖2)

+
1
2
µT3 (u) +

1
2

(1 + T )µT1 (u),

by using that
c0T

1/2(µT1 (u))2 ≤ 1/2,

(see (2.10) and (2.11)). Hence,

(2.19)

µT3 (u) ≤2c0‖|x|1/8u0‖2
+ 2c0(1 + T )(‖u0‖2 + ‖D1/4

x u0‖2) + (1 + T )µT1 (u)

≤2c0‖|x|1/8u0‖2 + 6c0

(
‖u0‖2 + ‖D1/4

x u0‖2 +
1

8c30‖D
1/4
x u0‖32

)
≡MT

0 (u0).

A similar argument to that employed to deduce (2.18) shows that

µ
eT
3 (Φ(v)− Φ(ṽ)) ≤ c0 T̃ 1/2(µeT

1 (v) + µ
eT
1 (ṽ))2 µeT

3 (v − ṽ)

+ c0T̃
1/2 µ

eT
1 (v)µeT

3 (v)µeT
1 (v − ṽ)

+ c0(1 + T̃ ) T̃ 1/2(µeT
1 (v) + µ

eT
1 (ṽ))2 µeT

1 (v − ṽ).

Finally, we define
µ

eT (w) = µ
eT
1 (w) + µ

eT
3 (w),

and consider a general data

ũ0 ∈ Z1/4,1/8 = H1/4(R) ∩ L2(|x|1/4dx).

Thus, using the notation in (2.2)-(2.3) and collecting the above information we have

µ
eT (Φeu0(v)) ≤c0‖|x|1/8ũ0‖2 + c0(1 + T̃ )(‖ũ0‖2 + ‖D1/4

x ũ0‖2)

+ c0 T̃
1/2(1 + T̃ ) (µeT (v))3

≤c0‖|x|1/8ũ0‖2 + c0(‖ũ0‖2 + ‖D1/4
x ũ0‖2)

+ c0 T̃ (‖ũ0‖2 + ‖D1/4
x ũ0‖2) + c0 T̃

1/2(1 + T̃ ) (µeT (v))3,

and
µ

eT (Φeu0(v)− Φeu0(ṽ)) ≤ c0 T̃ 1/2(1 + T̃ )(µeT (v) + µ
eT (ṽ))2µeT (v − ṽ).

Defining
δ = ‖ũ0‖2 + ‖D1/4

x ũ0‖2 + ‖|x|1/8ũ0‖2,
it follows that the operator Φeu0 (see (2.3)) defines a contraction in the set

Ω eT = {v : R× [−T, T ]→ R : µeT (v) ≤ 2c0δ},
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into itself if

c0T̃
1/2(1 + T̃ )(2c0δ)2 ≤ 1/10,

and

c0T̃ δ + c0T̃
1/2(1 + T̃ )(2c0δ)3 ≤ c0δ.

So we need to have

c0T̃
1/2(1 + T̃ )(2c0δ)2 ≤ 1/10, and T̃ ≤ 1/5.

Hence, it suffices to take

T̃ (δ) = min{ 1
5

;
1

(80)2 c60 δ4
}.

This guarantees LWP results in H1/4(R) ∩ L2(|x|1/8) for the IVP (1.1) with
k = 2 in the time interval [−T̃ , T̃ ]. We recall that a priori we know that in the
time interval [−T, T ] with T as in (2.10) one has that

sup
[−T,T ]

(‖u(t)‖2 + ‖D1/4
x u(t)‖2 + ‖|x|1/8u(t)‖2)

≤ ‖u0‖2 + 2c0‖D1/4
x u0‖2 +MT

0 (u0),

with MT
0 (u0) defined in (2.19). Thus, taking

δ0 = ‖u0‖2 + 2c0‖D1/4
x u0‖2 +MT

0 (u0),

we obtain a uniform estimate for T̃ (δ0) in the whole time interval [−T, T ] which
allows us to reapply the local existence theorem above 2T/T̃ (δ0)-times to get the
local solution to the whole time interval [−T, T ].

Proof of Theorem 2:
We shall consider the most interesting case s = 1/4, and recall that the L2-norm

of the solution u(t) is preserved.
By Theorem B for any given T ∗ > 0 and u0 ∈ H1/4(R) one has that the corre-

sponding solution u = u(x, t) of the IVP (1.1) with k = 2 satisfies

u ∈ C([−T ∗, T ∗] : H1/4(R)) ∩ ....

Let

K = max
[−T∗,T∗]

‖D1/4
x u(t)‖2.

Following (2.10) we define

T ′ =
1

64 c60K4
,

and split the interval [−T ∗, T ∗] into 2T ∗/T ′ sub-intervals. In each of these sub-
intervals we can apply Theorem 1 to get the desired solution to the whole interval
[−T ∗, T ∗].
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