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3-Manifold Conjectures

Virtually Haken Conjecture

e Definition
A compact, orientable, irreducible 3-manifold is Haken if it
contains an orientable, incompressible, embedded surface. A
3-manifold is virtually Haken if it is finitely covered by a Haken
manifold.

e Conjecture (Virtually Haken Conjecture)

Any compact, orientable, hyperbolic 3-manifold is virtually
Haken.



3-Manifold Conjectures

Virtual First Betti Number

e Definition
The first Betti number of a manifold M, denoted by(M), is the
rank of Hy(M, Q), and the virtual first Betti number of a manifold
M, denoted vb;(M) is equal to
max{bs(N) | N is a finite cover of M}, and oo if no such
maximum exists.
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The first Betti number of a manifold M, denoted by(M), is the
rank of Hy(M, Q), and the virtual first Betti number of a manifold
M, denoted vb;(M) is equal to
max{bs(N) | N is a finite cover of M}, and oo if no such
maximum exists.

o Conjecture (Positive Virtual Betti Number Conjecture)

For any compact, orientable, hyperbolic 3-manifold, M,
vby(M) > 0, or equivalently w1 (M) has infinite abelianization.



3-Manifold Conjectures

Virtual First Betti Number

e Definition
The first Betti number of a manifold M, denoted by(M), is the
rank of Hy(M, Q), and the virtual first Betti number of a manifold
M, denoted vb;(M) is equal to
max{bs(N) | N is a finite cover of M}, and oo if no such
maximum exists.

o Conjecture (Positive Virtual Betti Number Conjecture)

For any compact, orientable, hyperbolic 3-manifold, M,
vby(M) > 0, or equivalently w1 (M) has infinite abelianization.

e Conjecture (Infinite Virtual Betti Number Conjecture)

For any compact, orientable hyperbolic 3-manifold, M,
Vb1 (M ) = 0.



3-Manifold Conjectures

Largeness

o Definition
A group, G, is large if a finite index subgroup admits a

surjection onto a free non-abelian group. A manifold, M, is
large if its fundamental group is large.

e Conjecture (Largeness Conjecture)

The fundamental group of any closed, orientable hyperbolic
3-manifold is large.
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Relationships Between the Conjectures

e Largeness

%

¢ Infinite Virtual First Betti Number
A2

e Positive Virtual First Betti Number
(8

e Virtually Haken



3-Manifold Conjectures

The Main Theorem

One question that can be asked is when are these conjectures
equivalent. The following theorems provides a partial answer.

Theorem (Cooper, Long, Reid 97)

Let M be a compact, orientable, irreducible 3-manifold with
non-empty boundary. Then, either M is an I-bundle over a
surface with non-negative Euler characteristic or m1(M) is large.

Theorem (Lackenby, Long, Reid 08)

Let O be a 3-orbifold commensurable with a closed, orientable
hyperbolic 3-orbifold that contains Z./27. x 7./2Z in its
fundamental group. Suppose that vby; > 4, then w1 (O) is large.



Hyperbolic Orbifolds

Hyperbolic Orbifolds

Definition
A Kleinian Group is a discrete subgroup of PSL,(C)

Definition
Given a Kleinian group I', we call O = H3/T a hyperbolic
orbifold

Remark
If I contains no torsion this agrees with the standard notion of a
hyperbolic 3-manifold

Remark
When we think of O as a topological space we will denote it as
|O|, and we call this the underlying space.



Hyperbolic Orbifolds

Orbifold Fundamental Group

If I has no torsion, then as a topological space I' = 71(|O)),
however this is not the case if ' contains torsion. So for
orbifolds we make the following definition

Definition

If O = H3/T then the orbifold fundamental group of O denoted
7o (0) is equal to T.

However, most of the time we just refer to the fundamental
group as m1(0)

Remark

m1(|0|) = 79®(0)/ << T >>, where T is the set of elements

that do not act freely on HZ.



Hyperbolic Orbifolds

Singular Locus

Definition
Given a Kleinian group I, the singular locus of O = H3/T
denoted sing(O) is set of orbits 'x such that x is a fixed point of

some~y el

Definition
Given a hyperbolic orbifold O = H3/T the order of a point I'x is
the order of the finite group Iy.

¢ In a closed hyperbolic 3-orbifold the singular set is a
collection of simple closed curves labelled by integers and
trivalent graphs with edges labelled by integers.



Hyperbolic Orbifolds

Singular Locus cont.

We now focus on decomposing the singular locus of an orbifold

e Definition
Let sing®(O) be the components of sing(O) with zero Euler
characteristic.

o Definition
Given a prime p let singg(O) be the components of sing(O)
whose orders are divisible by p, and have zero Euler
characteristic.



Theorems on Largeness

A Sequence of Subgroups in F, |

¢ Let F be a free non-abelian group. Define the following
sequence, Ly = Fand L; 1 = [L;, Lj](L;)".

» Note that L;, 1 is characteristic in L;, and thus normal in F.

e By Schreier index formula d(L;) = (d(F) — 1)[F : Li] + 1
and L,'/L,'_H = (Z/iZ)d(Li).



