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Virtually Haken Conjecture

• Definition
A compact, orientable, irreducible 3-manifold is Haken if it
contains an orientable, incompressible, embedded surface. A
3-manifold is virtually Haken if it is finitely covered by a Haken
manifold.

• Conjecture (Virtually Haken Conjecture)
Any compact, orientable, hyperbolic 3-manifold is virtually
Haken.
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Virtual First Betti Number

• Definition
The first Betti number of a manifold M, denoted b1(M), is the
rank of H1(M,Q), and the virtual first Betti number of a manifold
M, denoted vb1(M) is equal to
max{b1(N) | N is a finite cover of M}, and∞ if no such
maximum exists.

• Conjecture (Positive Virtual Betti Number Conjecture)
For any compact, orientable, hyperbolic 3-manifold, M,
vb1(M) > 0, or equivalently π1(M) has infinite abelianization.

• Conjecture (Infinite Virtual Betti Number Conjecture)
For any compact, orientable hyperbolic 3-manifold, M,
vb1(M) =∞.
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Largeness

• Definition
A group, G, is large if a finite index subgroup admits a
surjection onto a free non-abelian group. A manifold, M, is
large if its fundamental group is large.

• Conjecture (Largeness Conjecture)
The fundamental group of any closed, orientable hyperbolic
3-manifold is large.



3-Manifold Conjectures Hyperbolic Orbifolds Theorems on Largeness Main Theorem Applications

Relationships Between the Conjectures

• Largeness
⇓

• Infinite Virtual First Betti Number
⇓

• Positive Virtual First Betti Number
⇓

• Virtually Haken
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The Main Theorem

One question that can be asked is when are these conjectures
equivalent. The following theorems provides a partial answer.

Theorem (Cooper, Long, Reid 97)
Let M be a compact, orientable, irreducible 3-manifold with
non-empty boundary. Then, either M is an I-bundle over a
surface with non-negative Euler characteristic or π1(M) is large.

Theorem (Lackenby, Long, Reid 08)
Let O be a 3-orbifold commensurable with a closed, orientable
hyperbolic 3-orbifold that contains Z/2Z× Z/2Z in its
fundamental group. Suppose that vb1 ≥ 4, then π1(O) is large.
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Hyperbolic Orbifolds

Definition
A Kleinian Group is a discrete subgroup of PSL2(C)

Definition
Given a Kleinian group Γ, we call O = H3/Γ a hyperbolic
orbifold

Remark
If Γ contains no torsion this agrees with the standard notion of a
hyperbolic 3-manifold

Remark
When we think of O as a topological space we will denote it as
|O|, and we call this the underlying space.
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Orbifold Fundamental Group

If Γ has no torsion, then as a topological space Γ = π1(|O|),
however this is not the case if Γ contains torsion. So for
orbifolds we make the following definition

Definition
If O = H3/Γ then the orbifold fundamental group of O denoted
πorb

1 (O) is equal to Γ.
However, most of the time we just refer to the fundamental
group as π1(O)

Remark
π1(|O|) ∼= πorb

1 (O)/ << T >>, where T is the set of elements
that do not act freely on H3.
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Singular Locus

Definition
Given a Kleinian group Γ, the singular locus of O = H3/Γ
denoted sing(O) is set of orbits Γx such that x is a fixed point of
some γ ∈ Γ

Definition
Given a hyperbolic orbifold O = H3/Γ the order of a point Γx is
the order of the finite group Γx .

• In a closed hyperbolic 3-orbifold the singular set is a
collection of simple closed curves labelled by integers and
trivalent graphs with edges labelled by integers.
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Singular Locus cont.

We now focus on decomposing the singular locus of an orbifold

• Definition
Let sing0(O) be the components of sing(O) with zero Euler
characteristic.

• Definition
Given a prime p let sing0

p(O) be the components of sing(O)
whose orders are divisible by p, and have zero Euler
characteristic.
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A Sequence of Subgroups in Fn I

• Let F be a free non-abelian group. Define the following
sequence, L1 = F and Li+1 = [Li ,Li ](Li)

i .

