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Abstract. We construct local Arthur packets associated with a dihedral long root A-parameter

of a split reductive group of type G2 over a nonarchimedean local field of characteristic zero.

The construction relies on an exceptional correspondence for the pair (PU3 ⋊ Z/2Z, G2).
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1. Introduction

Let G be a connected reductive linear algebraic group over a number field F . In [Art89,

Art90], J. Arthur has given a conjectural description of the constituents of the square integrable

automorphic representations A2(G) of G. The conjecture predicts that there is a decomposition

A2(G) =
⊕
ψ

A2,ψ

where each A2,ψ is (to a first approximation) a near equivalence class of representations and

the sum runs over equivalence classes of discrete A-parameters ψ. A-parameters are admissible

maps

ψ : LF × SL2(C) → LG,

where LF denotes the conjectural Langlands group of F and LG = Ĝ(C) ⋊ WF denotes the

L-group of G. Here Ĝ(C) is the complex dual group of G and WF is the Weil group of F . We

say that ψ is discrete if the component group Sψ, defined as the centralizer of the image of ψ in

Ĝ(C) modulo the center of Ĝ(C), is finite. Fix such an A-parameter ψ. Arthur’s conjecture gives

a more precise description of the constituents of A2,ψ. It first describes the local components

of the representations appearing in A2,ψ, via the so-called local A-packets, and then determines

which combinations of such local representations appear globally, using the global A-packets and

the multiplicity formula.

Let v be a place of F , let Fv be the completion of F at v and denote by LFv the group

WFv×SU2(C), whereWFv is the Weil group of Fv. We can pre-compose ψ with a fixed embedding

LFv ↪−→ LF to obtain the local A-parameter ψv : LFv×SL2(C) → LG. Define the local component

group of ψv as

Sψv = π0

(
ZĜ(C)(Im(ψv))Z(Ĝ(C))/Z(Ĝ(C))

)
,

where ZĜ(C)(Im(ψv)) denotes the centralizer in Ĝ(C) ⊂ LG of the image of ψv, Z(Ĝ(C)) denotes

the center of Ĝ(C) and π0 denotes the group of connected components. Arthur predicted that

to each irreducible representation ηv of Sψv , we can attach a unitarizable finite length (possibly

reducible, possibly zero) representation πηv of G(Fv). The collection

Aψv = {πηv | ηv ∈ Irr(Sψv)}

is the local A-packet associated to ψv. There are several requirements on the representations in

Aψv . One of them is that if we let 1v denote the trivial representation of Sψv , then for all but

finitely many v, π1v is the unramified representation with Satake parameter

sψv = ψv

(
Φv ×

(
q
−1/2
v 0

0 q
1/2
v

))
.

Here Φv denotes a geometric Frobenius element at v and qv is the size of the residue field at v.

Given the local A-packets, we define the global A-packet associated to ψ as

Aψ =
{
π = ⊗′

vπηv | πηv ∈ Aψv for all v and ηv = 1v for all but finitely many v
}
.
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Note that this is a set of nearly equivalent representations of G(AF ), which is indexed by ir-

reducible representations of Sψ,AF =
∏
v Sψv . For a given η = ⊗vηv, where ηv ∈ Irr(Sψv) and

ηv = 1v for all but finitely many v, set πη = ⊗′
vπηv . Arthur constructed a quadratic character

ϵψ of Sψ and used it to determine the multiplicity of each representation πη ∈ Aψ appearing in

A2,ψ. This yields the multiplicity formula

A2,ψ =
⊕
η

mηπη, where mη =
1

#Sψ

∑
s∈Sψ

ϵψ(s)η(s)

 .

It is worth mentioning that the conjecture also predicts when all the representations in A2,ψ are

tempered, which should occur when the A-parameter ψ is tempered (if ψ restricted to SL2(C) is

trivial). On the other hand, nontempered A-parameters lead to local A-packets that can contain

both tempered and nontempered representations. An important feature about nontempered A-

parameters is that they usually factor through subgroups LH ⊂ LG. It is then expected that

we can construct the representations in the (local and global) A-packets associated to ψ from

representations of H.

From now on suppose that G is a split exceptional group of type G2 over F . Note that
LG can be replaced by G(C) and that there are 4 different conjugacy classes of morphisms

SL2(C) → G(C) corresponding to the 4 nontrivial unipotent conjugacy classes in G(C). They

give rise to 4 families of nontempered A-parameters ψ for G2: if ψ|SL2(C) corresponds to the

regular orbit, if ψ|SL2(C) corresponds to the subregular orbit, if ψ|SL2(C) gives the short root SL2

in G2 and if ψ|SL2(C) gives the long root SL2 in G2. For the first three mentioned families of

nontempered A-parameters, Arthur’s conjecture has been verified; see [GGJ02] and [GG06]. This

work is part of a larger project initiated at the 2022 Arizona Winter School which aims to verify

Arthur’s conjecture for the so-called dihedral long root A-parameters, a type of nontempered

A-parameters for G2 which belong to the fourth mentioned family. In particular, in this paper

we construct the local nonarchimedean A-packets associated to dihedral long root A-parameters.

We proceed to briefly introduce dihedral long root A-parameters and then we summarize how the

corresponding local A-packets are constructed. For that we use a theta lift from PU3⋊Z/2Z to

G2 arising from the exceptional theta correspondence for (PU3 ⋊ Z/2Z)×G2 studied in [GS04],

[GS23] and especially in [BS24].

Let K be a quadratic extension of F and c be the nontrivial element in the Galois group

Gal(K/F ). Denote by χ a character of A×
K/K

× which is conjugate symplectic, i.e., χ|A×
F
= ωK/F ,

where ωK/F is the quadratic character attached to the extension K/F . Moreover, suppose that

χc ̸= χ. Note that we can regard χ as a character of WK . Let τ = ⊗′
vτv be the representation of

GL2(AF ) obtained from χ by automorphic induction, namely τ is the automorphic representation

with L-parameter

ρτ = IndWF
WK

χ.

Note that the central character of τ is ωK/F ·χ|A×
F
= 1. Therefore, we regard ρτ as a representation

of PGL2. Denote by SL2,l (resp. SL2,s) the long (resp. short) root SL2 inside G2. We define the

long root A-parameter of G associated with τ as

ψτ,l : LF × SL2(C) ↠WF × SL2(C)
ρτ×id−−−−→ SL2,s(C)×µ2 SL2,l(C) ⊂ G(C).
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There is a subgroup SL3,l(C) ⊂ G(C) corresponding to the root system of type A2 formed by

the six long roots of G. Its normalizer inside G(C) is isomorphic to SL3,l(C)⋊ Z/2Z. This is at

the same time isomorphic to the L-group of PU3, the projective unitary group in three variables

associated to the extension K/F .

NG(C)(SL3,l(C)) ≃ SL3,l(C)⋊ Z/2Z =LPU3.

In Section 4 we verify that ψτ,l can be conjugated to take values in that normalizer. We can

therefore define the restriction

ψχ : LF × SL2(C) →LPU3.

As discussed above, the fact that the A-parameter ψτ,l factors through an A-parameter of PU3

suggests that we can obtain the local A-packets for ψτ,l from the local A-packets for ψχ. We

explain this phenomenon when v is a nonarchimedean place of F which is nonsplit in K, as this

is the most interesting case.

Fix a place of K above v, denote by Kv the completion of K at that place and by χv the

corresponding local component of χ. The local component group of ψχ,v has two elements.

Therefore, the local A-packet of PU3 associated to ψχv has the form

Aψχ,v =
{
σ+v , σ

−
v

}
,

where σ+v (resp. σ−v ) corresponds to the trivial (resp. nontrivial) representation of the local

component group. These representations can be obtained as theta lifts using the classical local

theta correspondence between the unitary groups U1 and U3, as we explain in Section 4. In

particular, σ+v is nontempered and σ−v is supercuspidal.

On the other hand, the local component group of ψτ,l,v has either two elements if χ2
v ̸= 1 or

one element otherwise. Therefore, we expect that the local A-packet associated to ψτ,l has the

form

Aψτ,l,v =

{π+v , π−v } if χ2
v ̸= 1,

{π+v } if χ2
v = 1.

Here, π+v corresponds to the trivial representation of Sψτ,l,v and, when the local component

group has two elements, π−v is the representation corresponding to the nontrivial representation

of Sψτ,l,v . Denote by ΘPU3 the exceptional big theta lift from PU3 to G considered in [BS24] and

by θPU3 the corresponding small theta lift. Let Q1 be the non-Heisenberg parabolic subgroup

of G(Fv), which has a Levi subgroup isomorphic to GL2(Fv), and denote by iGQ1
the normalized

parabolic induction from Q1 to G(Fv). The main result of this paper is the following.

Theorem 1.1. Let v be a non-archimedean place of F which is nonsplit in K. Let Aψχ,v =

{σ+v , σ−v } be the local A-packet associated to the A-parameter ψχ of PU3, where σ
+
v is nontem-

pered and σ−v is supercuspidal. Define π±v = θPU3(σ
±). Then:

(1) The representation π+v is the unique nonzero irreducible quotient of iGQ1
(|det|1/2Fv

τv), where

| |Fv denotes the normalized absolute value on Fv.

(2) If χ2
v ̸= 1, the representation π−v is nonzero, irreducible and tempered.

(3) If χ2
v = 1, the representation π−v is zero.
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Note that as a consequence of the main theorem, we obtain a natural construction of the

elements of the local A-packet Aψτ,l,v as the nonzero lifts of the elements of Aψχ,v via θPU3 .

Using a similar strategy, we construct the local A-packet Aψτ,l,v when v is a non-archimedean

place of F that is split in K (see Theorem 4.12).

The first point of the main theorem is a consequence of the work of [BS24] on lifts of non-

tempered representations. To prove the second point we compute Fourier–Jacobi periods of the

minimal representation used to define θPU3 to obtain the following non-vanishing criterion: if

the contragredient of a local representation of PU3, when restricted to a suitable two-variable

unitary subgroup, has a quotient with trivial central character, then this representation has

nonzero theta lift to G. We then verify that σ−v satisfies this condition if χ2
v ̸= 1 using a see-saw

argument. In fact, this same reasoning shows that π+v is nonzero in all cases, giving an alter-

native proof of the nonvanishing part in the first point of the theorem. The key ingredient to

prove the third point of the theorem is that the twisted coinvariant spaces for π−v corresponding

to generic characters of the unipotent of the Heisenberg group of G(Fv) vanish. This is proven

using that for every such character we have:

• The explicit description of π+v allows to verify that the twisted coinvariant space for π+v
is 1-dimensional.

• The twisted coinvariant space for π+v ⊕ π−v can be related to a sum of toric periods

for σ+v ⊕ σ−v . Since the representations σ±v are theta lifts of characters in U1, the non-

vanishing of these periods can be expressed in terms of local epsilon factors, as it is done

in [BFG+]. Moreover, in [loc. cit.], it is proven that exactly one of these toric periods

contributes to the sum with precisely dimension 1.

We expect that a similar construction should yield the local A-packets in the archimedean

case, but the theta correspondence in the archimedean case has not been fully analysed yet. We

refer the reader to [BHLHS], where a definition of the local A-packets in this setting, which can

be related to theta lifts in some cases, is proposed.

The p-adic construction presented in this article is used in [loc. cit.] to construct global

dihedral long root A-packets and, under the hypothesis that L(χ, 1/2) ̸= 0 and certain conditions

regarding the archimedean construction, verify the multiplicity formula.

We conclude the introduction with notes about the organisation of this paper. In Section 2,

we establish notation for unitary groups and recall essential results about the classical local

theta correspondence between U1 and U3. In Section 3, we introduce the exceptional group of

type G2, the local exceptional theta correspondence between this group and PU3 ⋊ Z/2Z, and

review results about this correspondence that we will need later. In Section 4, we describe the

construction of the local A-packets associated to ψτ,l for all finite primes. In Section 5, we prove

nonvanishing of the representation π−v in the case χ2
v ̸= 1. Finally, in Section 6, we prove the

vanishing of π−v in the case χ2
v = 1.
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2. Theta correspondence for unitary groups

In this section, we work out the local theta correspondence for the dual pair (U1,U3). We

start by recalling some general structure theory for unitary groups in Section 2.1, followed by

a description of the theta correspondence for general unitary groups in Section 2.2. We then

apply this theory to the dual pair (U1,U3) in Section 2.3 for nonsplit places, and (GL1,GL3) in

Section 2.4 for split places.

2.1. Definitions. Let F be a nonarchimedean local field of characteristic zero and let K be a

quadratic field extension with Gal(K/F ) = ⟨c⟩. Let ωK/F be the nontrivial quadratic character

of F×/NK/F (K
×). A finite-dimensional Hermitian (resp. skew-Hermitian) space over K is a

finite dimensional vector space over K equipped with a nondegenerate sesquilinear form ⟨ , ⟩
satisfying ⟨v, w⟩c = ⟨w, v⟩ (resp. ⟨v, w⟩c = −⟨w, v⟩). We adopt the convention that sesquilinear

forms are linear on the first variable and conjugate-linear on the second variable.

For each positive integer n, there are two isomorphism classes of Hermitian spaces of dimension

n over K. Given a Hermitian space of dimension n over K, its isomorphism class is determined

by an invariant known as the discriminant, which we now define.

Let V be a Hermitian space of dimension n over K. Let {v1, v2, . . . , vn} be a K-basis of V and

let Φ = (⟨vi, vj⟩) be the matrix of inner products of the basis elements. Then, the discriminant

of V , which we denote by disc(V ), is defined by

disc(V ) = (−1)n(n−1)/2 det(Φ) ∈ F×/NK/F (K
×).

The sign character that classifies V is given by

ϵ(V ) = ωK/F (disc(V )) ∈ {±1}. (1)

If W is a skew-Hermitian space of dimension m, we can define the discriminant using the

same procedure, but now we get

disc(W ) ∈ δmF×/NK/F (K
×),

where δ denotes any trace-zero element in K×. We can again attach a sign to W by setting

ϵ(W ) = ωK/F (δ
−m disc(W )) ∈ {±1}, (2)

but note that, if m is odd, this definition depends on our choice of δ.

For an n-dimensional Hermitian or skew-Hermitian space V , we denote by U(V ) the corre-

sponding unitary group. This is an algebraic group over F . Choose a K-basis of V and let
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Φ be the matrix of the (skew-)Hermitian form on V with respect to this basis. Then, for any

F -algebra R, the R-points of U(V ) can be described as

U(V )(R) = {g ∈ GLn(K ⊗F R) : gΦg† = Φ},

where g† = c(gt), the conjugate transpose of g. We are primarily interested in the group of

F -points of U(V ), which we denote by U(V ).

