▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Conditions for the Equivalence of Largeness and Positive *vb*<sub>1</sub>

Sam Ballas

November 27, 2009

Main Theore

Applications



**3-Manifold Conjectures** 

Hyperbolic Orbifolds

Theorems on Largeness

Main Theorem

Applications



# Virtually Haken Conjecture

#### Definition

A compact, orientable, irreducible 3-manifold is *Haken* if it contains an orientable, incompressible, embedded surface. A 3-manifold is *virtually Haken* if it is finitely covered by a Haken manifold.

• Conjecture (Virtually Haken Conjecture)

Any compact, orientable, hyperbolic 3-manifold is virtually Haken.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

# Virtual First Betti Number

#### • Definition

The *first Betti number* of a manifold *M*, denoted  $b_1(M)$ , is the rank of  $H_1(M, \mathbb{Q})$ , and the *virtual first Betti number* of a manifold *M*, denoted  $vb_1(M)$  is equal to  $\max\{b_1(N) \mid N \text{ is a finite cover of } M\}$ , and  $\infty$  if no such maximum exists.

- Conjecture (Positive Virtual Betti Number Conjecture)
   For any compact, orientable, hyperbolic 3-manifold, M,
   vb<sub>1</sub>(M) > 0, or equivalently π<sub>1</sub>(M) has infinite abelianization.
- Conjecture (Infinite Virtual Betti Number Conjecture) For any compact, orientable hyperbolic 3-manifold, M, vb₁(M) = ∞.

# Virtual First Betti Number

### • Definition

The *first Betti number* of a manifold *M*, denoted  $b_1(M)$ , is the rank of  $H_1(M, \mathbb{Q})$ , and the *virtual first Betti number* of a manifold *M*, denoted  $vb_1(M)$  is equal to  $\max\{b_1(N) \mid N \text{ is a finite cover of } M\}$ , and  $\infty$  if no such maximum exists.

- Conjecture (Positive Virtual Betti Number Conjecture)
   For any compact, orientable, hyperbolic 3-manifold, M,
   vb<sub>1</sub>(M) > 0, or equivalently π<sub>1</sub>(M) has infinite abelianization.
- Conjecture (Infinite Virtual Betti Number Conjecture) *For any compact, orientable hyperbolic 3-manifold, M, vb*<sub>1</sub>(*M*) = ∞.

# Virtual First Betti Number

### • Definition

The *first Betti number* of a manifold *M*, denoted  $b_1(M)$ , is the rank of  $H_1(M, \mathbb{Q})$ , and the *virtual first Betti number* of a manifold *M*, denoted  $vb_1(M)$  is equal to  $\max\{b_1(N) \mid N \text{ is a finite cover of } M\}$ , and  $\infty$  if no such maximum exists.

- Conjecture (Positive Virtual Betti Number Conjecture) For any compact, orientable, hyperbolic 3-manifold, M, vb<sub>1</sub>(M) > 0, or equivalently π<sub>1</sub>(M) has infinite abelianization.
- Conjecture (Infinite Virtual Betti Number Conjecture) For any compact, orientable hyperbolic 3-manifold, M, vb₁(M) = ∞.



#### Definition

A group, *G*, is *large* if a finite index subgroup admits a surjection onto a free non-abelian group. A manifold, *M*, is large if its fundamental group is large.

### Conjecture (Largeness Conjecture)

The fundamental group of any closed, orientable hyperbolic 3-manifold is large.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# **Relationships Between the Conjectures**

# Largeness ↓

# Infinite Virtual First Betti Number ↓

- Positive Virtual First Betti Number
   ↓
- Virtually Haken

### The Main Theorem

One question that can be asked is when are these conjectures equivalent. The following theorems provides a partial answer.

### Theorem (Cooper, Long, Reid 97)

Let M be a compact, orientable, irreducible 3-manifold with non-empty boundary. Then, either M is an I-bundle over a surface with non-negative Euler characteristic or  $\pi_1(M)$  is large.

### Theorem (Lackenby, Long, Reid 08)

Let O be a 3-orbifold commensurable with a closed, orientable hyperbolic 3-orbifold that contains  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$  in its fundamental group. Suppose that  $vb_1 \ge 4$ , then  $\pi_1(O)$  is large.