• Note that Li+1 is characteristic in Li , and thus normal in F .

• By Schreier index formula d(Li) = (d(F )− 1)[F : Li ] + 1
and Li/Li+1 = (Z/iZ)d(Li ).
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A Sequence of Subgroups in Fn II

This sequence has the following properties

(i) Li/Li+1 is abelian for each i

(ii) limi→∞((log[Li : Li+1])/[F : Li ]) =∞
(iii) lim supi((d(Li/Li+1))/[F : Li ]) > 0.

• If G is large we can pull this sequence back to G and find a
sequence {Gi} with the same properties.

• It turns out that when G is finitely presented this
characterizes large groups.
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The Characterization Theorem

Theorem (Lackenby 05)
Let G be a finitely presented group then the following are
equivalent

1. G is large
2. there exists a sequence G1 ≥ G2 ≥ . . . of finite index

subgroups of G, each normal in G1, such that
(i) Gi/Gi+1 is abelian for every i
(ii) limi→∞((log[Gi : Gi+1])/[G : Gi ]) =∞
(iii) lim supi (d(Gi/Gi+1)/[G : Gi ]) > 0
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The Characterization Theorem

In fact a slightly stronger theorem holds

Theorem (Lackenby 05)
Let G be finitely presented, and suppose that for each natural
number i, there is a triple Hi ≥ Ji ≥ Ki of finite index normal
subgroups of G such that

1. Hi/Ji is abelian for all i
2. limi→∞((log[Hi : Ji ])/[G : Hi ]) =∞
3. lim supi(d(Ji/Ki)/[G : Ji ]) > 0

Then Ki admits a surjection onto a free non-abelian group for
infinitely many i.
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The Characterization Theorem
Weaker Version

We will only need the following weaker theorem

Theorem (Lackenby, Long, Reid 08)
Let G be a finitely presented group, and let φ : G→ Z be a
surjective homomorphism. Let Gi = φ−1(iZ), and suppose that
for some prime {Gi} has linear growth of mod-p homology, then
G is large.
Before proceeding we need a few preliminaries.
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Graph Boundary

Definition
Given a subset A of vertices of a graph X we define the
boundary of A, denoted ∂(A), is the set of edges of X that have
one vertex in A and the other in AC .
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Similarly, to establish (ii), we note that

log[Gi : Gi+1] = log
(
id(Li )

)
= d(Li) log i > [G1 : Gi] log i.

3. The width and Cheeger constant of finite graphs

Many of the ideas behind this paper arise from the theory of Property (τ ). This is a

particularly useful group-theoretic concept, introduced by Lubotzky and Zimmer [8], that

can be defined using graph theory, representation theory or differential geometry [6]. We

concentrate on the former approach. The Cheeger constant of a finite graph X, denoted

h(X), is defined to be

min

{ |∂A|
|A| : A ⊂ V (X) and 0< |A| ! |V (X)|

2

}
.

Here, V (X) denotes the vertex set of X, and, for a subset A of V (X), ∂A denotes the set of

edges with one endpoint in A and one not in A. Informally, having small Cheeger constant

is equivalent to the existence of a ‘bottleneck’ in the graph. (See Fig. 1.)

Let G be a group with a finite generating set S. Let {Gi} be a collection of finite index
normal subgroups. We denote the Cayley graph ofG/Gi with respect to S byX(G/Gi;S).

The group G is said to have Property (τ ) with respect to {Gi} if the Cheeger constants
h(X(G/Gi;S)) are bounded away from zero. This property turns out not to depend on the

choice of finite generating set S.

Whether or not a given group and a collection of finite index subgroups have Prop-

erty (τ ) is a subtle and often difficult question. The following theorem of Lubotzky and

Weiss [7] gives a necessary condition for a group to have Property (τ ). This is not, in fact,

how Lubotzky and Weiss stated their result (which appears as Theorem 3.6 of [7]), but this

formulation can readily be deduced from their argument.