Observe that a Hermitian form becomes skew-Hermitian after multiplication by a trace-zero

element in K× and vice versa, without changing the associated unitary groups. Therefore, from

now on we focus on Hermitian spaces.

Let V be an n-dimensional Hermitian space with Hermitian form ⟨ , ⟩. Let a ∈ F× and let

V a denote the Hermitian space with the same underlying space V equipped with the Hermitian

form a⟨ , ⟩. From the above description of the associated unitary groups, it is clear that U(V a) =

U(V ).

If n = 2m for a positive integer m, we have that V ≃ V a from the definition of the discrimi-

nant, and it can be proved that non-isomorphic Hermitian spaces yield non-isomorphic unitary

groups. When m = 1 and ϵ(V ) = 1, we can choose a basis {e1, e2} so that V = Ke1 ⊕Ke2 and

⟨e1, e1⟩ = ⟨e2, e2⟩ = 0 and ⟨e1, e2⟩ = 1.

We call this 2-dimensional space the hyperbolic plane and denote it by H. More generally, when

ϵ(V ) = 1, then V ≃ Hm. We say that such a V is split and the corresponding unitary group is

quasi-split. In this case, we can choose a basis for V for which the Hermitian form is given by

Φ =



0 0 · · · 0 1

0 0 · · · 1 0
...

... . .
. ...

...

0 1 · · · 0 0

1 0 · · · 0 0


.

Once we fix such a basis, the subgroup of upper-triangular matrices in U(V ) defines a Borel

subgroup, which we sometimes refer to as the standard Borel subgroup. Let B′ denote the

F -points of this Borel subgroup and let T ′ ⊂ B′ denote the F -points of the maximal torus

consisting of diagonal matrices. Then T ′ consists of the elements of the form

t(a1, . . . , am) = diag
(
am, ..., a1, (a

c
1)

−1, ..., (acm)
−1
)
, with a1, . . . , am ∈ K×,

so we get an identification T ′ ≃ (K×)m. If ϵ(V ) = −1, then V is isomorphic to the orthogonal

direct sum of m− 1 hyperbolic planes and an anisotropic two-dimensional Hermitian space. In

this case, V is nonsplit and the corresponding unitary group is not quasi-split.

If n = 2m+1, then for an element a ∈ F× which is not a norm from K×, the Hermitian spaces

V and V a are not isomorphic. It follows that there is only one isomorphism class of unitary

groups in n-variables, which are always quasi-split. We denote any element in this isomorphism

class by Un, and its F -points by Un. Then V is isomorphic to the orthogonal direct sum of m

hyperbolic planes and a line. We can choose a basis of V for which the corresponding Hermitian
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form is given by

Φ =



0 0 · · · 0 b

0 0 · · · b 0
...

... . .
. ...

...

0 b · · · 0 0

b 0 · · · 0 0


,

with the class of b in F×/NK/F (K
×) determined by the discriminant of V . Once we fix such

a basis, the subgroup of upper-triangular matrices in U(V ) defines a Borel subgroup, which we

sometimes refer to as the standard Borel subgroup. Let B′ denote the F -points of this Borel

subgroup and let T ′ ⊂ B′ denote the F -points of the maximal torus consisting of diagonal

matrices. Then T ′ consists of the elements of the form

t(a0, a1, . . . , am) = diag
(
am, ..., a1, a0, (a

c
1)

−1, ..., (acm)
−1
)
, with a0 ∈ K1, a1, . . . , am ∈ K×,

so we get an identification T ′ ≃ (K×)m ×K1.

2.2. Theta correspondence for unitary groups. Let F be a nonarchimedean local field of

characteristic zero and let K/F be a quadratic field extension. Let V be a Hermitian space over

K of dimension n and let W be a skew-Hermitian space over K of dimension m. We can regard

V ⊗K W as a vector space over F equipped with the symplectic form

1

2
TrK/F (⟨ , ⟩V ⊗K ⟨ , ⟩W ).

Let Sp(V ⊗K W ) be the symplectic group associated with this symplectic space. Then we have

a natural map

ι : U(V )×U(W ) −→ Sp(V ⊗K W ),

and U(V ) and U(W ) form a reductive dual pair inside Sp(V ⊗K W ). The aim of this section is

to describe the theta correspondence for this pair.

Fix a nontrivial additive character ψ : F → C×. Let Mp(V ⊗K W ) be the metaplectic group

associated with the symplectic space V ⊗KW , which for us will be an S1-cover of the symplectic

group Sp(V ⊗K W ). Let ωψ denote the Weil representation of Mp(V ⊗K W ) corresponding to

the character ψ.

After fixing two characters χV , χW of K× such that

χV |F× = ωnK/F and χW |F× = ωmK/F ,

the work of Kudla [Kud94] provides a morphism

ι̃χV ,χW ,ψ : U(V )×U(W ) −→ Mp(V ⊗K W )

lifting the natural map ι : U(V ) × U(W ) → Sp(V ⊗K W ). Hence, we can consider the rep-

resentation of U(V ) × U(W ) obtained as the pullback of ωψ by ι̃χV ,χW ,ψ. We will denote this

representation by ΩV,W,χV ,χW ,ψ, or simply by Ω. We use this representation to describe the theta

correspondence between U(W ) and U(V ).



DIHEDRAL LONG ROOT A-PACKETS OF p-ADIC G2 VIA THETA CORRESPONDENCE 9

Definition 2.1. Let π be an irreducible smooth representation of U(W ). The maximal π-

isotypic quotient of Ω is

Ω/
⋂

f∈HomU(W )(Ω,π)

ker(f).

This is a representation of U(V )×U(W ) and can be written as Θ(π)⊠π, where Θ(π) is a smooth

representation of U(V ). We denote by ΘV,W,χV ,χW ,ψ(π), or simply by Θ(π), the representation

of U(V ) obtained from π following this procedure. It is called the big theta lift of π.

The following theorem was a conjecture of Howe [How79]. For odd residue characteristic,

a proof was given by Waldspurger [Wal90]. The assumption on the residue characteristic was

removed by Gan–Takeda [GT16].

Theorem 2.2 (Howe duality theorem). Let π, π′ ∈ Irr(U(W )).

(1) If Θ(π) is nonzero, it has a unique irreducible quotient. We denote it by θV,W,χV ,χW ,ψ(π),

or simply by θ(π). It is called the small theta lift of π.

(2) If θ(π) ≃ θ(π′) ̸= 0, then π ≃ π′.

It is useful to study theta lifts by considering certain families of Hermitian spaces called Witt

towers. Recall that H denotes the hyperbolic plane. We say that two Hermitian spaces V and

V ′ belong to the same Witt tower if there exist integers k, l ≥ 0 such that

V ⊕ Hk ≃ V ′ ⊕ Hl.

Let V1 and V ′
1 denote two non-isomorphic 1-dimensional Hermitian spaces and let V2 denote

a 2-dimensional anisotropic Hermitian space. There are two Witt towers of even-dimensional

Hermitian spaces

W ′
0 = {Hk : k ≥ 0}, W0 = {V2 ⊕ Hk : k ≥ 0},

and two Witt towers of odd-dimensional Hermitian spaces

W ′
1 = {V ′

1 ⊕ Hk : k ≥ 0}, W1 = {V1 ⊕ Hk : k ≥ 0}.

We continue to denote by W a fixed m-dimensional skew-Hermitian space. Fix a character

χW satisfying the condition stated above, i.e., such that χW |F× = ωmK/F . Since the parity of

the dimension is the same for elements in a fixed Witt tower, we can choose the same splitting

character χV to define the corresponding theta lifts. Thus, we fix characters χodd and χeven such

that χodd|F× = ωK/F and χeven|F× = 1.

For an irreducible smooth admissible representation π of U(W ), we make the following defi-

nitions:

nW ′
0
(π) = min{dimV : V ∈ W ′

0 and ΘV,W,χeven,χW ,ψ(π) ̸= 0};

nW0(π) = min{dimV : V ∈ W0 and ΘV,W,χeven,χW ,ψ(π) ̸= 0};

nW ′
1
(π) = min{dimV : V ∈ W ′

1 and ΘV,W,χodd,χW ,ψ(π) ̸= 0};

nW1(π) = min{dimV : V ∈ W1 and ΘV,W,χodd,χW ,ψ(π) ̸= 0}.

For the definition of nW ′
0
(π), we consider that, in the case V = 0, the theta lift of π is nonzero

if and only if π is the 1-dimensional representation defined by the character χeven ◦ i ◦ detW ,
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where i denotes the inverse of the isomorphism K×/F× ≃−→ K1 defined by x 7→ x/xc and detW

denotes the natural determinant map on U(W ).

The following result is a special case of [SZ15, Thm. 1.10] (see also the discussion preceding

the statement of the theorem).

Theorem 2.3. Let π be an irreducible smooth representation of U(W ). Then:

nW ′
0
(π) + nW0(π) = 2m+ 2;

nW ′
1
(π) + nW1(π) = 2m+ 2.

Moreover, for any Witt tower W and for any V ∈ W with dimV ≥ nW(π), the corresponding

theta lift Θ(π) is nonzero. The same results hold if we interchange the role of Hermitian and

skew-Hermitian spaces.

2.3. Theta correspondence for U1 ×U3. We keep the definitions and the notation from the

previous subsection. Let γ be a conjugate-symplectic character of K×, i.e., such that γ|F× =

ωK/F . Then, we can make the following choice of splitting characters:

χV = γn, χW = γm.

We denote by ΩV,W,γ,ψ the pullback to U(V ) × U(W ) of the Weil representation ωψ obtained

from this choice of splitting characters. For an irreducible smooth representation π of U(W ),

we denote by ΘV,W,γ,ψ(π) the corresponding theta lift. Due to the choice of splitting characters,

the theta correspondence preserves central characters.

Assume now that W has dimension m = 1 and V has dimension n = 3. Let V1 denote the

1-dimensional Hermitian space in the Witt tower of V .

Proposition 2.4. Let µ be a character of U(W ). Then,

(1) if ΘV1,W,γ,ψ(µγ
−1
|K1) = 0, then ΘV,W,γ,ψ(µ) is a nonzero irreducible supercuspidal repre-

sentation of U(V );

(2) if ΘV1,W,γ,ψ(µγ
−1
|K1) ̸= 0, then ΘV,W,γ,ψ(µ) is a nonzero, irreducible but not supercuspidal

representation of U(V ). Moreover, ΘV,W,γ,ψ(µ) is a quotient of

i
U(V )
B′

(
γ| |1/2K ⊗ µγ−1

|K1

)
.

Proof. This follows from [MVW87, Théorème principal, p. 69]. Indeed, any character of U(W ) is

a supercuspidal representation. The appearance of the character γ−1
|K1 in our statements follows

from our different choice of lifting characters. With our choices, the first case above follows from

statement 1.b in [loc. cit.]. In the second case, we have that ΘV1,W,γ,ψ(µγ
−1
|K1) = µγ−1

|K1 . Therefore,

in this case, it follows from statement 1.c in [loc. cit.] that rU ′(ΘV,W,γ,ψ(µ)) = γ| |1/2K ⊗ µγ−1
|K1 ,

where U ′ denotes the unipotent subgroup of B′ and rU ′ the corresponding Jacquet functor.

Thus, an application of Frobenius reciprocity shows that ΘV,W,γ,ψ(µ) is a subrepresentation of

i
U(V )
B′

(
γ| |−1/2

K ⊗ µγ−1
|K1

)
, whereas an application of the second adjointness theorem shows that

it is a quotient of i
U(V )
B′

(
γ| |1/2K ⊗ µγ−1

|K1

)
, as desired. □

Remark 2.5. Most of the previous theorem can also be deduced from [Gan22, §2.12].
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We will also need a criterion to determine whether ΘV1,W,γ,ψ(µ) is nonzero. Fix an element

δ ∈ K× of trace equal to zero. We adapt the sign characters as defined in (1) and (2) to our

case. In particular, we set

ϵ(W ) := ωK/F (δ
−1 disc(W )) ∈ {±1}.

Theorem 2.6. Let µ be a character of U(W ). The theta lift ΘV1,W,γ,ψ(µ) is nonzero if and only

if

ϵ(V1)ϵ(W ) = ϵK

(
1

2
, γµ̃−1, ψ(TrK/F (−δ(·)))

)
.

where µ̃ = µ ◦ i−1 and i denotes the inverse of the isomorphism K×/F× ≃−→ K1 defined by

x 7→ x/xc.

Proof. This is [Rog92, Proposition 3.4]. Indeed, if V1 is the 1-dimensional Hermitian space with

Hermitian form (x, y) 7→ 2xyc and W is the 1-dimensional skew-Hermitian space with skew-

Hermitian form (x, y) 7→ δxyc for an element δ ∈ K× of trace zero, then it follows from [loc. cit.]

that the theta lift ΘV1,W,γ,ψ(µ) is nonzero if and only if

γ(2δ)−1µ(−1)ϵK

(
1

2
, γµ̃−1, ψ ◦ TrK/F

)
= 1.

Now, in this particular case, we have ϵ(V1) = γ(2), ϵ(W ) = 1 and

ϵK

(
1

2
, γµ̃−1, ψ(TrK/F (−δ(·)))

)
= γµ̃−1(−δ)ϵK

(
1

2
, γµ̃−1, ψ ◦ TrK/F

)
= γ(−δ)µ(−1)ϵK

(
1

2
, γµ̃−1, ψ ◦ TrK/F

)
,

so ΘV1,W,γ,ψ(µ) is nonzero if and only if

ϵK

(
1

2
, γµ̃−1, ψ(TrK/F (−δ(·)))

)
= γ(−2δ2),

and, since −δ2 ∈ NK/F (K
×), the right hand side of the last equation becomes γ(2) = ϵ(V1)ϵ(W ),

so we obtain the result in this case. To obtain the result for arbitrary 1-dimensional Hermitian

and skew-Hermitian spaces V1 and W , we just need to observe that scaling the form on one of

these spaces by a ∈ F× amounts to replacing the Weil representation ΩV,W,γ,ψ by ΩV,W,γ,ψa . □

2.4. Theta correspondence for GL1 ×GL3. In this subsection, we briefly review the results

that we will later need regarding the theta correspondence for the pair GL1 ×GL3. This is the

case that arises if, in the previous setting, we replace the quadratic field extension K/F by the

étale quadratic F -algebra F × F . This theta correspondence has been described by Mı́nguez

[Mı́n08].

Let F be a nonarchimedean local field and fix a nontrivial additive character ψ : F → C×.