Theorems on Largeness

A Sequence of Subgroups in F, I

This sequence has the following properties
(i) Lj/Ljy4 is abelian for each i
(ii) limj_oo((log[L; : Livq])/[F : Lj]) = o0
(iii) limsup;((d(Li/Li+1))/[F : Li]) > 0.
o If Gis large we can pull this sequence back to G and find a
sequence {G;} with the same properties.

e |t turns out that when G is finitely presented this
characterizes large groups.



Theorems on Largeness

The Characterization Theorem

Theorem (Lackenby 05)
Let G be a finitely presented group then the following are
equivalent

1. Gislarge

2. there exists a sequence Gy > Go > ... of finite index
subgroups of G, each normal in Gy, such that
(i) Gi/Git1 is abelian for every i
(II) Iim,-_m((log[G,- : G,’+1])/[GZ G,]) = 00
(iii) limsup;(d(Gi/Gi1)/[G: Gi]) > 0



Theorems on Largeness

The Characterization Theorem

In fact a slightly stronger theorem holds

Theorem (Lackenby 05)

Let G be finitely presented, and suppose that for each natural
number i, there is a triple H; > J; > K; of finite index normal
subgroups of G such that

1. H;/J; is abelian for all i

2. limj_oo((log[H; : J))/[G : Hi]) = oo

3. limsup;(d(J;i/Ki)/[G : Jj]) >0
Then K; admits a surjection onto a free non-abelian group for
infinitely many i.



Theorems on Largeness

The Characterization Theorem
Weaker Version

We will only need the following weaker theorem

Theorem (Lackenby, Long, Reid 08)

Let G be a finitely presented group, and let ¢ : G — Z be a
surjective homomorphism. Let G; = ¢~'(iZ), and suppose that
for some prime {G;} has linear growth of mod-p homology, then
G is large.

Before proceeding we need a few preliminaries.



Theorems on Largeness

Graph Boundary

Definition

Given a subset A of vertices of a graph X we define the
boundary of A, denoted J(A), is the set of edges of X that have
one vertex in A and the other in A,

oA I‘l



Theorems on Largeness

Width

Definition

Let X be a finite graph. Given an ordering on V(X), for

1 < n<|V(X)|let D, be the first n vertices, then the width of
the ordering is the max, |0(Dp)|. The width of the graph X,
denoted w(X) is the minimal width over all possible orderings
of its vertices.

e The width of an ordering can be visualized by embedding
the graph in R® and looking at its intersection with planes.




Theorems on Largeness

Schreier Coset Graphs

e Definition
Given a group G with generating set S and a subgroup H of G
then the Schreier coset graph for G/H with respect to S is the
graph, X(G/H, S), with vertex set G/H and edges of the form
{Hg, Hgs}, where s € SU S~ 1.

Remark
The width of a Schreier coset graph depends on the choice of
generators, however it is still a coarse invariant.



Theorems on Largeness

Linear Growth Mod-p Homology

Definition

Given a finitely generated group G we define its Mod-p 1st
homology group, denoted H;(G,F,) to be G/[G, G]G. Given
an orbifold, O, H;(O,Fp) = Hy(71(O),Fp).

Definition
For a finitely generated group G define d,(G) to be the rank of
Hi(G,Fp).

Definition

Given a sequence {G;} of finite index subgroups of G we say
that { G;} has linear growth of Mod-p homology if

inf; dp(Gi)/[G : Gi] > 0.



Theorems on Largeness

The Characterization Theorem

Weaker Version

A reminder of the theorem.

Theorem (Lackenby, Long, Reid 08)

Let G be a finitely presented group, and let ¢ : G — Z be a
surjective homomorphism. Let G; = ¢~ '(iZ), and suppose that

for some prime {G;} has linear growth of mod-p homology, then
G is large.



Theorems on Largeness

Proof of Characterization Theorem |
The Weak Version

e The proof of the full characterization theorem requires a
few technical lemmas in order to show that
w(X(G/J))/[G: Ji] — 0.

o Let H; = G, J; = ¢~ '(iZ), where ¢ is the surjective
homomorphism to Z, K; = [J;, Ji]JP, where p is some
prime.

» Surjectivity of ¢ gives (1) and (2), and linear growth of
Mod-p homology gives (3).



Theorems on Largeness

Proof of Characterization Theorem |l

The Weak Version
e Since G/J; = Z/iZ we get a natural ordering of the

vertices of X(G/J)).
e The mapping to Z gives a maximum length of generators,
and thus a uniform upper bound on |0(D)].

e Since [G: Jj] = i, we see that w(X(G/J;))/|G : Ji] — O.




Theorems on Largeness

Proof of Characterization Theorem

For sufficiently large i let C; be a 2-complex with

m1(Cj) = Ji and X(G/J;, S) its 1-skeleton.