Theorem 3.1. Suppose that a finitely generated groupG has Property (τ ) with respect to a

collection C of finite index normal subgroups. Then there is a constant c with the following
property. If J is a member of C, and J is contained in a normal subgroup H ofG such that

H/J is abelian, then |H/J | < c[G:H ].

Fig. 1.
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Width

• Definition
Let X be a finite graph. Given an ordering on V (X ), for
1 ≤ n ≤ |V (X )| let Dn be the first n vertices, then the width of
the ordering is the maxn |∂(Dn)|. The width of the graph X ,
denoted w(X ) is the minimal width over all possible orderings
of its vertices.
• The width of an ordering can be visualized by embedding

the graph in R3 and looking at its intersection with planes.

462 M. Lackenby / Journal of Algebra 287 (2005) 458–473

Thus, conditions (i) and (ii) of Theorem 1.2 imply that G does not have Property (τ )

with respect to {Ji}. We will actually need to establish a stronger version of Theorem 3.1.
Instead of relating to the Cheeger constant ofX(G/Ji;S) (for some finite generating set S),

we need to consider a related geometric invariant ofX(G/Ji;S), its width, which is defined

as follows.

Let X be a finite graph. Consider a linear ordering on its vertices. For 0! n ! |V (X)|,
let Dn be the first n vertices. The width of the ordering is defined to be maxn |∂Dn|. The
width of the graph is the minimal width of any of its orderings, and is denoted w(X).

This notion is inspired by a useful concept from the theory of knots and 3-manifolds,

known as thin position [9], which was first introduced by Gabai [3]. We now develop this

analogy (which is not essential for an understanding of the remainder of the paper). One

may imagine the graph X embedded in R3, with its vertices all at distinct heights, and with
its edges realised as straight lines. The height of the vertices specifies a linear ordering

on them. The width of this ordering can be interpreted geometrically, as follows. Imagine

a 1-parameter family of horizontal planes, parametrised by their heights which increase

monotonically from −∞ to∞. The width of the ordering is equal to the maximal number

of intersections between the graph and any of these planes. (See Fig. 2 for an example.)

Thus, to determine the width of X, one should aim to find the most efficient embedding

in R3: the one that minimises the width of the associated ordering. This is highly analogous
to thin position for knots in R3, where one aims to isotope the knot until a similar notion
of width is minimised.

There is a relationship between the width of a graph and its Cheeger constant. In an

ordering on V (X) of minimal width, consider Dn where n = #|V (X)|/2$. By computing
|∂Dn|/|Dn|, we deduce that

h(X) ! w(X)

#|V (X)|/2$ .

Fig. 2.
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Schreier Coset Graphs

• Definition
Given a group G with generating set S and a subgroup H of G
then the Schreier coset graph for G/H with respect to S is the
graph, X (G/H,S), with vertex set G/H and edges of the form
{Hg,Hgs}, where s ∈ S ∪ S−1.

Remark
The width of a Schreier coset graph depends on the choice of
generators, however it is still a coarse invariant.
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Linear Growth Mod-p Homology

Definition
Given a finitely generated group G we define its Mod-p 1st
homology group, denoted H1(G,Fp) to be G/[G,G]Gp. Given
an orbifold, O, H1(O,Fp) = H1(π1(O),Fp).

Definition
For a finitely generated group G define dp(G) to be the rank of
H1(G,Fp).

Definition
Given a sequence {Gi} of finite index subgroups of G we say
that {Gi} has linear growth of Mod-p homology if
infi dp(Gi)/[G : Gi ] > 0.
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The Characterization Theorem
Weaker Version

A reminder of the theorem.

Theorem (Lackenby, Long, Reid 08)
Let G be a finitely presented group, and let φ : G→ Z be a
surjective homomorphism. Let Gi = φ−1(iZ), and suppose that
for some prime {Gi} has linear growth of mod-p homology, then
G is large.
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Proof of Characterization Theorem I
The Weak Version

• The proof of the full characterization theorem requires a
few technical lemmas in order to show that
w(X (G/Ji))/[G : Ji ]→ 0.