Let Mn,m(F ) denote the space of n × m matrices with coefficients in F and let Sn,m denote

the space of locally constant compactly supported C-valued functions on Mn,m(F ). The Weil

representation ωψ of the metaplectic group Mp2nm(F ) can be realized on the space Sn,m. The

choice of a character γ of F× determines a lifting

ι̃γ,ψ : GLn(F )×GLm(F ) −→ Mp2nm(F )
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of the natural map

ι : GLn(F )×GLm(F ) −→ Sp2nm(F )

defined by

(ι̃γ,ψ(g, h)f)(x) = γ(det(g))m| det(g)|m/2F f(gtxh)γ(det(h))n| det(h)|n/2F

for all g ∈ GLn(F ), h ∈ GLm(F ), x ∈ Mn,m(F ) and f ∈ Sn,m. Observe that our conventions

differ from those adopted in [Mı́n08].

Using the lifting ι̃γ,ψ, we can define the big theta lift Θ(π) of a smooth admissible irreducible

representation π of GLm(F ) and, if it is nonzero, the small theta lift θ(π).

Specialize now to the case m = 1 and n = 3. The main result in [Mı́n08] is as follows.

Theorem 2.7. Let µ be a character of GL1(F ). Then Θ(µ) is nonzero and θ(µ) is the Langlands

quotient π(γ| |1/2F , µγ−2, γ| |−1/2
F ) of iGL3

B′ (γ| |1/2F ⊗µγ−2⊗γ| |−1/2
F ), where B′ denotes the standard

Borel subgroup of GL3.

3. Theta correspondence for the pair (PU3 ⋊ Z/2Z, G2)

In this section, we collect general results on the theta correspondence for (PU3 ⋊ Z/2Z, G2).

In Section 3.1, we recall the basic facts for the group G2 and its parabolic subgroups that play a

role in this paper. In Section 3.2, we do the same for the group PU3⋊Gal(K/F ). In Section 3.3,

we discuss the general theory of theta correspondence for (PU3 ⋊ Z/2Z, G2). This draws from

theta lifting for (PU3, G2), which we discuss in Section 3.4 following [BS24] closely. Finally, we

do the same for the pair (PGL3, G2) in Section 3.5, which we use later for the split places.

3.1. The group G2. Let F be a nonarchimedean local field of characteristic zero, with normal-

ized absolute value denoted by | |. Let G be a split exceptional group of type G2. Let B = TU

be a Borel subgroup of G whose Levi component T is a split maximal torus of G. Denote by

{α, β, α+ β, 2α+ β, 3α+ β, 3α+ 2β}

the corresponding set of positive roots, where α is the short simple root and β is the long simple

root. For any root γ we will denote by wγ the corresponding reflection on the Weyl group of G.

We can identify

T ≃ F× × F×, t 7→ ((2α+ β)(t), (α+ β)(t)) .

Hence, under this identification, if (t1, t2) ∈ F× × F×, we have α(t1, t2) = t1t
−1
2 and β(t1, t2) =

t22t
−1
1 .

Let Q1 be the parabolic subgroup corresponding to the root β with Levi decomposition

Q1 = L1U1. We have an isomorphism L1 ≃ GL2 under the map determined by

t 7→ diag ((α+ β)(t), α(t)) . (3)

The group Q1 is usually called the three-step parabolic of G2, as U1 admits a three-step filtration

U1 = U1(1) ⊃ U1(2) ⊃ U1(3) ⊃ U1(4) = 1 gi ven in [BS24, Section 3.1]. Similarly, let Q2 be the

parabolic corresponding to the root α. Consider its Levi decomposition Q2 = L2U2. We have

an isomorphism L2 ≃ GL2 under the map determined by

t 7→ diag ((2α+ β)(t), (α+ β)(t)) . (4)
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The group Q2 is usually called Heisenberg parabolic of G2. For i ∈ {1, 2}, We denote by δQi the

modular character of Qi. Note that we use italic font Ui to denote unipotent radicals, while we

use roman font Ui to denote unitary groups.

3.2. The group PU3 ⋊ Gal(K/F ). Let K be a quadratic extension of F , and let U3 be the

unitary group defined in the previous section, which we identify with matrices in GL3(K) fixing

the Hermitian form determined by

Φ3 = e =

 0 0 −1

0 −1 0

−1 0 0

 .

Let PU3 be the quotient of U3 by its center. Equivalently, the group PU3 is the group of F -points

of the group scheme U3/U1. Denote by B′ the standard Borel subgroup of PU3 consisting of

upper triangular matrices with Levi decomposition B′ = T ′U ′, where T ′ is the standard maximal

torus of PU3. We have

T ′ ≃ K×

via the map

diag(a, b, c) 7→ a

b
.

Note that the Galois group Gal(K/F ) acts on PU3 by acting on its coefficients. We can then

consider the semidirect product PU3 ⋊Gal(K/F ) and the subgroups B′ ⋊Gal(K/F ) and T ′ ⋊
Gal(K/F ).

3.3. The dual pair (G2,PU3 ⋊ Gal(K/F )) and exceptional correspondence. We closely

follow [BS24, §1]. Let O be an octonion algebra over F and let J = J3(K) be the set of 3 × 3

Hermitian matrices with coefficients in K. We can define a structure of Jordan algebra over F

on J as follows. Addition on J is given by addition of matrices and regarding multiplication, let

e be as above and define x ◦ y = 1
2(xe

#y + ye#x), where the superindex # denotes taking the

adjoint, so that xx# = det(x). Note that from the expression of e given above, we have e# = e.

The algebra J is equipped with an anti-involution given by the action of the nontrivial element

of Gal(K/F ) on the matrix entries. Let

G := Aut(O),

which is a split exceptional group of type G2. On the other hand, let

G′ := Aut(J) ≃ PU3 ⋊Gal(K/F ),

where Gal(K/F ) acts on PU3 by acting on the coefficients. Consider the Lie algebras g = Lie(G)

and g′ = Lie(G′). Then,

h := g⊕ g′ ⊕ O◦ ⊗ J◦,

has a structure of a simple exceptional Lie algebra over F , where the superscript ◦ denotes the

trace zero elements. Let H = Aut(h), which is disconnected quasi-split of absolute type E6. By

definition of H, we have an inclusion

G×G′ ⊂ H

and they form a dual reductive pair. Let Π be the minimal representation of H (see [BS24,

§1.5] for the definition of minimal representation and [GS05] for its construction). We also use
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Π to denote the restriction of this representation to G × G′, or the restriction to G × PU3.

This representation induces correspondences between certain representations of G′ and G, and

certain representations of PU3 and G.

Definition 3.1. Let σ̃ be a smooth irreducible representation of G′. Define Θ(σ̃) to be the

smooth representation of G such that Θ(σ̃)⊠ σ̃ is the maximal σ̃-isotypic quotient of Π, viewed

as a representation of G × G′. Similarly, let σ be a smooth irreducible representation of PU3.

Define ΘPU3(σ) to be the smooth representation of G such that ΘPU3(σ) ⊠ σ is the maximal

σ-isotypic quotient of Π, viewed as a representation of G× PU3.

Remark 3.2. Let σ be a smooth irreducible representation of PU3. Then, it can be verified that

ΘPU3(σ) = Θ
(
Ind

PU3⋊Gal(K/F )
PU3

(σ)
)
, (5)

where the right-hand side is interpreted as we now explain.

Let σc be the representation obtained by twisting σ by the action of the nontrivial element

of Gal(K/F ). We then have the following two cases:

(1) Suppose σ ̸≃ σc. Then, Ind
PU3⋊Gal(K/F )
PU3

(σ) is irreducible and its restriction to PU3 is

isomorphic to σ ⊕ σc. In this case, the right-hand side of (5) is the theta lift defined in

Definition 3.1, and we have

ΘPU3(σ) = ΘPU3(σ
c) = Θ

(
Ind

PU3⋊Gal(K/F )
PU3

(σ)
)
.

(2) Suppose that σ ≃ σc. Then, Ind
PU3⋊Gal(K/F )
PU3

(σ) ≃ σ1 ⊕ σ2 as representations of the

group PU3⋊Gal(K/F ), where σ1, σ2 are two non-isomorphic irreducible representations

of PU3 ⋊ Gal(K/F ) whose restriction to PU3 is isomorphic to σ. In this case, the

right-hand side of (5) is defined as Θ(σ1)⊕Θ(σ2), and we have

ΘPU3(σ) = Θ(σ1)⊕Θ(σ2).

To define a notion of small theta lift of representations of PU3 and G′, we need the following

result from [BS24].

Theorem 3.3. Let σ̃ be an irreducible representation of G′. Then, Θ(σ̃) is a representation of

finite length of G. Similarly, if σ is an irreducible representation of PU3, we have that ΘPU3(σ)

is a representation of finite length.

Proof. The result for Θ(σ̃) is given in Theorem 4.1 (iv) of [BS24]. More precisely, the statement

for nontempered representations is given in [BS24, Proposition 4.3] and it is proven in an anal-

ogous way as [BS24, Proposition 4.2]. The statement for tempered representations follows from

Proposition 4.5, Proposition 4.8 and Proposition 4.15 of [BS24]. Finally, the result for ΘPU3(σ)

can be deduced from there using the relation between theta lifts from G′ to G and theta lifts

from PU3 to G described in Remark 3.2. □

Definition 3.4. Let σ̃ be a smooth irreducible representation of G′. Define the small theta lift

of σ̃, denoted by θ(σ̃), to be the maximal semisimple quotient of Θ(σ̃). We similarly define the

small theta lift of a smooth irreducible representation σ of PU3, and denote it by θPU3(σ).
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3.4. Results of Bakić–Savin on the nontempered correspondence. We now explain a

result of [BS24] which determines the exceptional theta lift of nontempered representations. It

is described in terms of the following correspondence studied by Roberts in [Rob96]. Let ω̃ be

the representation of L1 × (T ′ ⋊ Gal(K/F )) given (with this same notation) in [BS24, §3.1].
We recall that L1 ≃ GL2 and T ′ ≃ K×. The representation ω̃ defines a big theta lift from

T ′ ⋊Gal(K/F ) to L1 given as follows.

Lemma 3.5. Let ω̃ be the representation of L1×(T ′ ⋊Gal(K/F )) introduced above and consider

the lift it induces from T ′ ⋊Gal(K/F ) to L1. Let χ be a character of K×. Then,

(1) If χ = χc, write Ind
K×⋊Gal(K/F )
K× = χ1 ⊕ χ2 as K× ⋊Gal(K/F ) representations. Then,

exactly one of these two characters has a nonzero big theta lift by the correspondence

induced by ω̃, which is equal to the automorphic induction of χ to GL2(F ), given by the

representation τ introduced in Proposition 6.3.

(2) If χ ̸= χc, then Ind
K×⋊Gal(K/F )
K× (χ) is irreducible and its big theta lift by the correspon-

dence induced by ω̃ is equal to the automorphic induction of χ to GL2(F ).

Proof. This result is given in Section 3.4 of [BS24].

□

Let χ be a unitary character ofK× and s > 0. Consider the character χ|NK/F ( )|s ofK× ≃ T ′.

We may inflate this character to B′ with trivial action on U ′. First set

I(χ, s) := iPU3
B′ (χ|NK/F ( )|s)

to denote a principal series representation of PU3. When χ ̸= χc, then χ1 := Ind
K×⋊Gal(K/F )
K× χ

is an irreducible representation of T ′ ⋊ Gal(K/F ). Now χ1|NK/F ( )|s is once again inflated to

B′ ⋊Gal(K/F ). Set

I(χ1, s) := iG
′

B′⋊Gal(K/F )

(
χ1|NK/F ( )|s

)
. (6)

When χ = χc, then

Ind
K×⋊Gal(K/F )
K× χ = χ1 ⊕ χ2,

where we denote by χ1 the character with a nontrivial theta lift to L1 via the theta correspon-

dence induced by ω̃ (see Lemma 3.5). Note that the character χ2 has then a trivial theta lift via

the correspondence induced by ω̃. We define representations I(χ1, s) and I(χ2, s) of G′ using

the same formula as in (6).

Proposition 3.6. Let χ be a unitary character of K× and let s > 0 be a positive real number.

(1) Let σ1 be the unique irreducible quotient of I(χ1, s) and denote by |det|sτ the representa-

tion of L1 obtained as the big theta lift of the character χ1|NK/F ( )|s of T ′ ⋊Gal(K/F )

via the correspondence given by ω̃. Then Θ(σ1) is a nonzero quotient of iGQ1
(|det|sτ).

(2) If χ is Gal(K/F )-invariant, let σ2 be the unique irreducible quotient of I(χ2, s). Then,

Θ(σ2) = 0.

(3) Let σ be the unique irreducible quotient of I(χ, s). Then ΘPU3(σ) = Θ(σ1) is a nonzero

quotient of iGQ1
(|det|sτ).

Proof. The proof that Θ(σ1) ̸= 0 is given in [BS24, Proposition 4.2]. The fact that Θ(σ1) is a

quotient of iGQ1
(τ) and that Θ(σ2) = 0 is given in [BS24, Proposition 4.3]. The third point can
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be proved from the first two points and Remark 3.2 once we make the following observation. If

χ is Gal(K/F )-invariant, then Ind
PU3⋊Gal(K/F )
PU3

(σ) = σ1 ⊕ σ2. On the other hand, if χ is not

Gal(K/F )-invariant, Ind
PU3⋊Gal(K/F )
PU3

(σ) = σ1. Alternatively, the third point can be justified

in an analogous way as the proof of the first point, but working with the restriction of Π to

G× PU3 and using the following fact. The big theta lift of χ|NK/F ( )|s from T ′ to L1 induced

by the representation ω̃ is equal to the big theta lift of χ1|NK/F ( )|s from T ′ ⋊Gal(K/F ) to L1

induced by the representation ω̃. □

Remark 3.7. Consider the same notation as in Proposition 3.6. In view of Lemma 3.5, |det|sτ
can also be described as the automorphic induction of the character χ|NK/F ( )|s to GL2(F ).

3.5. Theta correspondence for PGL3 × G2. Following [GS04], we state the results we will

need regarding the exceptional theta correspondence for PGL3×G. Let H be (the F -points of)

a split adjoint linear algebraic group of type E6 over F . Denote by Π the minimal representation

of H as in [GS04, §5]. There is a dual reductive pair PGL3 ×G ↪−→ H and we can consider the

restriction of Π to PGL3 × G. Using the representation Π, define the big theta lift Θ(π) of an

irreducible admissible representation π of PGL3 in a similar way as above. The next proposition

is a particular case of [GS04, Corollary 9].

Proposition 3.8. Let χ1, χ2, χ3 be characters of F× satisfying χ1χ2χ3 = 1. For every i from

1 to 3, write χi = µi| |siF , where µi is unitary and suppose that the characters are ordered so

that s1 ≥ s2 ≥ s3. Consider the representation of L2 ≃ GL2 given by τ = π(χ−1
3 , χ−1

2 ). Then,

Θ(π(χ1, χ2, χ3)) is a nonzero quotient of iGQ2
(τ).