# Hyperbolic Orbifolds

#### Definition

A Kleinian Group is a discrete subgroup of  $PSL_2(\mathbb{C})$ 

#### Definition

Given a Kleinian group  $\Gamma,$  we call  $\textit{O} = \mathbb{H}^3/\Gamma$  a hyperbolic orbifold

#### Remark

If  $\Gamma$  contains no torsion this agrees with the standard notion of a hyperbolic 3-manifold

#### Remark

When we think of O as a topological space we will denote it as |O|, and we call this the underlying space.

# **Orbifold Fundamental Group**

If  $\Gamma$  has no torsion, then as a topological space  $\Gamma = \pi_1(|O|)$ , however this is not the case if  $\Gamma$  contains torsion. So for orbifolds we make the following definition

#### Definition

If  $O = \mathbb{H}^3/\Gamma$  then the *orbifold fundamental group of O* denoted  $\pi_1^{orb}(O)$  is equal to  $\Gamma$ .

However, most of the time we just refer to the fundamental group as  $\pi_1(O)$ 

#### Remark

 $\pi_1(|O|) \cong \pi_1^{orb}(O) / \ll T >>$ , where *T* is the set of elements that do not act freely on  $\mathbb{H}^3$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Singular Locus

### Definition

Given a Kleinian group  $\Gamma$ , the *singular locus of*  $O = \mathbb{H}^3/\Gamma$  denoted *sing*(*O*) is set of orbits  $\Gamma x$  such that *x* is a fixed point of some  $\gamma \in \Gamma$ 

#### Definition

Given a hyperbolic orbifold  $O = \mathbb{H}^3/\Gamma$  the order of a point  $\Gamma x$  is the order of the finite group  $\Gamma_x$ .

• In a closed hyperbolic 3-orbifold the singular set is a collection of simple closed curves labelled by integers and trivalent graphs with edges labelled by integers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

# Singular Locus cont.

We now focus on decomposing the singular locus of an orbifold

#### Definition

Let  $sing^{0}(O)$  be the components of sing(O) with zero Euler characteristic.

#### • Definition

Given a prime *p* let  $sing_p^0(O)$  be the components of sing(O) whose orders are divisible by *p*, and have zero Euler characteristic.

▲□▶▲□▶▲□▶▲□▶ □ のQで

# A Sequence of Subgroups in $F_n$ I

- Let F be a free non-abelian group. Define the following sequence, L<sub>1</sub> = F and L<sub>i+1</sub> = [L<sub>i</sub>, L<sub>i</sub>](L<sub>i</sub>)<sup>i</sup>.
- Note that *L*<sub>*i*+1</sub> is characteristic in *L*<sub>*i*</sub>, and thus normal in *F*.
- By Schreier index formula *d*(*L<sub>i</sub>*) = (*d*(*F*) − 1)[*F* : *L<sub>i</sub>*] + 1 and *L<sub>i</sub>/L<sub>i+1</sub>* = (ℤ/*i*ℤ)<sup>*d*(*L<sub>i</sub>*).
  </sup>

# A Sequence of Subgroups in $F_n$ II

This sequence has the following properties

- (i)  $L_i/L_{i+1}$  is abelian for each *i*
- (ii)  $\lim_{i\to\infty}((\log[L_i:L_{i+1}])/[F:L_i]) = \infty$

(iii)  $\limsup_i ((d(L_i/L_{i+1}))/[F:L_i]) > 0.$ 

- If G is large we can pull this sequence back to G and find a sequence {G<sub>i</sub>} with the same properties.
- It turns out that when *G* is finitely presented this characterizes large groups.

# The Characterization Theorem

### Theorem (Lackenby 05)

Let G be a finitely presented group then the following are equivalent

- 1. G is large
- 2. there exists a sequence  $G_1 \ge G_2 \ge ...$  of finite index subgroups of *G*, each normal in  $G_1$ , such that
  - (i)  $G_i/G_{i+1}$  is abelian for every i
  - (ii)  $\lim_{i\to\infty}((\log[G_i:G_{i+1}])/[G:G_i]) = \infty$
  - (iii)  $\limsup_{i} (d(G_i/G_{i+1})/[G:G_i]) > 0$

# The Characterization Theorem

In fact a slightly stronger theorem holds

### Theorem (Lackenby 05)

Let G be finitely presented, and suppose that for each natural number *i*, there is a triple  $H_i \ge J_i \ge K_i$  of finite index normal subgroups of G such that

- 1.  $H_i/J_i$  is abelian for all i
- 2.  $\lim_{i\to\infty}((\log[H_i:J_i])/[G:H_i]) = \infty$
- 3.  $\limsup_{i} (d(J_i/K_i)/[G:J_i]) > 0$

Then  $K_i$  admits a surjection onto a free non-abelian group for infinitely many *i*.