• Let Hi = G, Ji = φ−1(iZ), where φ is the surjective
homomorphism to Z, Ki = [Ji , Ji ]J

p
i , where p is some

prime.
• Surjectivity of φ gives (1) and (2), and linear growth of

Mod-p homology gives (3).
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Proof of Characterization Theorem II
The Weak Version

• Since G/Ji
∼= Z/iZ we get a natural ordering of the

vertices of X (G/Ji).
• The mapping to Z gives a maximum length of generators,

and thus a uniform upper bound on |∂(Dn)|.
• Since [G : Ji ] = i , we see that w(X (G/Ji))/[G : Ji ]→ 0.

0

1

2

3

4

5

6

7

8

9
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Proof of Characterization Theorem

• For sufficiently large i let Ci be a 2-complex with
π1(Ci) = Ji and X (G/Ji ,S) its 1-skeleton.

• A minimal width ordering on the vertices of X (G/Ji ,S) can
be extended linearly to all of Ci and then perturbed to an
appropriate Morse function, f , on the interior of Ci

• For every 1 ≤ n ≤ |V (X (G/Ji ,S))| we can decompose Ci
into An = f−1(−∞,n + 1/2] and Bn = f−1[n + 1/2,∞)

• For an appropriate n the fundamental groups of the
components of An and Bn will have a sufficient number of
generators in Ji/Ki
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The Decomposition
468 M. Lackenby / Journal of Algebra 287 (2005) 458–473

Fig. 5.

Claim. There is some n such that wt(An) and wt(Bn) are each at least
1
4
![G : Ji].

Define

Q =
{
n: wt(An) < 1

4
![G : Ji]

}
,

R =
{
n: wt(Bn) < 1

4
![G : Ji]

}
.

The aim is to show that Q and R do not cover the interval from 0 to |V (Xi)|. Since Ji

is generated by the elements of i∗π1E, where E runs over the components of An and Bn,

together with at most one generator for each component of An ∩Bn, we have the inequality

d(Ji/Ki) ! wt(An) + wt(Bn) + |An ∩ Bn|,

and so, by the above bound on |An ∩ Bn| and inequality (1),

wt(An) + wt(Bn) " d(Ji/Ki) − 1
8
![G : Ji] > 5

8
![G : Ji].

Hence, when n ∈ Q, wt(Bn) > 3
8
![G : Ji] and, when n ∈ R, wt(An) > 3

8
![G : Ji]. Thus,

Q and R are disjoint. Note that 0 ∈ Q and |V (Xi)| ∈ R. Hence, the only way Q and R

could cover the interval from 0 to |V (Xi)| is if n ∈ Q and n + 1 ∈ R for some n. This

implies that

wt(An) < 1
4
![G : Ji], wt (An+1) > 3

8
![G : Ji].

However, we shall now show thatwt(An) and wt(An+1) differ by at most 2|S|+L2. Since

2|S| + L2 ! 1
8
![G : Ji], by inequality (3), this will provide a contradiction. It is clear that

An+1 contains An. Only one vertex of Ci lies in An+1 but not An; this is the (n + 1)-st

vertex of the ordering, called x, say. In the 1-cells and 2-cells of Ci that are disjoint from x,

An and An+1 differ only by a small collar. Hence, we need only focus on the 1-cells and
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Proof of Characterization Theorem
• We use this decomposition to collapse Ci to a graph, Y
• Pull this decomposition of Ci back to the covering C̃i

corresponding to Ki and collapse C̃i to a similar graph.
• Since w(X (G/Ji))/[G : Ji ]→ 0 and

lim supi d(Ji/Ki)/[G : Ji ] > 0 there will be vertices with at
least 3 edges emanating from them in Ỹ .
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2-cells that are adjacent to x. There are at most 2|S| of these 1-cells, and at most L 2-cells.
In each 2-cell adjacent to x, we can obtain An+1 from An by adding on a collection of

discs that intersect An and the boundary of the 2-cell in a total of at most L arcs. Hence, it

is clear that the weights of An+1 and An differ by at most 2|S|+L2. This proves the claim.