4. Local dihedral long root A-packets for G2

In this section, we propose a construction of dihedral long root (local) A-packets for the

group G2, following Arthur’s conjectures. In Section 4.1, we describe the corresponding A-

parameter of G2 in the global setting. This parameter factors through an A-parameter of LPU3.

Thus, in Section 4.2, we discuss Arthur’s conjectures for LPU3 in the local nonarchimedean

setting, followed by an explicit construction of the corresponding local A-packets, called Howe–

PS packets. We use the results on the theta correspondence for unitary groups outlined in

Section 2 for this process. This construction was first given by Gelbart and Rogawski in [GR91]

and it gives a unitary version of the original construction of Howe-PS packets, which was done

in the orthogonal-symplectic setting. In Section 4.3, we resolve some details regarding the lift of

representations from PU3 to PU3⋊Z/2Z. Next, in Section 4.4, we describe Arthur’s conjectures

for the dihedral long root A-parameters of G2 in the local nonarchimedean setting and propose a

construction of the corresponding A-packets. We use the results from Section 3 for this process.

Throughout this section F denotes a number field and LF denotes the corresponding conjec-

tural Langlands group. We denote by G the F -points of a split group of type G2 over F .

4.1. Dihedral long root A-parameters. Let K/F be a quadratic field extension with Galois

group Gal(K/F ) = ⟨c⟩. Let χ be a character of A×
K/K

×, which we can also regard as a character

of the Weil group WK . Let τ denote the automorphic representation of GL2 obtained from χ

by automorphic induction, i.e., the automorphic representation with L-parameter

ρτ = IndWF
WK

χ.
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The representation τ is called dihedral with respect to the quadratic field extension K/F . Its

central character is given by ωK/F · χ|A×
F
. Assume that the character χ is conjugate-symplectic,

i.e.,

χ|A×
F
= ωK/F .

Under this assumption, the representation τ has trivial central character and can therefore be

regarded as a representation of PGL2. Alternatively, this assumption implies that det(ρτ ) = 1,

and therefore ρτ defines an L-parameter of PGL2. We will also assume that χ ̸= χc, so that ρτ

is irreducible and τ is a cuspidal representation.

The root system of G contains pairs of orthogonal roots, always consisting of a short and a

long root. A choice of such a pair determines a commuting pair of SL2 subgroups inside G,

(SL2,s × SL2,l)/µ2 ⊂ G,

where µ2 = {±1} is embedded diagonally inside SL2,s × SL2,l in the natural way. Here SL2,s

corresponds to the short root and SL2,l corresponds to the long root. Moreover, the groups SL2,s

and SL2,l are centralizers of each other inside G. Note that the Langlands dual group of G is

G(C) (we abuse notation and denote by G(C) the C-points of our fixed split group of type G2

over F ).

Definition 4.1. The long root A-parameter of G associated with τ is given by

ψτ,l : LF × SL2(C) ↠WF × SL2(C)
ρτ×id−−−−→ SL2,s(C)×µ2 SL2,l(C) ⊂ G(C).

There is a subgroup SL3,l(C) ⊂ G2(C) corresponding to the root system of type A2 formed

by the six long roots of G. Let Ts(C) denote the diagonal torus of SL2,s(C). Then Ts(C) ×µ2

SL2,l(C) ⊂ SL3,l(C). The group SL3,l(C) has index two in its normalizer NG(C)(SL3,l(C)) inside

G(C). Let w denote the standard Weyl element of SL2. Then (w,w) ∈ SL2,s(C) ×µ2 SL2,l(C)

belongs to the non-identity component of NG(C)(SL3,l(C)). Therefore,

NSL2,s(C)(Ts(C))×µ2 SL2,l(C) ⊂ NG(C)(SL3,l(C)) = SL3,l(C)⋊ Z/2Z ⊂ G(C).

Note that LPU3 = SL3,l(C)⋊ Z/2Z. Hence, the parameter ψτ,l factors through an A-parameter

of PU3.

Definition 4.2. We denote by ψχ the A-parameter of PU3 given by

ψχ : LF × SL2(C)
ρτ×id−−−−→ NSL2,s(C)(Ts(C))×µ2 SL2,l(C) ⊂ SL3,l(C)⋊ Z/2Z =LPU3.

Restricted to LK × SL2(C), the parameter ψχ yields a 3-dimensional representation given by

χ−2 ⊕ χ⊗ S2,

where χ is regarded as a character of LK via LK ↠ WK and S2 denotes the standard 2-

dimensional representation of SL2(C). This information fully determines the equivalence class

of ψχ given by SL3(C)-conjugacy.

4.2. Howe–PS packets for PU3. We construct the local Howe–PS packets for PU3 associated

to the A-parameter ψχ at nonarchimedean places using the technique of theta lifting. Let v

be a nonarchimedean place of F and Fv the completion of F at v. Denote by LFv the group
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WFv×SL2(C). By fixing an embedding LFv ↪−→ LF , we can precompose the map ψχ with the map

LFv ×SL2(C) ↪−→ LF ×SL2(C) (which is the identity on SL2(C)) to obtain the local A-parameter

ψχ,v : LFv × SL2(C) →LPU3.

Following Arthur’s conjectures, the elements of the local A-packet associated with ψ and v are

indexed by irreducible representations of the so-called local component group

Sψχ,v = π0
(
ZSL3(C)(Im(ψχ,v))/Z(SL3(C))

)
=

Z/2Z if v is not split in K,

1 if v is split in K,

where ZSL3(C)(Im(ψχ,v)) denotes the centralizer in SL3(C) ⊂LPU3 of the image of ψχ,v, Z(SL3(C))

denotes the center of SL3(C), and π0 denotes the group of connected components. Hence, the

local A-packet of PU3 associated to ψχ and v has the form

Aψχ,v =

{σ+v , σ−v } if v is not split in K,

{σ+v } if v is split in K.

Here, we denote by σ+v the representation corresponding to the trivial character of Sψχ,v ≃
Z/2Z, and in the case that v does not split in K, we denote by σ−v the representation of

PU3 corresponding to the nontrivial character of Sψχ,v . Moreover, Arthur’s conjectures predict

that for all but finitely many (nonarchimedean) places, the representation σ+v is the unramified

representation whose Satake parameter is

sψχ,v = ψχ,v

(
Φv ×

(
q
−1/2
v 0

0 q
1/2
v

))
, (7)

where Φv denotes a geometric Frobenius at v and qv denotes the cardinality of the corresponding

residue field. Fix a nontrivial additive character ψ : AF /F → C×. For each prime v of F , we

denote by ψv the corresponding (nontrivial) additive character of Fv. To define the representa-

tions of PU3 appearing in Aψχ,v for a nonarchimedean prime v of F , we distinguish two cases,

according to whether v splits in K or not.

4.2.1. Nonsplit case. Suppose that v is not split in K. Denote by Kv the completion of K at the

unique place above v. Fix a 3-dimensional Hermitian space V over Kv and identify U(V ) ≃ U3.

Let V1 denote the 1-dimensional Hermitian space in the Witt tower of V . Fix a trace-zero

element δ ∈ K×
v and recall the definition of sign of a skew-Hermitian space given in Section 2

(which depends on the choice of δ). Finally, let W+ and W− be 1-dimensional skew-Hermitian

spaces over Kv satisfying

ϵ(V1)ϵ(W
+) = ϵK

(
1

2
, χ3

v, ψv
(
TrKv/Fv(−δ(·))

))
= −ϵ(V1)ϵ(W−). (8)

Let γ = χv, which is a conjugate symplectic character. Following Section 2.3, we use this data

to define theta correspondences between the unitary groups defined above. In particular, and

following the notation of Section 2.3, we can consider the representations ΩV,W+,γ,ψv of U(V )×
U(W+) , and ΩV,W−,γ,ψv of U(V ) × U(W−) and the corresponding big theta lifts ΘV,W+,γ,ψv ,

ΘV,W−,γ,ψv .

Definition 4.3. We define the following representations of U(V ) = U3.
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(1) Denote by 1 the trivial representation of U(W+). Define σ+v = ΘV,W+,γ,ψv(1).

(2) Denote by 1 the trivial representation of U(W−). Define σ−v = ΘV,W−,γ,ψv(1).

By the choice of our lifting characters, the center of U(V ) acts trivially on these representations.

Hence, we also view σ+v and σ−v as representations of PU3.

Proposition 4.4. The representation σ+v is the unique nonzero irreducible quotient of the rep-

resentation iPU3

B̄′ (χv| |1/2Kv
) = I(χv, 1/2). In particular, if χv is unramified, the Satake parameter

of σ+v is given by (7).

Proof. Consider the representation ΩV1,W+,γ,ψv of U(V1) × U(W+), which induces a theta lift

ΘV1,W+,γ,ψv . By (8) and Theorem 2.6, we have that ΘV1,W+,γ,ψ(γ
−1
|K1) ̸= 0. Therefore, it follows

from Proposition 2.4 (2) that, as a representation of U3, σ
+
v is an irreducible quotient of

i
U(V )
B′

(
γ| |1/2Kv

⊗ γ−1
|K1
v

)
.

This representation is invariant under the center of U(V ), and can therefore be viewed as the

representation of PU3 given by iPU3
B′ (χv| |1/2Kv

) (note that we are denoting the Borel of upper-

triangular matrices in U3 and in PU3 with the same symbol B′). The rest of the assertions

follow from there. □

Proposition 4.5. The representation σ−v is nonzero irreducible and supercuspidal.

Proof. The proof is similar to the proof of the previous proposition. Consider the representation

ΩV1,W−,γ,ψv of U(V1) × U(W−), which induces a theta lift ΘV1,W−,γ,ψv . In that case, (8) and

Theorem 2.6 imply that ΘV1,W−,γ,ψv(γ
−1
|K1) = 0 and the result follows from Proposition 2.4

(1). □

4.2.2. Split case. Suppose that v is split in K. Choose a place w of K above v, which deter-

mines an isomorphism U3(Fv) ≃ GL3(Fv). Let γ = χw. Using this data, we define a theta

correspondence for the dual pair GL1(Fv)×GL3(Fv) ↪−→ Sp6(Fv) following Section 2.4. Denote

by Θ the theta lift defined by this correspondence.

Definition 4.6. Let 1 be the trivial representation of GL1(Fv). Define the representation

σ+v = θ(1). It is a representation of U3(Fv) ≃ GL3(Fv) where the center of U3(Fv) acts trivially,

and therefore we view σ+v as a representation of PU3(Fv) ≃ PGL3(Fv).

Note that if χ is unramified at v, then it follows from Theorem 2.7 that σ+v is the unramified

representation with Satake parameter sψχ,v . In particular, this holds for all but finitely many

split primes v, as predicted by Arthur’s conjecture.

4.3. From representations of PU3 to representations of PU3 ⋊ Z/2Z. Consider the same

notation as in Section 4.2. Suppose that v is not split in K, let W+, W− be the skew-Hermitian

spaces introduced in Section 4.2.1 and let σ±v be the representations of PU3 defined in Definition

4.3. Following Remark 3.2, we are interested in knowing whether the induction of the repre-

sentations σ±v to the group G′ = PU3 ⋊ Gal(Kv/Fv) is irreducible or decomposes as a direct

sum of two non-isomorphic representations. While this question was already studied in Section

3.4 for the case of principal series, the discussion below will be especially relevant to study the

irreducibility of the lift of σ−v from PU3 to G via the exceptional theta correspondence.
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Recall the following notation introduced in Section 2.1: if W is a skew-Hermitian space

equipped with a skew-Hermitian form ⟨ , ⟩, we denote W−1 the skew Hermitian space with

the same underlying space W and skew-Hermitian form given by −⟨ , ⟩. In particular, in this

section we will consider the spaces (W+)−1 and (W−)−1.

Proposition 4.7. Assume that χ2
v ̸= 1. Then, the representations

IndG
′

PU3
σ+v and IndG

′
PU3

σ−v

are irreducible.

Proof. Following Remark 3.2, we need to show that, for ? ∈ {+,−}, we have that σ?v ̸≃ (σ?v)
c.

However, it follows from [HKS96, Lemma 2.1(ii)] that (σ?v)
c ≃ (σ?v)

∨, where (σ?v)
∨ denotes the

contragredient of σ?v. Therefore, we need to prove that σ?v ̸≃ (σ?v)
∨.

Recall that we take γ = χv. The representation σ?v = ΘV,W ?,γ,ψv(1W ?) is the isotypic compo-

nent of the Weil representation

ΩV,W ?,γ,ψv

where the center of U(V ) acts trivially. According to [Gan22, §2.5], the dual of this Weil

representation is

ΩV,W ?,γ,ψv ≃ ΩV,W ?,γ−1,ψ̄v ≃ ΩV,(W ?)−1,γ−1,ψv ,

and thus (σ?v)
∨ is the isotypic component ΩV,(W ?)−1,γ−1,ψv where the center of U(V ) acts trivially.

Equivalently, we have that (σ?v)
∨ = ΘV,(W ?)−1,γ−1,ψv(1(W ?)−1).

According to [AG17, Theorem 4.3(4)], respectively [AG17, Theorem 4.5(1)], and using the

notation in [loc. cit.], the L-parameter associated with the representation σ+v , respectively σ
−
v ,

is γ−2 ⊕ γ| · |1/2Kv
⊕ γ| · |−1/2

Kv
, respectively γ−2 ⊕ γS2. On account of the previous paragraph, and

using again [loc. cit.], for the representations (σ+v )
∨ and (σ−v )

∨ the corresponding L-parameters

are γ2 ⊕ γ−1| · |1/2Kv
⊕ γ−1| · |−1/2

Kv
and γ2 ⊕ γ−1S2. Since γ ̸= γ−1, we conclude that σ?v and

(σ?v)
∨ belong to different L-packets and are therefore non-isomorphic. We note that, although

the results in [AG17] rely on the local Langlands correspondence, this is known for the group

U3 by the work of Rogawski [Rog90]. □

Proposition 4.8. Assume that χ2
v = 1. Then, the representations

IndG
′

PU3
σ+v and IndG

′
PU3

σ−v

are not irreducible.

Proof. Following Remark 3.2, we need to show that, for ? ∈ {+,−}, we have that σ?v ≃ (σ?v)
c.

However, it follows from [HKS96, Lemma 2.1(ii)] that (σ?v)
c ≃ (σ?v)

∨, where (σ?v)
∨ denotes the

contragredient of σ?v. Therefore, we need to prove that σ?v ≃ (σ?v)
∨.