Applications

# The Characterization Theorem

#### Weaker Version

#### We will only need the following weaker theorem

### Theorem (Lackenby, Long, Reid 08)

Let G be a finitely presented group, and let  $\phi : G \to \mathbb{Z}$  be a surjective homomorphism. Let  $G_i = \phi^{-1}(i\mathbb{Z})$ , and suppose that for some prime  $\{G_i\}$  has linear growth of mod-p homology, then G is large.

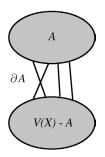
Before proceeding we need a few preliminaries.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんぐ

### **Graph Boundary**

#### Definition

Given a subset *A* of vertices of a graph *X* we define the *boundary of A*, denoted  $\partial(A)$ , is the set of edges of *X* that have one vertex in *A* and the other in  $A^C$ .



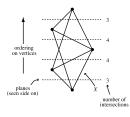
◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

# Width

### Definition

Let *X* be a finite graph. Given an ordering on V(X), for  $1 \le n \le |V(X)|$  let  $D_n$  be the first *n* vertices, then the *width of the ordering* is the max<sub>n</sub>  $|\partial(D_n)|$ . The *width* of the graph *X*, denoted w(X) is the minimal width over all possible orderings of its vertices.

• The width of an ordering can be visualized by embedding the graph in  $\mathbb{R}^3$  and looking at its intersection with planes.



# Schreier Coset Graphs

#### Definition

Given a group *G* with generating set *S* and a subgroup *H* of *G* then the *Schreier coset graph for G/H with respect to S* is the graph, X(G/H, S), with vertex set *G/H* and edges of the form  $\{Hg, Hgs\}$ , where  $s \in S \cup S^{-1}$ .

#### Remark

The width of a Schreier coset graph depends on the choice of generators, however it is still a coarse invariant.

# Linear Growth Mod-*p* Homology

#### Definition

Given a finitely generated group *G* we define its Mod-*p* 1st homology group, denoted  $H_1(G, \mathbb{F}_p)$  to be  $G/[G, G]G^p$ . Given an orbifold, *O*,  $H_1(O, \mathbb{F}_p) = H_1(\pi_1(O), \mathbb{F}_p)$ .

#### Definition

For a finitely generated group *G* define  $d_p(G)$  to be the rank of  $H_1(G, \mathbb{F}_p)$ .

#### Definition

Given a sequence  $\{G_i\}$  of finite index subgroups of *G* we say that  $\{G_i\}$  has linear growth of Mod-*p* homology if  $\inf_i d_p(G_i)/[G:G_i] > 0$ .

Applications

# The Characterization Theorem

Weaker Version

A reminder of the theorem.

### Theorem (Lackenby, Long, Reid 08)

Let G be a finitely presented group, and let  $\phi : G \to \mathbb{Z}$  be a surjective homomorphism. Let  $G_i = \phi^{-1}(i\mathbb{Z})$ , and suppose that for some prime  $\{G_i\}$  has linear growth of mod-p homology, then G is large.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

### Proof of Characterization Theorem I The Weak Version

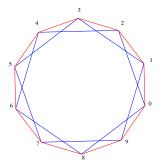
- The proof of the full characterization theorem requires a few technical lemmas in order to show that  $w(X(G/J_i))/[G:J_i] \rightarrow 0.$
- Let H<sub>i</sub> = G, J<sub>i</sub> = φ<sup>-1</sup>(iZ), where φ is the surjective homomorphism to Z, K<sub>i</sub> = [J<sub>i</sub>, J<sub>i</sub>]J<sup>p</sup><sub>i</sub>, where p is some prime.
- Surjectivity of φ gives (1) and (2), and linear growth of Mod-p homology gives (3).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

# Proof of Characterization Theorem II

#### The Weak Version

- Since G/J<sub>i</sub> ≃ Z/iZ we get a natural ordering of the vertices of X(G/J<sub>i</sub>).
- The mapping to Z gives a maximum length of generators, and thus a uniform upper bound on |∂(D<sub>n</sub>)|.
- Since  $[G: J_i] = i$ , we see that  $w(X(G/J_i))/[G: J_i] \rightarrow 0$ .