We now fix n as in the claim, and abbreviate An, Bn, An ∩ Bn and Yn to A, B , A ∩ B

and Y . For any vertex u of Y , let g(u) denote its weight minus the total weight of the

edges to which it is incident. Then the sum of g(u), over all vertices u of Y labelled A,

is wt(A) − wt(A ∩ B), which is more than 1
8
![G : Ji], and this is more than the number

of vertices labelled A. Hence, there is some vertex u labelled A, with g(u) > 1. Similarly,

there is some vertex v labelled B with g(v) > 1. Let P be an embedded path in Y from u

to v.

Let p : C̃i → Ci be the covering corresponding to the subgroup Ki . The decomposition

of Ci into A and B pulls back to form a similar decomposition of C̃i . We obtain a similar

graph Ỹ . The covering map p : C̃i → Ci induces a map of graphs Ỹ → Y . (See Fig. 6.) Let

P̃ be the inverse image of P in Ỹ .

The valence of each vertex of P̃ is at least that of its image in P . When this image is

not an endpoint of P , the valence is therefore at least two. We shall show that each inverse

image of u and v has at least three edges of P̃ emanating from it. Let e be the edge of P

incident to u. Let U and E be the components of A and A ∩ B corresponding to u and e.

Fig. 6.
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The Main Theorem

Theorem (Lackenby, Long, Reid 08)
Let O be a 3-orbifold commensurable with a closed, orientable
hyperbolic 3-orbifold that contains Z/2Z× Z/2Z in its
fundamental group. Suppose that vb1 ≥ 4, then π1(O) is large.



3-Manifold Conjectures Hyperbolic Orbifolds Theorems on Largeness Main Theorem Applications

Two Lemmas I

The next result is the main reason why orbifolds with non-empty
singular locus are so useful to us.

Lemma
Let O be a compact orbifold, and let p be a prime, then
dp(O) ≥ b1(singp(O)).

Proof.

• Let M ′ is the manifold obtained by removing a regular
neighborhood of singp(O).

• π1(|O|) ∼= πorb
1 (O)/ << T >> and so dp(O) = dp(M ′).

• So by Poincaré duality we have that
dp(M ′) ≥ 1

2dp(∂M ′) ≥ b1(singp(O)).
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Two Lemmas II

Lemma (Lackenby, Long, Reid 08)
Let O be a compact, orientable 3-orbifold. Suppose that π1(O)
admits a surjective homomorphism φ onto Z such that some
component of sing0

p(O) has trivial image, for some prime p,
then π1(O) is large.

Proof.

• All torsion dies in Z so we factor φ through ψ : π1(|O|)→ Z.
• Let |Oi | be the covering corresponding to ψ−1(iZ), and let

Oi be the corresponding cover of O. Let C be the circle
component of sing0

p(O) with trivial image.
• Every lift of C to the cover |Oi | is a loop, and so

dp(Oi) ≥
∣∣sing0

p(O)
∣∣ ≥ [O,Oi ].
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Proof of Main Theorem I

We can now prove the main result

• Let O′ be a cover with b1(O) ≥ 4, and let O′′ be the
hyperbolic orbifold containing Z/2Z× Z/2Z,
commensurable with O.

• O′ and O′′ have a common, finite index, hyperbolic cover
O′′′, which in turn has a finite manifold cover M with b1 ≥ 4
that regularly covers O′′.

• The deck transformations of M → O′′ are
G = π1(O′′)/π1(M), and the quotient of the action of G on
M is O′′.

• Since π1(O′′) contains Z/2Z× Z/2Z some point of its
singular locus contains Z/2Z× Z/2Z in its local group, and
so G contains Z/2Z× Z/2Z.
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Proof of Main Theorem II

• Let h1 and h2 generate Z/2Z× Z/2Z in G, and h3 = h1h2.
All three elements are involutions of M, if we let Oi = M/hi
then Oi has non-empty sing0

2(Oi).