Recall that we take γ = χv. The representation σ?v = ΘV,W ?,γ,ψv(1W ?) is the isotypic compo-

nent of the Weil representation

ΩV,W ?,γ,ψv

where the center of U(V ) acts trivially. According to [Gan22, §2.5], the dual of this Weil

representation is

ΩV,W ?,γ,ψv ≃ ΩV,W ?,γ−1,ψ̄v ≃ ΩV,(W ?)−1,γ,ψv ,
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and thus (σ?v)
∨ is the isotypic component ΩV,(W ?)−1,γ,ψv where the center of U(V ) acts trivially.

Note that we used that γ−1 = γ, which holds because χ2
v = 1. Also, the condition χ2

v = 1

implies that χv = χcv. By Hilbert’s Theorem 90, we can write −1 = a/ac for some a ∈ K×.

Therefore, we deduce that ωK/F (−1) = χv(−1) = χv(a)/χ
c
v(a) = 1. In particular, it follows

that −1 ∈ NK/F (K
×) and hence (W ?)−1 ≃W ?, which shows that σ?v ≃ (σ?v)

∨. □

4.4. Dihedral long root A-packets for G2. We discuss local nonarchimedean A-packets

associated to the dihedral long root A-parameter introduced in Definition 4.1. As before, we

obtain the local A-parameter ψτ,l,v at a place v, whose component group Sψτ,l,v is given by

Sψτ,l,v =

Z/2Z if ρτ,v is irreducible (or, τv is a discrete series representation),

1 if ρτ,v is reducible (or, τv is not a discrete series representation).

4.4.1. Nonsplit case. Let v be a nonarchimedean place of F which does not split in K, and

denote by Kv the completion of K at the unique place above v. We continue to use c to denote

the generator of Gal(Kv/Fv). In this case, τv is the smooth irreducible representation of PGL2

with L-parameter ρτ,v = Ind
WFv
WKv

χv. The representation Ind
WFv
WKv

χv is irreducible if and only if

χv ̸= χcv. Thus we have the equivalent characterization for a nonsplit v:

Sψτ,l,v =

Z/2Z if χv ̸= χcv,

1 if χv = χcv.

Arthur’s conjectures predict that the local A-packets are as follows:

Aψτ,l,v =

{π+v , π−v } if χv ̸= χcv,

{π+v } if χv = χcv.
(9)

Here, π+v is indexed by the trivial character of Sψ,l,v and π
−
v by the nontrivial character of Z/2Z

when it occurs. Arthur’s conjectures also predict that, for all but finitely many places, π+v is the

unramified principal series representation whose Satake parameter is given by

sψτ,l,v = ψτ,l,v

(
Φv ×

(
q
−1/2
v 0

0 q
1/2
v

))
, (10)

where, as before, Φv denotes a geometric Frobenius at v and qv denotes the cardinality of the

corresponding residue field.

We carry out the construction of the expected local A-packets using the exceptional theta

correspondence for the pair (G2,PU3⋊Z/2Z) introduced in Section 3.3. Recall that Definition 4.3

gives us the construction of the representations σ+v and σ−v of PU3.

Definition 4.9. With the notation θPU3 established in Definition 3.4 in mind, we define

(1) π+v := θPU3(σ
+
v ),

(2) π−v := θPU3(σ
−
v ).

Observe that the local A-packet for PU3 as constructed in Section 4.2.1 always has two

elements when v is nonsplit in K, but the local A-packet for G2 as in (9) is expected to have

two elements when χv ̸= χcv and one otherwise. We construct the latter A-packet by lifting the

two representations {σ+v , σ−v }. We show in subsequent sections that there is no discrepancy in
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the size of the packets; indeed we will see that, while π+v is always nonzero, π−v vanishes if and

only if χv = χcv. This is summarized in the following theorem.

Theorem 4.10. The lifting of the local A-packet {σ+v , σ−v } for a nonsplit place v via the excep-

tional theta correspondence for the dual pair (G2,PU3 ⋊Gal(Kv/Fv)) yields the following:

(1) π+v is nonzero and it is equal to the unique irreducible quotient of the parabolically induced

representation iGQ1
(|det|1/2τv). For all but finitely many nonsplit places v, the represen-

tation π+v is the unramified principal series with Satake parameter given by (10).

(2) If χv ̸= χcv, the representation π−v is nonzero, irreducible and tempered.

(3) If χv = χcv, the representation π−v is zero.

Proof. We prove the first point of the theorem and outline the proofs for the second and third

points, which will be completed in the next sections.

(1) According to Proposition 4.4, the representation σ+v is the unique irreducible quotient

of iPU3
B′ (χv| |1/2Kv

) = I(χv, 1/2). Now note that χv is unitary (because χ is conjugate sym-

plectic) and that the automorphic induction of χv| |1/2Kv
is equal to |det|1/2τv. It therefore

follows from Proposition 3.6 and Remark 3.7 that ΘPU3(σ
+
v ) is a nonzero quotient of

iGQ1
(|det|1/2τv). Since τv is a tempered representation, we deduce that iGQ1

(| det |1/2τv)
has a unique irreducible quotient (see [Mui97, p. 468]), which yields the desired descrip-

tion for π+v = θPU3(σ
+).

(2) If χv ̸= χcv, it follows from Theorem 5.5 that π−v is not zero, and it follows from Propo-

sition 6.1 that it does not have any generic subquotient. Therefore, the fact that π− is

irreducible and tempered follows from Proposition 4.7, [BS24, Remark 4.4] and [BS24,

Proposition 4.15], as we explain in Theorem 6.2 and in its proof.

(3) If χv = χcv, the vanishing of π−v follows from Theorem 6.17.

□

4.4.2. Split case. Let v be a nonarchimedean place of F which splits in K and let w and w′ be

the places of K lying above v. There are natural identifications Fv ≃ Kw ≃ Kw′ . Since χ is

conjugate-symplectic, we have that χw′ = χ−1
w and χw is unitary. Therefore,

ρτ,v = χw ⊕ χw′ = χw ⊕ χ−1
w

and τv = π(χw, χ
−1
w ) is equal to the normalized parabolic induction i

GL2(Fv)
P (χw, χ

−1
w ), where

here we are using P to denote the Borel of GL2(Fv) consisting on upper triangular matrices.

Since ρτ,v is reducible, it follows that the component group Sψτ,l,v is trivial.

The choice of the prime w determines an isomorphism PU3(Fv) ≃ PGL3(Fv). We construct

the predicted singleton A-packet by using theta lifting from PGL3(Fv) to G2(Fv). Recall from

Section 4.2.2 that σ+v is the theta lift of the trivial character 1 of F×
v to GL3(F

×
v ) using theta

correspondence for the dual pair (GL1,GL3) and we interpret the result, which has trivial central

character, as a representation of PGL3. More precisely, applying Theorem 2.7, with µ = 1 and

γ = χw,

σ+v = π(χw| |1/2Fv
, χ−2

w , χw| |−1/2
Fv

),

the Langlands quotient of iGL3
B′ (χw| |1/2Fv

⊗ χ−2
w ⊗ χw| |−1/2

Fv
), where B′ is the standard Borel

subgroup of GL3. Let ΘPGL3 stand for big theta lift from PGL3(Fv) to G2(Fv) and let τ̃v =



DIHEDRAL LONG ROOT A-PACKETS OF p-ADIC G2 VIA THETA CORRESPONDENCE 23

π(χ−1
w | |1/2Fv

, χ2
w), which can be viewed as a representation of Q2. It follows from Proposition 3.8

that ΘPGL3(σ
+
v ) is a nonzero quotient of iG2

Q2
(τ̃v), and therefore that it has finite length.

Definition 4.11. Define

π+v := θPGL3(σ
+
v )

to be the maximal semisimple quotient of ΘPGL3(σ
+
v ).

Theorem 4.12. The representation π+v is the unique irreducible quotient of iG2
Q1

(|det |1/2τv).
For all but finitely many nonsplit places v, the representation π+v is the unramified principal

series with Satake parameter given by (10).

Proof. Let τ̃v = π(χ−1
w | |1/2Fv

, χ2
w) = i

GL2(Fv)
P (χ−1

w | |1/2Fv
, χ2

w) be as above. Then, it follows from

Proposition 3.8 that ΘPGL3(σ
+
v ) is a nonzero quotient of iG2

Q2
(τ̃v). Following a similar procedure

as in the proof of Proposition 6.4 below, it can be seen that

iG2
Q2

(τ̃v) ≃ iG2
Q1

(| det |1/2τv).

Indeed, this isomorphism follows from (13) and (14) of the proof of Proposition 6.4 after we

replace the character µ used there by the character χw. Since the representation on the right

hand side has a unique irreducible quotient (see [Mui97, p. 468]), the result follows. In fact,

similarly as in the case of Remark 6.6 below, it can be proved that ΘPGL3(σ
+
v ) is equal to the

unique irreducible quotient of this representation, given by iG2
Q2

(χw ◦ det). □

5. Non-vanishing of theta lifts

LetK/F be a quadratic extension of local fields of characteristic zero and consider the notation

introduced in Section 3. In this section, we prove the following criterion regarding non-vanishing

of theta lifts from PU3 to G: if the contragredient of a representation τ of PU3 (viewed as a

representation of U3) has an irreducible quotient with trivial central character when restricted

to a suitable two-variable unitary subgroup, then ΘPU3(τ) ̸= 0. This criterion is proven by

computing Fourier–Jacobi periods: with the notation introduced in Section 3.1, we show that,

for any nontrivial character ψ′ of U1(2)/U1(3),

HomPU3(ΠU1(2),ψ′ , τ) ̸= 0.

The key to prove this result is a description of ΠU1(2),ψ′ in terms of Weil representations attached

to two-variable unitary subgroups and SL2. In Section 5.1, we provide a suitable description of

two-variable unitary subgroups; in Section 5.2, we introduce the symplectic spaces that deter-

mine the aforementioned Weil representations, which arise from the study of an orbit problem.

Then, in Section 5.3, we prove the non-vanishing criterion.

Fix a nontrivial additive character ψ : F → C× and fix also a conjugate-symplectic character

χ : K× → C×. Let σ+ and σ− be the representations of PU3 introduced in Definition 4.3 with

respect to these data, and let π+ and π− be their corresponding small theta lifts to the group

G, as introduced in Definition 4.9. In Section 5.4, we use a see-saw argument to verify that

σ+, and, under the condition that χ2 ̸= 1, also σ−, satisfy the hypothesis of the non-vanishing

criterion. As a consequence, π+ ̸= 0, and, if χ2 ̸= 1, also π− ̸= 0, proving the non-vanishing

statements in Theorem 4.10.
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We remind the reader that following the notation in Section 3.1, we use italic font Ui to denote

unipotent radicals, while we use roman font Ui to denote unitary groups.

5.1. The groups U(V2) and U(V ′
2). Let V2 and V ′

2 be 2-dimensional Hermitian spaces over K

such that V2 is split and V ′
2 is nonsplit.

Assume that, with respect to some K-basis, the Hermitian form on V2 is defined by the

Hermitian matrix Φ2 ∈ H2(K). Then we can describe U(V2) in the following way:

U(V2) = {g ∈ GL2(K) : gΦ2g
† = Φ2}.

Using this description, the group U(V2) acts on the 4-dimensional F -space of Hermitian 2 × 2

matrices H2(K) by the rule

(g,A) 7→ gAg† for g ∈ U(V2) and A ∈ H2(K),

and this action preserves the quadratic form defined on H2(K) by the determinant map. More-

over, it stabilizes the 3-dimensional F -subspace

Q = {A ∈ H2(K) : Tr(AΦ−1
2 ) = 0}.

This action defines a homomorphism from U(V2) to SO(Q), the F -points of the special orthogonal

group associated with the 3-dimensional quadratic F -space Q. The kernel of this homomorphism

is the center Z(U(V2)) of U(V2). This allows us to identify U(V2)/Z(U(V2)) with an index-2

subgroup of SO(Q), which we will denote by SO(Q)+. Actually, one can show that SO(Q)+

consists of the elements in SO(Q) whose spinor norm belongs to NK/F (K
×)/(F×)2 ⊂ F×/(F×)2.

Similarly, assume that, with respect to some K-basis, the Hermitian form on V ′
2 is defined by

the Hermitian matrix Φ′
2 ∈ H2(K). Then we can describe U(V ′

2) in the following way:

U(V ′
2) = {g ∈ GL2(K) : gΦ′

2g
† = Φ′

2}.

Using this description, the group U(V ′
2) acts on the 4-dimensional F -space of Hermitian 2 × 2

matrices H2(K) by the rule

(g,A) 7→ gAg† for g ∈ U(V ′
2) and A ∈ H2(K),

and this action preserves the quadratic form defined on H2(K) by the determinant map. More-

over, it stabilizes the 3-dimensional F -subspace

Q′ = {A ∈ H2(K) : Tr(AΦ′−1
2 ) = 0}.

This action defines a homomorphism from U(V ′
2) to SO(Q′), the F -points of the special orthogo-

nal group associated with the 3-dimensional quadratic F -space Q′. The kernel of this homomor-

phism is the center Z(U(V ′
2)) of U(V

′
2). This allows us to identify U(V ′

2)/Z(U(V
′
2)) with an index-

2 subgroup of SO(Q′), which we will denote by SO(Q′)+. Actually, one can show that SO(Q′)+

consists of the elements in SO(Q′) whose spinor norm belongs to NK/F (K
×)/(F×)2 ⊂ F×/(F×)2.

5.2. An orbit problem. We choose the following description of U3:

U3 = {g ∈ GL3(K) : gΦ3g
† = Φ3},
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where

Φ3 =

 0 0 −1

0 −1 0

−1 0 0

 ,

and we have PU3 = U3/Z(U3) = U3/U1. Let J = H3(K), and

J1 = {g ∈ J : Tr(gΦ−1
3 ) = 1}.

Let H be the exceptional group of type E6 introduced in Section 3.3. Let P1 be the three-step

maximal parabolic subgroup of H introduced in [BS24, §2.1]. Let N1 be its unipotent radical

and let M1 be a Levi subgroup of P1. As explained in [loc. cit.], the Lie algebra h of H admits

a gradation

h =
−3⊕
i=−3

h(i)

such that Lie(M1) = h(0) and Lie(N1) = h(1)⊕h(2)⊕h(3). Let Ω2 denote the minimal non-trivial

M1-orbit on h(−2). Then, as in [op. cit., §3.1.1], we have

Ω2 ∩ J1 = {g ∈ J : Tr(gΦ−1
3 ) = 1 and rank(g) = 1}.

The group U3 acts on Ω2 ∩ J1 by the rule

(g,A) 7→ gAg† for g ∈ U3 and A ∈ Ω2 ∩ J1,

and this descends to an action of PU3 on Ω2∩J1. As explained in [op. cit., §3.1.1], the importance

of this action is that it can be used to describe the twisted coinvariant spaces ΠU1(2),ψ′ presented

in the introduction of Section 5. In the remaining of Section 5.2, we describe the orbits for the

action of PU3 on Ω2 ∩ J1 and introduce certain symplectic spaces attached to the stabilizers in

PU3 of elements in Ω2 ∩ J1. This will be used in Section 5.3 to give the desired description of

ΠU1(2),ψ′ (see (11)).