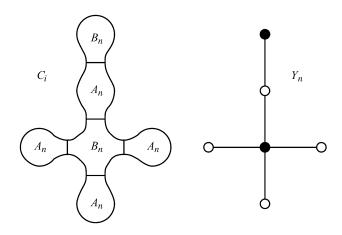
(日) (日) (日) (日) (日) (日) (日)

## Proof of Characterization Theorem

- For sufficiently large *i* let  $C_i$  be a 2-complex with  $\pi_1(C_i) = J_i$  and  $X(G/J_i, S)$  its 1-skeleton.
- A minimal width ordering on the vertices of *X*(*G*/*J<sub>i</sub>*, *S*) can be extended linearly to all of *C<sub>i</sub>* and then perturbed to an appropriate Morse function, *f*, on the interior of *C<sub>i</sub>*
- For every  $1 \le n \le |V(X(G/J_i, S))|$  we can decompose  $C_i$ into  $A_n = f^{-1}(-\infty, n+1/2]$  and  $B_n = f^{-1}[n+1/2, \infty)$
- For an appropriate *n* the fundamental groups of the components of *A<sub>n</sub>* and *B<sub>n</sub>* will have a sufficient number of generators in *J<sub>i</sub>/K<sub>i</sub>*

Applications

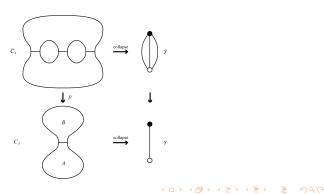
### The Decomposition



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べで

# Proof of Characterization Theorem

- We use this decomposition to collapse C<sub>i</sub> to a graph, Y
- Pull this decomposition of C<sub>i</sub> back to the covering C̃<sub>i</sub> corresponding to K<sub>i</sub> and collapse C̃<sub>i</sub> to a similar graph.
- Since w(X(G/J<sub>i</sub>))/[G : J<sub>i</sub>] → 0 and lim sup<sub>i</sub> d(J<sub>i</sub>/K<sub>i</sub>)/[G : J<sub>i</sub>] > 0 there will be vertices with at least 3 edges emanating from them in Ỹ.



Main Theorem

イロト イポト イヨト イヨト ヨー のくぐ

Applications

### The Main Theorem

#### Theorem (Lackenby, Long, Reid 08)

Let O be a 3-orbifold commensurable with a closed, orientable hyperbolic 3-orbifold that contains  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$  in its fundamental group. Suppose that  $vb_1 \ge 4$ , then  $\pi_1(O)$  is large.

(日) (日) (日) (日) (日) (日) (日)

### Two Lemmas I

The next result is the main reason why orbifolds with non-empty singular locus are so useful to us.

#### Lemma

Let O be a compact orbifold, and let p be a prime, then  $d_p(O) \ge b_1(sing_p(O))$ .

Proof.

- Let *M*' is the manifold obtained by removing a regular neighborhood of sing<sub>p</sub>(O).
- $\pi_1(|O|) \cong \pi_1^{orb}(O) / << T >> \text{ and so } d_p(O) = d_p(M').$
- So by Poincaré duality we have that  $d_p(M') \ge \frac{1}{2}d_p(\partial M') \ge b_1(sing_p(O)).$

(日) (日) (日) (日) (日) (日) (日)

# Two Lemmas II

### Lemma (Lackenby, Long, Reid 08)

Let O be a compact, orientable 3-orbifold. Suppose that  $\pi_1(O)$  admits a surjective homomorphism  $\phi$  onto  $\mathbb{Z}$  such that some component of  $\operatorname{sing}_{\rho}^0(O)$  has trivial image, for some prime p, then  $\pi_1(O)$  is large.