• If b1(Oi) ≥ 2 then we can find a homomorphism to Z from
the previous theorem.

• hi induces an automorphism hi∗ on H1(M,R)

• Since hi is an involution hi∗ decomposes H1(M,R) as a
product of eigenspaces.
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Proof of Main Theorem III

• b1(Oi) is the dimension of the 1-eigenspace of hi∗ .

• If either b1(O1) or b1(O2) is at least 2 we are done,
otherwise the dimension of the -1-eigenspace of h1∗ and
h2∗ are both at least 3.

• The intersection of these spaces has dimension at least 2,
which is contained in the 1-eigenspace of h3∗, and thus
b1(O3) ≥ 2.
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Generalized Triangle Group

I hope to use this theorem to study the following family of
groups

Gj = 〈a,b | a3,b3, ((ab)j(a−1b−1))2〉
These groups contain Z/2Z× Z/2Z. For small values of j many
of these groups have been shown to be large by using
computer algebra systems to explicitly find finite index
subgroups with b1 ≥ 4.
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Proof of 2⇒ 1

We need a few lemmas before we proceed

Lemma
Let G group with finite generating set S, and let Hi ≥ Ji be f.i.
normal subgroups of G. If Σ is the generating set from the
Reidermeister-Schreier process then

w(X (G/Ji),S) ≤ w(X (Hi/Ji),Σ) + 2 |S| [G : Hi ]

Lemma
Let A be a finite abelian group with finite generating set Σ, then

w(X (A,Σ)) ≤ 6 |Σ| |A|
b(|A| − 1)1/|Σ|c .
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Proof of 2⇒ 1
Proof of First Lemma

• An efficient ordering on X (Hi/Ji ,Σ) pulls back to an
ordering on the components of F .

464 M. Lackenby / Journal of Algebra 287 (2005) 458–473

Fig. 3.

As a result of the above lemma, we concentrate on the Cayley graph of the abelian group

Hi/Ji . The following lemma provides a useful upper bound on its width.

Lemma 3.4. Let A be a finite abelian group with finite generating set Σ . Then

w
(
X(A;Σ)

)
! 6|Σ ||A|

!(|A| − 1)1/|Σ |# .

Proof. We will construct an efficient ordering of the vertices of X(A;Σ) by placing them

on the unit circle in a suitable way. Give the circle a group structure, by identifying it with

C×, the multiplicative group of complex numbers with modulus one. Any homomorphism
φ :A → C× determines a point in (C×)|Σ |, given by the |Σ |-tuple (φ(s): s ∈ Σ). Define

c to be !(|A| − 1)1/|Σ |#, which is the denominator in the upper bound on w(X(A;Σ))

that we are trying to establish. We may assume that c is a positive integer; otherwise, there

is nothing to prove. Divide the circle C× into c equal arcs. This determines a decompo-

sition of (C×)|Σ | into c|Σ | < |A| boxes. There are precisely |A| distinct homomorphisms
A → C×, and hence two distinct homomorphisms are sent to the same box. Their quotient
is a non-trivial homomorphism φ :A → C×, such that |arg(φ(s))| ! 2π/c for all s ∈ Σ .

Here, we are taking arguments to lie in the range (−π,π].
Let σ be the element ofA/Ker(φ), such that φ(σ ) has smallest positive argument. Then

σ is a generator for A/Ker(φ). Let N be its order. Note that, for any s ∈ Σ that does not

lie in Ker(φ), N " 2π/| arg(φ(s))| " c. Since this is true for at least one s ∈ Σ , we deduce

that N " c.
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Proof of 2⇒ 1
Proof of Second Lemma

• To prove the second lemma we can find an homomorphism
from A to S1 that allows us to efficiently order the vertices
of A.

• To do this we find a non-trivial homomorphism where all
the generators of A are mapped close to 1 ∈ S1.

• This shows that the images of vertices of ∂Dn under this
ordering are close in S1

• This gives a bound on |∂Dn| since the images of A are
evenly spaced on S1.
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