Any matrix A ∈ Ω2 ∩ J1 can be written as

A = −λu†u where u ∈M1×3(K), λ ∈ F× and − λuΦ3u
† = 1.

Observe that, if λ ∈ NK/F (K
×), then we can modify u to account for this factor. Fix an element

λ0 ∈ F× which is not the norm of an element in K×. Then, we can decompose the set Ω2 ∩ J1
into two subsets:

(Ω2 ∩ J1)0 = {−u†u : u ∈M1×3(K), −uΦ3u
† = 1}

(Ω2 ∩ J1)1 = {−λ0u†u : u ∈M1×3(K), −λ0uΦ3u
† = 1}.

We claim that these are the orbits for the action of PU3 on Ω2 ∩ J1. Indeed, this follows from

the observation that, if −u†u ∈ (Ω2 ∩ J1)0, then the subspace ⟨u⟩⊥ orthogonal to u with respect

to Φ3 is a split 2-dimensional Hermitian K-space, and, if −λ0uu† ∈ (Ω2 ∩ J1)1, then ⟨u⟩⊥ is a

nonsplit 2-dimensional Hermitian K-space.

For the orbit (Ω2 ∩ J1)0, let u = (0, 1, 0) and choose the element

f0 = −u†u =

0 0 0

0 −1 0

0 0 0

 .
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Its stabilizer in PU3 is the subgroup
∗ 0 ∗
0 1 0

∗ 0 ∗

 ∈ PU3

 ≃

{
g ∈ GL2(K) : g

(
0 −1

−1 0

)
g† =

(
0 −1

−1 0

)}
≃ U(V2).

For the last identification, let V2 be the 2-dimensional K-subspace spanned by u1 = (1, 0, 0) and

u3 = (0, 0, 1), equipped with the Hermitian form given in this basis by

Φ2 =

(
0 −1

−1 0

)
.

For the orbit (Ω2 ∩ J1)1, let u′ = (1, 0, 1/(2λ0)) and choose the element

f1 = −λ0(u′)†u′ =

 −λ0 0 −1/2

0 0 0

−1/2 0 −1/(4λ0)

 .

Let u′1 = u′, u′2 = (0, 1, 0) and u′3 = (1, 0,−1/(2λ0)). Then, with respect to this basis,

f1 =

−λ0 0 0

0 0 0

0 0 0

 and Φ3 =

−1/λ0 0 0

0 −1 0

0 0 1/λ0

 ,

and therefore the stabilizer of f1 in PU3 is given by
1 0 0

0 ∗ ∗
0 ∗ ∗

 ∈ PU3

 ≃

{
g ∈ GL2(K) : g

(
−1 0

0 1/λ0

)
g† =

(
−1 0

0 1/λ0

)}
≃ U(V ′

2).

For the last identification, let V ′
2 be the 2-dimensional K-subspace spanned by u′2 and u′3,

equipped with the Hermitian form given in this basis by

Φ′
2 =

(
−1 0

0 1/λ0

)
.

As in [BS24, §3.1.1], to the element f0 we attach the subspace

∆⊥
0 =


a 0 y

0 0 0

ȳ 0 c

 ∈ J

 ≃ H2(K).

This subspace is invariant by the action of the stabilizer of f0 in PU3, and, under its identification

with U(V2), the action of the stabilizer of f0 on ∆⊥
0 agrees with the action described in the

previous subsection. It preserves the determinant form on H2(K) and the decomposition ∆⊥
0 ≃

H2(K) = Q⊕Z, with Q defined as above and Z denoting the 1-dimensional subspace of H2(K)

generated by Φ2. The group U(V2) acts trivially on Z, whereas, as described above, its action on

Q identifies U(V2)/Z(U(V2)) with an index-2 subgroup of SO(Q), which we denote by SO(Q)+.
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Similarly, to the element f1 we attach the subspace ∆⊥
1 ⊆ J , which, with respect to the basis

u′1, u
′
2, u

′
3 defined above, is given by

∆⊥
1 =


0 0 0

0 a y

0 ȳ c

 ∈ J

 ≃ H2(K).

This subspace is invariant by the action of the stabilizer of f1 in PU3, and, under its identification

with U(V ′
2), the action of the stabilizer of f1 on ∆⊥

1 agrees with the action described in the

previous subsection. It preserves the determinant form on H2(K) and the decomposition ∆⊥
1 ≃

H2(K) = Q′ ⊕ Z ′, where Q′ is defined as above and Z ′ denotes the 1-dimensional subspace of

H2(K) generated by Φ′
2. The group U(V ′

2) acts trivially on Z ′, whereas, as described above, its

action on Q′ identifies U(V ′
2)/Z(U(V

′
2)) with an index-2 subgroup of SO(Q′), which we denote

by SO(Q′)+.

5.3. Non-vanishing criterion for theta lifts. Let Γ denote a 2-dimensional symplectic space.

Then Γ ⊗F ∆⊥
0 and Γ ⊗F ∆⊥

1 are 8-dimensional symplectic spaces. Let ω0 and ω1 be the Weil

representations associated with Γ ⊗F ∆⊥
0 and Γ ⊗F ∆⊥

1 , respectively, for a fixed nontrivial

character ψ′ : F → C×. Let ω0,Q, ω0,Z , ω1,Q′ and ω1,Z′ be the Weil representations associated

with the symplectic spaces Γ⊗F Q, Γ⊗F Z, Γ⊗F Q
′ and Γ⊗F Z

′, respectively, for the character

ψ′. Then, under the natural homomorphism

Mp(Γ⊗F Q)×Mp(Γ⊗F Z) −→ Mp(Γ⊗F ∆⊥
0 ),

the representation ω0 pulls back to ω0,Q ⊠ ω0,Z , and, under the homomorphism

Mp(Γ⊗F Q
′)×Mp(Γ⊗F Z

′) −→ Mp(Γ⊗F ∆⊥
1 ),

the representation ω1 pulls back to ω1,Q′ ⊠ ω1,Z′ .

Recall that, in Section 3.1, we defined Q1 as the three-step parabolic of G. It has a Levi

decomposition Q1 = L1U1, with Levi subgroup L1 ≃ GL2 and unipotent subgroup U1 equipped

with a three-step filtration U1 = U1(1) ⊃ U1(2) ⊃ U1(3) ⊃ U1(4) = 1 described in [BS24,

§3.1]. In particular, the quotient U1/U1(3) is isomorphic to the Heisenberg group associated

with a two-dimensional symplectic space. The character ψ′ induces a character on the center

U1(2)/U1(3) of this Heisenberg group, which we also denote by ψ′. This yields a natural action

of U1/U1(3) on ω0,Z and ω1,Z′ via the Heisenberg representation. From now on, we consider the

action of U1/U1(3) on ω0 = ω0,Q⊠ω0,Z and ω1 = ω1,Q′ ⊠ω1,Z′ given by the trivial representation

on the first factors and the Heisenberg representation on the second factors.

There is also a natural action of the metaplectic group Mp2 on each of the representations

ω0,Q, ω0,Z , ω1,Q′ and ω1,Z′ . Moreover, the resulting action of Mp2 on ω0 = ω0,Q ⊠ ω0,Z and

ω1 = ω1,Q′ ⊠ω1,Z′ factors through SL2. From now on, we let SL2 ⊂ L1 act on ω0 and ω1 via this

action.

Finally, there is a natural action of SO(Q) (resp. SO(Q′)) on ω0,Q (resp. ω1,Q′), and we let

U(V2) (resp. U(V ′
2)) act on ω0 = ω0,Q ⊠ ω0,Z (resp. ω1 = ω1,Q′ ⊠ ω1,Z′) via the embedding

U(V2)/Z(U(V2)) ↪−→ SO(Q) (resp. U(V ′
2)/Z(U(V

′
2)) ↪−→ SO(Q′)).
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It follows from [BS24, §3.1.1] that, as a representation of (SL2 ⋉ U1/U1(3))× PU3,

ΠU1(2),ψ′ = c-IndPU3

U(V2)
ω0 ⊕ c-IndPU3

U(V ′
2)
ω1. (11)

Now we use this description of ΠU1(2),ψ′ to prove the following result.

Theorem 5.1. Let τ be a smooth irreducible representation of PU3 and let τ∨ be its contragre-

dient representation. Assume that either of the following two conditions holds:

• The restriction of τ∨ to U(V2) has an irreducible quotient with trivial central character.

• The restriction of τ∨ to U(V ′
2) has an irreducible quotient with trivial central character.

Then, the theta lift ΘPU3(τ) is nonzero.

Proof. To prove the non-vanishing of the theta lift, it suffices to prove that the space

HomPU3(ΠU1(2),ψ′ , τ) = HomPU3(c-Ind
PU3

U(V2)
ω0, τ)⊕HomPU3(c-Ind

PU3

U(V ′
2)
ω0, τ)

is nonzero.

Assume that the restriction of τ∨ to U(V2) has an irreducible quotient ρ with trivial central

character. Let ρ∨ be the contragredient of ρ as a smooth representation of U(V2). Note that

ρ∨ can be regarded as a representation of the group U(V2)/Z(U(V2)) ≃ SO(Q)+. Recall that

ω0 = ω0,Q⊠ω0,Z , and U(V2) acts on this space via the action of SO(Q)+ on the factor ω0,Q. Since

any irreducible representation of SO(Q) (and a fortiori of SO(Q)+) appears as a quotient of the

Weil representation ω0,Q, so does the representation ρ∨. Hence, we can regard ρ∨ as a U(V2)-

quotient of ω0, and, thus, we can also regard c-IndPU3

U(V2)
ρ∨ as a PU3-quotient of c-IndPU3

U(V2)
ω0.

Therefore, to conclude the proof in this case we just need to show that τ is a PU3-quotient of

c-IndPU3

U(V2)
ρ∨, i.e.

HomPU3(c-Ind
PU3

U(V2)
ρ∨, τ) ̸= 0.

But, dualizing the left-hand side of the previous expression and applying Frobenius reciprocity,

it becomes

HomU(V2)(τ
∨, ρ),

which is nonzero since ρ is a U(V2)-quotient of τ
∨.

The case in which the restriction of τ∨ to U(V ′
2) has an irreducible quotient with trivial central

character can be dealt with in a similar way.

□

5.4. A see-saw argument. In this subsection, we use a see-saw argument to prove that the

contragredient of the representation σ+ of U3 defined above, when restricted to a representation

of a suitable 2-variable unitary group, has a quotient with trivial central character. We also

prove this for the contragredient of σ− under the assumption that χ2 ̸= 1. Combined with

the results in the previous subsection, this will conclude the proof of the non-vanishing of the

corresponding theta lifts to the group G.

Recall that χ is a conjugate-symplectic character of K×. In general, ifW is an m-dimensional

skew-Hermitian space over K and V is an n-dimensional Hermitian space over K, the choice of

characters χW = χm and χV = χn determines a lift ι̃χ,ψ : U(V ) × U(W ) → Mp(V ⊗K W ) of

the natural homomorphism ι : U(V )×U(W ) → Sp(V ⊗K W ), and we can use this lift to define
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ΩV,W := ι̃∗χ,ψωψ. Throughout this subsection, these are the representations that we use to define

theta lifts between different unitary groups.

Let V3 be a 3-dimensional Hermitian space over K. Assume that its Hermitian form, with

respect to some K-basis, is defined by the matrix

Φ3 =

 0 0 −1

0 −1 0

−1 0 0

 .

As before, let V2 and V ′
2 be 2-dimensional Hermitian spaces such that V2 is split and V ′

2 is

nonsplit. Then, we can write

V3 := V1 ⊕ V2 ∼= V ′
1 ⊕ V ′

2 ,

where V1 and V ′
1 are non-isomorphic 1-dimensional Hermitian spaces over K. Let W and W ′ be

1-dimensional skew-Hermitian spaces over K such that ΘV1,W (1W ) ̸= 0 and ΘV ′
1 ,W

′(1W ′) ̸= 0.

Observe that, by dichotomy, the spaces W and W ′ are not isomorphic. More precisely, we have

that

ϵ(V1)ϵ(W ) = ϵK(1/2, χ, ψ(TrK/F (−δ(·))) = ϵ(V ′
1)ϵ(W

′),

where δ ∈ K× denotes a trace-zero element which we also use to define the signs ϵ(W ) and

ϵ(W ′) as in (2).

We have that ΘV3,W (1W ) and ΘV3,W ′(1W ′) are both nonzero, because we are in the stable

range. Furthermore, it follows from Proposition 2.4 and Theorem 2.6 that

ΘV3,W (1W ) is non-tempered ⇐⇒ ϵK(1/2, χ, ψ(TrK/F (−δ(·)))ϵK(1/2, χ3, ψ(TrK/F (−δ(·))) = 1

⇐⇒ ΘV3,W ′(1W ′) is supercuspidal.

In particular, when χ2 = 1, the statements above always hold.

We define σ = ΘV3,W (1W ) and σ′ = ΘV3,W ′(1W ′). Then, we have that {σ, σ′} = {σ+, σ−},
and, if χ2 = 1, then σ = σ+ and σ′ = σ−.

Proposition 5.2. With the previous definitions, it always holds that ΘV2,W (1) ̸= 0, and

ΘV ′
2 ,W

(1W ) ̸= 0 if and only if χ2 ̸= 1.

These statements also hold if we replace W by W ′.

Proof. Observe that V ′
2 is the first element in its Witt tower, whereas V2 is the second element in

its Witt tower, the first one being a zero-dimensional Hermitian space. Based on the convention

stated in the discussion preceding Theorem 2.3, the only irreducible representation of U(W )

(or of U(W ′)) that lifts to the zero-dimensional Hermitian space in the Witt tower of V2 is

the character χ2 ◦ i, where i denotes the inverse of the isomorphism K×/F× ≃−→ K1 defined

by x 7→ x/xc. In particular, the trivial character on U(W ) (or on U(W ′)) lifts to this zero-

dimensional Hermitian space if and only if χ2 = 1. Therefore the result follows from the

conservation relation in Theorem 2.3. □

We denote by σ∨ and (σ′)∨ the contragredient of the smooth PU3-representations σ and σ′,

respectively.
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Proposition 5.3. The restriction of the representation σ∨ to U(V2) has a unique irreducible

quotient with trivial central character.