#### Proof.

- All torsion dies in  $\mathbb{Z}$  so we factor  $\phi$  through  $\psi : \pi_1(|\mathcal{O}|) \to \mathbb{Z}$ .
- Let |O<sub>i</sub>| be the covering corresponding to ψ<sup>-1</sup>(iZ), and let O<sub>i</sub> be the corresponding cover of O. Let C be the circle component of sing<sup>0</sup><sub>p</sub>(O) with trivial image.
- Every lift of *C* to the cover  $|O_i|$  is a loop, and so  $d_p(O_i) \ge |sing_p^0(O)| \ge [O, O_i].$

# Proof of Main Theorem I

We can now prove the main result

- Let O' be a cover with b<sub>1</sub>(O) ≥ 4, and let O" be the hyperbolic orbifold containing Z/2Z × Z/2Z, commensurable with O.
- O' and O" have a common, finite index, hyperbolic cover O", which in turn has a finite manifold cover M with b<sub>1</sub> ≥ 4 that regularly covers O".
- The deck transformations of  $M \rightarrow O''$  are  $G = \pi_1(O'')/\pi_1(M)$ , and the quotient of the action of G on M is O''.
- Since π<sub>1</sub>(O") contains Z/2Z × Z/2Z some point of its singular locus contains Z/2Z × Z/2Z in its local group, and so G contains Z/2Z × Z/2Z.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

# Proof of Main Theorem II

- Let *h*<sub>1</sub> and *h*<sub>2</sub> generate Z/2Z × Z/2Z in *G*, and *h*<sub>3</sub> = *h*<sub>1</sub>*h*<sub>2</sub>. All three elements are involutions of *M*, if we let *O<sub>i</sub>* = *M*/*h<sub>i</sub>* then *O<sub>i</sub>* has non-empty *sing*<sup>0</sup><sub>2</sub>(*O<sub>i</sub>*).
- If b<sub>1</sub>(O<sub>i</sub>) ≥ 2 then we can find a homomorphism to Z from the previous theorem.
- $h_i$  induces an automorphism  $h_{i_*}$  on  $H_1(M, \mathbb{R})$
- Since *h<sub>i</sub>* is an involution *h<sub>i</sub>* decomposes *H*<sub>1</sub>(*M*, ℝ) as a product of eigenspaces.

# Proof of Main Theorem III

- $b_1(O_i)$  is the dimension of the 1-eigenspace of  $h_{i_*}$ .
- If either b<sub>1</sub>(O<sub>1</sub>) or b<sub>1</sub>(O<sub>2</sub>) is at least 2 we are done, otherwise the dimension of the -1-eigenspace of h<sub>1\*</sub> and h<sub>2\*</sub> are both at least 3.
- The intersection of these spaces has dimension at least 2, which is contained in the 1-eigenspace of *h*<sub>3\*</sub>, and thus *b*<sub>1</sub>(*O*<sub>3</sub>) ≥ 2.

# Generalized Triangle Group

I hope to use this theorem to study the following family of groups

$$G_j = \langle a, b \mid a^3, b^3, ((ab)^j (a^{-1}b^{-1}))^2 \rangle$$

These groups contain  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ . For small values of *j* many of these groups have been shown to be large by using computer algebra systems to explicitly find finite index subgroups with  $b_1 \ge 4$ .

# Proof of $2 \Rightarrow 1$

We need a few lemmas before we proceed

#### Lemma

Let G group with finite generating set S, and let  $H_i \ge J_i$  be f.i. normal subgroups of G. If  $\Sigma$  is the generating set from the Reidermeister-Schreier process then

$$w(X(G/J_i), S) \leq w(X(H_i/J_i), \Sigma) + 2|S|[G:H_i]$$

#### Lemma

Let A be a finite abelian group with finite generating set  $\Sigma$ , then

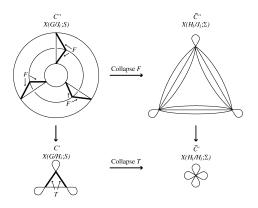
$$w(X(A,\Sigma)) \leq rac{6 |\Sigma| |A|}{\lfloor (|A|-1)^{1/|\Sigma|} 
floor}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

Applications

#### Proof of $2 \Rightarrow 1$ Proof of First Lemma

An efficient ordering on X(H<sub>i</sub>/J<sub>i</sub>, Σ) pulls back to an ordering on the components of F.



### Proof of $2 \Rightarrow 1$ Proof of Second Lemma

- To prove the second lemma we can find an homomorphism from *A* to *S*<sup>1</sup> that allows us to efficiently order the vertices of *A*.
- To do this we find a non-trivial homomorphism where all the generators of A are mapped close to 1 ∈ S<sup>1</sup>.
- This shows that the images of vertices of ∂D<sub>n</sub> under this ordering are close in S<sup>1</sup>
- This gives a bound on |∂D<sub>n</sub>| since the images of A are evenly spaced on S<sup>1</sup>.