A minimal width ordering on the vertices of X(G/J;, S) can
be extended linearly to all of C; and then perturbed to an
appropriate Morse function, f, on the interior of C;
Forevery 1 < n <|V(X(G/J;, S))| we can decompose C;
into Ay = f~'(—oo,n+1/2]and B, = f~1[n+1/2, x0)

For an appropriate n the fundamental groups of the
components of A, and B, will have a sufficient number of
generators in J;/K;



Theorems on Largeness

The Decomposition




Theorems on Largeness

Proof of Characterization Theorem

» We use this decomposition to collapse C; to a graph, Y

« Pull this decomposition of C; back to the covering é,-
corresponding to K; and collapse C; to a similar graph.

e Since w(X(G/J;))/[G: Ji] — 0and
limsup; d(J;i/Ki)/[G : Jj] > 0 there will be vertices with at
least 3 edges emanating from them in Y.

glg

.



Main Theorem

The Main Theorem

Theorem (Lackenby, Long, Reid 08)

Let O be a 3-orbifold commensurable with a closed, orientable
hyperbolic 3-orbifold that contains /27 x 7./2Z in its
fundamental group. Suppose that vby; > 4, then =1 (O) is large.



Main Theorem

Two Lemmas |

The next result is the main reason why orbifolds with non-empty
singular locus are so useful to us.

Lemma
Let O be a compact orbifold, and let p be a prime, then
dp(O) > by(singp(0)).

Proof.
e Let M is the manifold obtained by removing a regular
neighborhood of singy(O).
o T(|0]) 2 79(0)/ << T >> and so dy(0) = dp(M").

¢ So by Poincaré duality we have that
dp(M') > %dp(aM’) > by(singp(0)).



Main Theorem

Two Lemmas I

Lemma (Lackenby, Long, Reid 08)

Let O be a compact, orientable 3-orbifold. Suppose that 71(O)
admits a surjective homomorphism ¢ onto 7. such that some
component of singg(O) has trivial image, for some prime p,
then 71(O) is large.

Proof.

« All torsion dies in Z so we factor ¢ through v : 71(|O|) — Z.

« Let |O;| be the covering corresponding to v~ '(iZ), and let
O; be the corresponding cover of O. Let C be the circle
component of sing3(O) with trivial image.

. Every lift of C to the cover || is a loop, and so
db(0)) > |singl(0)| > 0. 0.



Main Theorem

Proof of Main Theorem |

We can now prove the main result

o Let O' be a cover with b;(O) > 4, and let O” be the
hyperbolic orbifold containing Z/27Z x 7./2Z,
commensurable with O.

o O and O” have a common, finite index, hyperbolic cover
O, which in turn has a finite manifold cover M with by > 4
that regularly covers O”.

o The deck transformations of M — O” are
G = m1(0")/m1(M), and the quotient of the action of G on
Mis O".

« Since 71(O") contains Z/2Z x Z/2Z some point of its
singular locus contains Z /27 x 7Z/2Z in its local group, and
so G contains Z/27Z x 7./ 2.



Main Theorem

Proof of Main Theorem Il

Let hy and hy generate Z/27 x Z./27 in G, and hz = hy ho.
All three elements are involutions of M, if we let O; = M/h;
then O; has non-empty sing3(O;).

If b1(O;) > 2 then we can find a homomorphism to Z from
the previous theorem.

h; induces an automorphism h;, on H;(M,R)

Since h; is an involution h;, decomposes Hi(M,R) as a
product of eigenspaces.



Main Theorem

Proof of Main Theorem ll|

* bi(O;j) is the dimension of the 1-eigenspace of h;, .

o If either by(Oy) or by(Oy) is at least 2 we are done,
otherwise the dimension of the -1-eigenspace of hy, and
ho, are both at least 3.

¢ The intersection of these spaces has dimension at least 2,
which is contained in the 1-eigenspace of hs,, and thus
b1(03) > 2.



Applications

Generalized Triangle Group

| hope to use this theorem to study the following family of
groups

Gj=(a,b| a, b ((aby(a b "))?)
These groups contain Z /27 x 7Z./27.. For small values of j many
of these groups have been shown to be large by using
computer algebra systems to explicitly find finite index
subgroups with by > 4.



Applications

Proof of 2 = 1

We need a few lemmas before we proceed

Lemma

Let G group with finite generating set S, and let H; > J; be f.i.
normal subgroups of G. If ¥ is the generating set from the
Reidermeister-Schreier process then

w(X(G/Ji), S) < w(X(Hi/Ji), X) + 2|S|[G : Hi]

Lemma
Let A be a finite abelian group with finite generating set ¥, then

61| |A|

WX(AD) < gyl



Applications

Proof of 2 = 1

Proof of First Lemma

» An efficient ordering on X(H;/J;, ) pulls back to an
ordering on the components of F.

cr e
X(G/J;3S) X(H;/J;Z)

Collapse F
—_—

l !

C' C'
X(G/H;:S) X(Hi/H;:E)

Collapse T



Applications

Proof of 2 = 1

Proof of Second Lemma

To prove the second lemma we can find an homomorphism
from Ato S' that allows us to efficiently order the vertices
of A.

To do this we find a non-trivial homomorphism where all
the generators of A are mapped close to 1 € S'.

This shows that the images of vertices of 9D, under this
ordering are close in S’

This gives a bound on |0D,| since the images of A are
evenly spaced on S'.
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