Proof. Consider the see-saw diagram

U(V3) U(W )×U(W )

U(V1)×U(V2) ∆U(W )

and recall that we choose χVi = χi and χW = χ as splitting characters. This choice is compatible

with respect to the see-saw diagram above. Let G1 = U(V1)× U(V2) and H1 = ∆U(W ). Let τ

be an irreducible representation of U(V2) with trivial central character. Then, we have

HomG1

(
σ, 1U(V1) ⊠ τ

) ∼= HomG1×H1

(
Ω, 1U(V1) ⊠ τ ⊠ 1U(W )

)
∼= HomH1

(
1U(W ) ⊗ΘV2,W (τ),1U(W )

)
.

Since τ has trivial central character, the big theta lift ΘV2,W (τ) is zero unless τ = θV2,W (1U(W )),

which is nonzero because of Proposition 5.2. In this case, ΘV2,W (τ) = 1U(W ) and therefore the

space above is one-dimensional.

It follows from the previous discussion that the restriction of σ to U(V2) has a unique irre-

ducible quotient with trivial central character, which is isomorphic to θV2,W (1U(W )). By [HKS96,

Lemma 2.1(ii)], we know that σ∨ ≃ σc, with the notation of Remark 3.2. Therefore, we con-

clude that the restriction of σ∨ to U(V2) has a unique irreducible quotient with trivial central

character. □

Proposition 5.4. Assume that χ2 ̸= 1. Then, the restriction of the representation (σ′)∨ to

U(V ′
2) has a unique irreducible quotient with trivial central character.

Proof. This can be proved by a see-saw argument as in the previous proposition, replacing V1, V2,

and W , with V ′
1 , V

′
2 , and W

′, respectively. Note that the hypothesis χ2 ̸= 1 is needed to ensure

that the theta lift τ = θV ′
2 ,W

′(1U(W ′)) is nonzero, which follows in this case from Proposition 5.2.

When running the previous argument, with H ′
1 = ∆U(W ′), this yields

HomH′
1

(
1U(W ′) ⊗ΘV ′

2 ,W
′(τ),1U(W ′)

)
= HomH′

1

(
1U(W ′) ⊗ 1U(W ′), 1U(W ′)

)
,

which is one-dimensional. □

Now, an application of Theorem 5.1 yields the following result.

Theorem 5.5. With the previous definitions, we have the following:

(1) The representation ΘPU3(σ
+) of G is nonzero, and thus π+ is nonzero.

(2) If χ2 ̸= 1, the representation ΘPU3(σ
−) of G is nonzero, and thus π− is nonzero.

6. Vanishing of theta lifts

LetK/F be a quadratic extension of local fields of characteristic zero. Fix a nontrivial additive

character ψ : F → C× and a conjugate-symplectic character χ : K× → C×. Let σ+ and σ− be

the representations of PU3 introduced in Definition 4.3 with respect to these data and let π+
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and π− be their corresponding small theta lifts to the group G, as introduced in Definition 4.9.

In this section we will prove some vanishing results for the representation π−.

In Section 6.1, we prove that π− does not have any generic subquotient. We then use this

result, combined with the non-vanishing of π− when χ2 ̸= 1 proved in Theorem 5.5, to deduce

that π− is irreducible if χ2 ̸= 1. This completes the proof of the second part of Theorem 4.10.

The rest of the section considers the case when χ2 = 1 and proves the vanishing of π− in that

situation, completing the proof of the third point of Theorem 4.10. For that, we study the

twisted coinvariant spaces of π± corresponding to generic characters of the unipotent radical of

the Heisenberg parabolic subgroup of G. More precisely, for every such character ψE :

• In Section 6.2, we obtain an explicit description of π+ which allows us to verify that the

twisted coinvariant space for π+ with respect to ψE does not vanish.

• In Section 6.3, we express the twisted coinvariant space for π+ ⊕ π− with respect to ψE

as a sum of toric periods for σ+ ⊕ σ−. Since the representations σ± are theta lifts of

characters in U1, the non-vanishing of these periods can be expressed in terms of local

epsilon factors, as it is done in [BFG+]. Moreover, in [loc. cit.], it is proven that exactly

one of these toric periods contributes to the sum with precisely dimension 1.

As a consequence, we obtain that the twisted coinvariant spaces for π− with respect to any

generic character of the unipotent radical of the Heisenberg parabolic subgroup of G are zero,

from which we deduce that π− does not have a nontrivial non-generic quotient. Combining this

fact with the results in Section 6.1, we conclude the vanishing of π−.

6.1. Vanishing of the generic part. In this subsection, we prove that π− does not have any

generic subquotient. When χ2 ̸= 1, we deduce from this that π− is irreducible. The proofs rely

on results of [BS24, §4.3-4.4].
As before, let B′ be a Borel subgroup of PU3 and let U ′ be its unipotent radical. It has a

filtration 0 ⊆ U ′(2) ⊆ U ′, where U ′(2) ≃ F and U ′/U ′(2) ≃ K. Via the last identification, we

can define a character ψU ′ of U ′ corresponding to a nontrivial additive character ψ ◦ TrK/F of

K.

According to [BS24, Corollary 4.6], in order to prove the vanishing of the generic part of π−,

it suffices to prove the vanishing of the space of Whittaker periods

HomU ′((σ−)∨, ψ̄U ′) ⊆ HomU ′(2)((σ
−)∨,1).

Note that, as explained in the proofs of Proposition 4.7 and of Proposition 4.8, the representation

(σ−)∨ is the big theta lift of a character of U1 to a representation of U3. In particular, we can

use the explicit description of the coinvariant spaces of theta lifts in this setting described in

[Gan22, Section 2.12, Guided Exercise (ii)] to affirm that

(σ−)∨U ′(2) = (σ−)∨U ′ .

Since (σ−)∨ is supercuspidal, as (σ−)∨ ≃ (σ−)c by [HKS96, Lemma 2.1(ii)] and σ− is super-

cuspidal, the right-hand side is equal to zero, implying the vanishing of the space of Whittaker

periods.

We write the result as a proposition for reference.

Proposition 6.1. The representation π− does not have any generic subquotient.
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From there, we obtain the following result.

Theorem 6.2. If χ2 ̸= 1, the representation π− is irreducible and tempered.

Proof. Note that IndG
′

PU3
σ− is irreducible (by Proposition 4.7) and tempered (because σ− is

supercuspidal). We also make the following two observations:

• By [BS24, Remark 4.4], every irreducible quotient of π− is tempered.

• By Proposition 6.1, every irreducible quotient of π− is non-generic.

Now, Theorem 5.5 implies that there exists a nonzero irreducible quotient of π−. Moreover,

[BS24, Proposition 4.15] together with these two observations imply that such quotient is unique.

Hence, π− is irreducible and tempered as desired. □

6.2. Twisted coinvariant spaces for π+. We assume from now on that χ2 = 1. This implies

that χ is Gal(K/F )-invariant, hence there exists a character µ of F× such that χ = µ ◦ NK/F .
Fix a choice of such character µ. Note that µ ̸= µ−1 as µ2 = ωK/F . Denote by S the Borel of

GL2(F ) consisting of upper triangular matrices.

Proposition 6.3. Consider the same notation as above. We have:

(1) The automorphic induction of χ|NK/F ( )|1/2 from K× to GL2(F ) is the irreducible rep-

resentation |det |1/2τ , where

τ = i
GL2(F )
S (µ, µ−1).

(2) Regard |det |1/2τ as a representation of L1 ≃ GL2, i.e.

|det |1/2τ = iL1

T (U∩L1)
(µ| |1/2 ⊗ µ−1| |1/2). (12)

Then, π+ is the unique irreducible quotient of iGQ1
(| det |1/2τ).

Proof. We start proving the first point. Note that (µ ◦ NK/F )|NK/F ( )|1/2 is Galois invariant.

Thus, the automorphic induction of this character to GL2(F ) is the irreducible principal series

corresponding to the character of the diagonal torus in GL2(F ) given by µ| |1/2 ⊗ ωK/Fµ| |1/2.
Note that we used that, since ωK/F ̸= | |±1, such principal series is irreducible. Using the relation

µ2 = ωK/F , we can rewrite the automorphic induction as

i
GL2(F )
S (µ| |1/2, µ−1| |1/2) = | det |1/2iGL2(F )

S (µ, µ−1),

proving the first point. Since π+ = θPU3(σ
+), and we saw in the proof of Theorem 4.10 that

iGQ1
(|det |1/2τ) has a unique irreducible quotient, the second point of the proposition follows

from the first one, Proposition 3.6 and Remark 3.7. □

In view of the previous proposition, the next proposition will provide a description of π+ in

this case.

Proposition 6.4. The unique irreducible quotient of iGQ1
(|det |1/2τ) is given by iGQ2

(µ ◦ det).

Proof. The key to prove this proposition is to rewrite normalized parabolic inductions for the

parabolic Q1 (resp. Q2) in terms of the parabolic Q2 (resp. Q1) and to use intertwining

operators.
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Using the isomorphism induced by (3), it can be seen

iGQ1
(| det |1/2τ) = iGQ1

iL1

T (U∩L1)
(µ| |1/2 ⊗ µ−1| |1/2) = iGQ1

iQ1

B (µ| |1/2(α+ β) · µ−1| |1/2(α)), (13)

where in the last expression we are extending µ| |1/2(α+ β) · µ−1| |1/2(α) from a character of T

to a character of B. Now, using that iGQ1
iQ1

B = iGB, we obtain

iGQ1
(|det |1/2τ) = iGB

(
µ| |1/2(α+ β) · µ−1| |1/2(α)

)
.

This can be rewritten as

iGB

(
µ| |1/2(α+ β) · µ−1| |1/2(α)

)
= iGB

(
µ−1| |1/2(2α+ β) · µ2(α+ β)

)
= iGQ2

iL2

T (U∩L2)

(
µ−1| |1/2 ⊗ µ2

)
,

(14)

where in the last equality we proceeded in a similar way as in (13) and used the isomorphism

induced by (4). By Proposition 1.1 (i) of [Mui97], the representation of L2 ≃ GL2 given by

iL2

T (U∩L2)

(
µ−1| |1/2 ⊗ µ2

)
is irreducible and we have an isomorphism

iL2

T (U∩L2)

(
µ−1| |1/2, µ2

)
≃ iL2

T (U∩L2)

(
µ2, µ−1| |1/2

)
.

Hence,

iGQ2
iL2

T (U∩L2)

(
µ−1| |1/2 ⊗ µ2

)
≃ iGQ2

iL2

T (U∩L2)

(
µ2 ⊗ µ−1| |1/2

)
≃ iGB

(
µ2(2α+ β) · µ−1| |1/2(α+ β)

)
≃ iGB

(
µ| |1/2(α+ β) · µ2(α)

)
,

where we used that 2α + β = α + (α + β). Now, we can use Proposition 1.1 (i) of [Mui97] to

obtain

iGB

(
µ| |1/2(α+ β) · µ2(α)

)
≃ iGQ1

iL1

T (U∩L1)

(
µ| |1/2 ⊗ µ2

)
≃ iGQ1

iL1

T (U∩L1)

(
µ2 ⊗ µ| |1/2

)
.

Proceeding in a similar way as above, we deduce

iGQ1
iL1

T (U∩L1)

(
µ2 ⊗ µ| |1/2

)
≃ iGB

(
µ2(α+ β) · µ| |1/2(α)

)
≃ iGB

(
µ| |1/2(2α+ β) · µ| |−1/2(α+ β)

)
≃ iGQ2

iL2

T (U∩L2)

(
µ| |1/2 ⊗ µ| |−1/2

)
.

By Proposition 1.1 (ii) of [Mui97], we have that iL2

T (U∩L2)

(
µ| |1/2 ⊗ µ| |−1/2

)
has a unique irre-

ducible quotient given by µ◦det. It follows that iGQ1
(|det |1/2τ) = iGQ2

iL2

T (U∩L2)

(
µ| |1/2 ⊗ µ| |−1/2

)
has a quotient given by iGQ2

(µ ◦ det). Finally, note that µ2 = ωK/F ̸= 1 so, in particular, µ is

unitary. Hence, Theorem 3.1 (i) of [Mui97] affirms that iGQ2
(µ ◦ det) is irreducible, and we are

done. □

We therefore obtain the following corollary.

Corollary 6.5. Suppose that χ2 = 1 and let µ be a character of F× such that χ = µ ◦ NK/F .
Then,

π+ = iGQ2
(µ ◦ det),

where Q2 denotes the Heisenberg parabolic of G2.

Proof. This follows from Proposition 6.3 and Proposition 6.4. □
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Remark 6.6. Even though we will not need it explicitly, it can be verified that in fact ΘPU3(σ
+) =

iGQ2
(µ ◦ det).

We use the previous corollary to determine the non-vanishing of the twisted coinvariant spaces

of π+.

Proposition 6.7. Consider the same notation as above. Let ψ′ be a character of U2. We have

dim
(
HomU2(π

+, ψ′)
)
≥ 1.

Proof. By Corollary 6.5, it is enough to see that

dim
(
HomU2(i

G
Q2

(µ ◦ det), ψ′)
)
≥ 1.

Using the definition of normalized induction, we have

iGQ2
(µ ◦ det) =

{
f : G2 → C | f(qx) = (µ ◦ det)(q)δ1/2Q2

(q)f(x) for q ∈ Q2, x ∈ G
}
,

where we consider locally constant functions. The group G acts on the left of this space as

follows: if g ∈ G and f ∈ iGQ2
(µ ◦ det), then (g · f)(x) = f(xg) for every x ∈ G. Restrict the

representation iGQ2
(µ ◦ det) to a representation of U2. Let C

∞
c (U2) be the regular representation

(consisting of smooth functions with compact support) of U2. Then, we have an injective map

of U2-representations

C∞
c (U2) ↪−→ iGQ2

(µ ◦ det).

We proceed to describe it. The Bruhat decomposition of G2 with respect to the parabolic

subgroup Q2 is

G2 = Q2 ∪Q2wβQ2 ∪Q2wβαβQ2 ∪Q2wβαβαβQ2

(see [JR97, Page 289]). Hence, we can find the following U2-invariant subspace of iGQ2
(µ ◦ det){

f : Q2wβαβαβU2 → C | f(qx) = (µ ◦ det)(q)δ1/2Q2
(q)f(x) for q ∈ Q2, x ∈ Q2wβαβαβU2

}
≃ {f : wβαβαβU2 → C} ,

where we again consider locally constant functions. Note that we used that the big cell in the

Bruhat decomposition of G2 given above is the one corresponding to wβαβαβ and therefore we

have a natural bijection Q2wβαβαβU2 ≃ Q2 × U2. If we further restrict the second space to

functions of compact support, we obtain the desired U2-representation subspace of iGQ2
(µ ◦ det)

isomorphic to the regular representation C∞
c (U2).

Taking (U2, ψ
′)-coinvariants, which preserve injectivity by smoothness, we get

C∞
c (U2)U2,ψ′ ↪−→

(
iGQ2

(µ ◦ det)
)
U2,ψ′ .

Since, C∞
c (U2) is the regular representation, we have that C∞

c (U2)U2,ψ′ is 1-dimensional, and

the result follows from there. □

Remark 6.8. Consider the same notation as above and suppose in addition that ψ′ is generic.

It follows from [JR97, Theorem 3] that dim
(
HomU2(i

G
Q2

(µ ◦ det), ψ′)
)

≤ 1. Hence, we have

dim
(
HomU2(i

G
Q2

(µ ◦ det), ψ′)
)
= 1.
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6.3. Vanishing of the non-generic part. In this subsection, we show the vanishing of the

non-generic part of π− when χ2 = 1 by proving that the corresponding generic Fourier coefficients

along the unipotent U2 are all zero.

Recall that J = J3(K), the set of 3×3 Hermitian matrices defined in Section 3.3. Let P =MN

be the Heisenberg maximal parabolic subgroup of H, where H is as defined in Section 3.3, and

let P̄ = MN̄ be the parabolic subgroup opposite to P . Let Z (resp. Z̄) be the center of N

(resp. N̄). Then N/Z and N̄/Z̄ are commutative, and we have that N/Z ∼= n/z and N̄/Z̄ ∼= n̄/z̄,

where n, z, n̄ and z̄ denote the Lie algebras of N , Z, N̄ and Z̄, respectively. According to [GS98,

(2.5)], we have the following decompositions:

n/z = F ⊕ J ⊕ J∗ ⊕ F ∗

n̄/z̄ = F ∗ ⊕ J∗ ⊕ J ⊕ F.

The Killing form on h induces a non-degenerate pairing between N/Z ∼= n/z and N̄/Z̄ ∼= n̄/z̄

which is given by

⟨(x, u, u∗, x∗) , (y∗, v∗, v, y)⟩ = xy∗ + ⟨u, v∗⟩+ ⟨v, u∗⟩+ yx∗.

The following theorem gives a useful description of the minimal representation Π of H.

Theorem 6.9. [MS97, Theorem 7.1] Let Π be the minimal representation of H. Let ΠZ and

ΠN be the maximal Z-invariant and N -invariant quotients of Π. Then ΠZ has a P -equivariant

filtration

0 → C∞
c (Ω̄) → ΠZ → ΠN → 0,

where Ω̄ is the smallest nontrivial M -orbit in N̄/Z̄ and C∞
c (Ω̄) denotes the space of locally

constant, compactly supported functions on Ω̄.

Moreover, the action of P on C∞
c (Ω̄) is given by

π(n)f(x) = ψ(⟨n, x⟩)f(x), n ∈ N,

π(m)f(x) = |det(m)|1/5f
(
m−1xm

)
, m ∈M,

where det denotes the determinant of the representation of M on N/Z.

Now we consider G2 ∩ P = L2U2 = GL2U2, the Heisenberg parabolic subgroup of G2. Notice

that

Ū2/Z̄ ∼= F ∗ ⊕ Fe∗ ⊕ Fe⊕ F ⊂ F ∗ ⊕ J∗ ⊕ J ⊕ F ∼= N̄/Z̄,

where e is an element of J that is invariant under the action of G′ = PU3 ⋊ µ2, normalized by

⟨e∗, e⟩ = 3. An element (a, b, c, d) ∈ Ū2/Z̄ defines a binary cubic form

ax3 + bx2y + cxy2 + dy3,

which defines a cubic separable algebra if and only if the corresponding GL2-orbit of (a, b, c, d)

is generic. Moreover, the restriction of ⟨ , ⟩ defines a non-degenerate pairing between U2/Z and

Ū2/Z̄. Hence, a point n̄ = (a, b, c, d) ∈ Ū2/Z̄ corresponding to a cubic separable algebra E

defines a character ψE(x) := ψ(⟨x, n̄⟩) on U2/Z.

We define the twisted Jacquet module ΠU2,ψE to be the maximal quotient of Π on which the

action of U2 is given by the character ψE . Theorem 6.9 enables us to describe the PU3-module
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ΠU2,ψE explicitly as stated in the following proposition, which is essentially a summary of [GS98,

Proposition 2.8] and [GS98, Lemma 2.9].

Proposition 6.10. Let E be a cubic separable F -algebra and let XE = {A ∈ He
3(K) : fA = fE},

where

• He
3(K) := {A ∈M3(K) : A = eA†e−1};

• fA is the characteristic polynomial of A ∈ He
3(K);

• fE is a fixed monic cubic polynomial such that E ∼= F [x]/ (fE(x)).

Then, we have the following isomorphism of PU3-modules:

ΠU2,ψE
∼= C∞

c (XE).

Proof. Since ψE is not trivial, we have (ΠN )U2,ψE = 0. Hence, taking (U2, ψE)-coinvariants in

the short exact sequence in Theorem 6.9, we obtain that C∞
c (Ω̄)U2,ψE ≃ ΠU2,ψE .

Now we show that C∞
c (Ω̄)U2,ψE ≃ C∞

c (XE). For n ∈ U2 and f ∈ C∞
c (Ω̄), we have

π(n)f(x) = ψ(⟨n, x⟩)f(x)

by Theorem 6.9. It follows from the proof of [GS98, Lemma 2.9] that the natural projection

map C∞
c (Ω̄) ↠ C∞

c (Ω̄)U2,ψE can be realized as the restriction map C∞
c (Ω̄) ↠ C∞

c (X ′
E), where

X ′
E = {A ∈ J : fAe−1 = fE} ⊆ Ω̄.

An element z ∈ PU3 acts on X ′
E by A 7→ zAz†. The map A 7→ Ae−1 defines a bijection of

PU3-sets between X
′
E and XE , with PU3 acting on the latter by conjugation. □

In the statement and proof of the following lemma, we regard He
3(K), M3(K) and any cubic

separable F -algebra E as Jordan algebras with multiplication defined by

x ◦ y =
1

2
(xy + yx).

Of course, on E this agrees with the standard multiplication.

Lemma 6.11. Let E be a cubic separable F -algebra. The following PU3-sets are in natural

bijection:

(1) the set XE defined above, with PU3 acting by conjugation;

(2) the set of embeddings i : E ↪−→ He
3(K) of Jordan algebras over F , with PU3 acting by

conjugation;

(3) the set of embeddings i : E⊗F K ↪−→M3(K) of K-algebras which are compatible with the

anti-involution defined by the nontrivial element c ∈ Gal(K/F ) on each side, given on

E ⊗F K by the natural Galois action and on M3(K) by A 7→ eA†e−1, with PU3 acting

by conjugation.

Proof. An embedding i : E ↪−→ He
3(K) of Jordan algebras over F is determined by the image of

the element x ∈ E ∼= F [x]/(fE(x)). Since i is an embedding, the characteristic polynomial of

i(x) must be equal to fE . This gives a natural bijection between (1) and (2).

Observe that there is an isomorphism of K-algebras

M3(K)⊗F K ∼=M3(K)×M3(K)
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given on pure tensors by A⊗a 7→ (aA, aĀ). Under this isomorphism, the action of the nontrivial

element c ∈ Gal(K/F ), which acts on M3(K)⊗F K via its natural action on the right factor K,

is given onM3(K)×M3(K) by (A,B) 7→ (B̄, Ā). Moreover, the anti-involution onM3(K)⊗F K

defined by A⊗ a 7→ eA†e−1 ⊗ a corresponds to the anti-involution on M3(K)×M3(K) defined

by (A,B) 7→ (eBT e−1, eAT e−1). Therefore, the subspace He
3(K)⊗F K maps to

{(A, eAT e−1) : A ∈M3(K)} ⊆M3(K)×M3(K),

and, by projection onto the first factor, we obtain an isomorphism He
3(K) ⊗F K ∼= M3(K)

of Jordan algebras over K. Moreover, under this isomorphism, the nontrivial element c ∈
Gal(K/F ) acts onM3(K) by A 7→ eA†e−1, so thatM3(K)Gal(K/F ) is the set of matricesHe

3(K) ⊆
He

3(K)⊗F K ∼=M3(K). It follows from these remarks that there is a natural bijection between

(2) and (3). □

We now prove that the sets appearing in the previous lemma are always non-empty.

Lemma 6.12. There exists an embedding i : E ⊗F K ↪−→ M3(K) of K-algebras compatible

with the anti-involution defined by the nontrivial element c ∈ Gal(K/F ) on each side, given on

E ⊗F K by the natural Galois action and on M3(K) by A 7→ eA†e−1.

Proof. For any λ ∈ F×, we define the following Hermitian pairing on theK-vector space E⊗FK.

For x⊗ a, y ⊗ b ∈ E ⊗F K, we define

⟨x⊗ a, y ⊗ b⟩λ = λabcTr(xy),

where Tr : E → F denotes the trace form, and we extend the pairing additively. Choosing

a suitable λ, the Hermitian space (E ⊗F K, ⟨ , ⟩λ) is isomorphic to the Hermitian space (V =

K3,Φ3 = e). This provides an embedding

E ⊗F K ↪−→ EndK(E ⊗F K) ≃ EndK(V ) =M3(K).

The actions of c ∈ Gal(K/F ) on E ⊗F K and on M3(K) defined in the statement amount to

taking the adjoint with respect to the corresponding Hermitian pairing. Therefore, the previous

embedding is compatible with the action of c.

□

Given a cubic separable F -algebra E, let TE,K denote the algebraic group over F such that,

for an F -algebra R,

TE,K(R) = {x ∈ E ⊗F R⊗F K : NE⊗FR⊗FK/E⊗FR(x) = 1},

and let TE,K denote the corresponding group of F -points. An embedding i′ : E⊗F K ↪−→M3(K)

compatible with the anti-involution defined by the nontrivial element c ∈ Gal(K/F ) on each side,

as described in the previous lemma, defines an embedding of algebraic groups i : TE,K ↪−→ U3.

For an F -algebra R, the corresponding map on R-points is the map

(E ⊗F K ⊗F R)
1 ↪−→ U3(R)

obtained by restricting the map induced by i′ to norm-1 elements. Let i′0 : E ⊗F K ↪−→ M3(K)

be an embedding compatible with the action of c ∈ Gal(K/F ) and let i0 be the corresponding

embedding of algebraic groups TE,K ↪−→ U3. Let X̃E denote the set of embeddings of algebraic
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groups TE,K ↪−→ U3 which are conjugate to i0 by an element of U3(F̄ ). The group PU3 acts on

X̃E by conjugation.

Proposition 6.13. Let E be a cubic separable F -algebra. There is a bijection of PU3-sets

between XE and X̃E.

Proof. By Lemma 6.11, we just need to show that there is a bijection of PU3-sets between X̃E

and the set of embeddings of K-algebras i′ : E ⊗F K ↪−→M3(K) which are compatible with the

anti-involution defined by the nontrivial element c ∈ Gal(K/F ) on each side. Such a map can

be extended to an embedding of F̄ -algebras

E ⊗F K ⊗F F̄ ↪−→M3(K ⊗F F̄ )

compatible with the action of c ∈ Gal(K/F ). Giving such a map is equivalent to giving an

embedding of F̄ -algebras

F̄ × F̄ × F̄ ↪−→M3(F̄ ).

Therefore, it becomes clear that, after choosing an embedding K ↪−→ F̄ , any two embeddings

i′1, i
′
2 : E ⊗F K ↪−→ M3(K) compatible with the action of c ∈ Gal(K/F ) are conjugate by an

element of U3(F̄ ) ≃ GL3(F̄ ). In particular, any embedding i′ : E ⊗F K ↪−→ M3(K) compatible

with the action of c ∈ Gal(K/F ) is conjugate to i′0 by an element of U3(F̄ ). Moreover, if

a ∈ U3(F̄ ), then a · i′0 · a−1 defines an embedding E⊗F K ↪−→M3(K) compatible with the action

of c ∈ Gal(K/F ) if and only if the cocycle τ 7→ a−1 · τ(a) defines a cohomology class in

ker
(
H1(F, TE,K) −→ H1(F,U3)

)
.

This is the same condition that a ∈ U3(F̄ ) must satisfy in order that a · i0 · a−1 defines an

embedding of algebraic groups TE,K ↪−→ U3. Furthermore, a ∈ U3(F̄ ) fixes i′0 if and only if

a ∈ i0(TE,K(F̄ )) and thus if and only if it fixes i0. Hence, it follows that the map defined above

sending an embedding i′ : E ⊗F K ↪−→ M3(K) compatible with the action of c ∈ Gal(K/F ) to

an embedding of algebraic groups i : TE,K ↪−→ U3 provides the desired bijection. □

Let T̃E,K denote set of PU3-orbits of X̃E .

Corollary 6.14. Let E be a cubic separable F -algebra. Then,

ΠU2,ψE
∼=

⊕
i∈T̃E,K

c-IndPU3

i(TE,K)1.

Proof. It follows from Proposition 6.10 that

ΠU2,ψE
∼= C∞

c (XE).

Proposition 6.13 establishes a bijection of PU3-sets between XE and X̃E . The stabilizer of an

embedding of algebraic groups i : TE,K ↪→ U3 for the conjugation action of PU3 is i(TE,K).

Therefore, decomposing XE into PU3-orbits, we obtain

C∞
c (XE) ∼=

⊕
i∈T̃E,K

c-IndPU3

i(TE,K)1.

□
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Corollary 6.15. Let E be a cubic separable F -algebra. Then,

dimHomU2(ΘPU3(σ
+), ψE) + dimHomU2(ΘPU3(σ

−), ψE) = 1.

Proof. It follows from the previous corollary and an application of Frobenius reciprocity for

compact induction that the left-hand side is equal to∑
i∈T̃E,K

(
dimHomi(TE,K)((σ

+)∨,1) + dimHomi(TE,K)((σ
−)∨,1)

)
.

Since both σ+ and σ− are unitary representations, this sum can be rewritten as∑
i∈T̃E,K

(
dimHomi(TE,K)(σ

+,1) + dimHomi(TE,K)(σ
−,1)

)
,

which is equal to 1 by [BFG+, Corollary 5.3]. □

Proposition 6.16. If χ2 = 1, the representation π− does not have a nonzero non-generic

subquotient.

Proof. Combining Proposition 6.7 and the previous corollary, it follows that, for all character

ψE of U2 corresponding to a cubic separable F -algebra E as above,

HomU2(π
−, ψE) = 0.

Therefore, it follows from [BS24, Lemma 4.13] that any non-generic subquotient of π− is finite-

dimensional. Since π− is tempered by [BS24, Remark 4.4], it cannot have any finite-dimensional

subquotient, which concludes the proof. □

Combining Proposition 6.1 and Proposition 6.16, we finally obtain the following.

Theorem 6.17. If χ2 = 1, the representation π− is zero.
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