Flexibility and Rigidity of 3-Dimensional Convex Projective Structures

Sam Ballas

April 24, 2013 Thesis Defense

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

What is Convex Projective Geometry?

 Convex projective geometry is a generalization of hyperbolic geometry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What is Convex Projective Geometry?

 Convex projective geometry is a generalization of hyperbolic geometry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Retains many features of hyperbolic geometry.

What is Convex Projective Geometry?

 Convex projective geometry is a generalization of hyperbolic geometry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Retains many features of hyperbolic geometry.
- No Mostow rigidity.

- There is a natural action of \mathbb{R}^{\times} on $\mathbb{R}^{n+1} \setminus \{0\}$ by scaling.
- Let $\mathbb{R}P^n = P(\mathbb{R}^{n+1} \setminus \{0\})$ be the quotient of this action.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- There is a natural action of \mathbb{R}^{\times} on $\mathbb{R}^{n+1} \setminus \{0\}$ by scaling.
- Let $\mathbb{R}P^n = P(\mathbb{R}^{n+1} \setminus \{0\})$ be the quotient of this action.

• Alternatively, $\mathbb{R}P^n$ is the space of lines in \mathbb{R}^{n+1}

- There is a natural action of \mathbb{R}^{\times} on $\mathbb{R}^{n+1} \setminus \{0\}$ by scaling.
- Let $\mathbb{R}P^n = P(\mathbb{R}^{n+1} \setminus \{0\})$ be the quotient of this action.
- Alternatively, $\mathbb{R}P^n$ is the space of lines in \mathbb{R}^{n+1}
- A Projective Line is the projectivization of a 2-plane in ℝⁿ⁺¹

- There is a natural action of ℝ[×] on ℝⁿ⁺¹\{0} by scaling.
- Let $\mathbb{R}P^n = P(\mathbb{R}^{n+1} \setminus \{0\})$ be the quotient of this action.
- Alternatively, $\mathbb{R}P^n$ is the space of lines in \mathbb{R}^{n+1}
- A *Projective Line* is the projectivization of a 2-plane in \mathbb{R}^{n+1}

 A Projective Hyperplane is the projectivization of an n−plane in ℝⁿ⁺¹.

- There is a natural action of \mathbb{R}^{\times} on $\mathbb{R}^{n+1} \setminus \{0\}$ by scaling.
- Let $\mathbb{R}P^n = P(\mathbb{R}^{n+1} \setminus \{0\})$ be the quotient of this action.
- Alternatively, $\mathbb{R}P^n$ is the space of lines in \mathbb{R}^{n+1}
- A *Projective Line* is the projectivization of a 2-plane in \mathbb{R}^{n+1}

- A Projective Hyperplane is the projectivization of an n−plane in ℝⁿ⁺¹.
- The automorphism group of $\mathbb{R}P^n$ is $\mathrm{PGL}_{n+1}(\mathbb{R}) := \mathrm{GL}_{n+1}(\mathbb{R})/\mathbb{R}^{\times}$.

A Splitting of $\mathbb{R}P^n$

- Let *H* be a hyperplane in \mathbb{R}^{n+1} .
- *H* gives rise to a splitting of $\mathbb{R}P^n = \mathbb{R}^n \sqcup \mathbb{R}P^{n-1}$ into an affine part and an ideal part (inhomogeneous coordinates).

(日) (日) (日) (日) (日) (日) (日)

A Splitting of $\mathbb{R}P^n$

- Let *H* be a hyperplane in \mathbb{R}^{n+1} .
- *H* gives rise to a splitting of $\mathbb{R}P^n = \mathbb{R}^n \sqcup \mathbb{R}P^{n-1}$ into an affine part and an ideal part (inhomogeneous coordinates).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A Splitting of $\mathbb{R}P^n$

- Let *H* be a hyperplane in \mathbb{R}^{n+1} .
- *H* gives rise to a splitting of ℝPⁿ = ℝⁿ ⊔ ℝPⁿ⁻¹ into an affine part and an ideal part (inhomogeneous coordinates).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

• $\mathbb{R}P^n \setminus P(H)$ is called an *affine patch*.

The Klein Model

- Let $\langle x, y \rangle = x_1y_1 + \ldots + x_ny_n x_{n+1}y_{n+1}$ be standard form of signature (n, 1) on \mathbb{R}^{n+1} .
- Let $C = \{x \in \mathbb{R}^{n+1} | \langle x, x \rangle < 0\}$
- P(C) is the Klein model of \mathbb{H}^n .
- In the affine patch defined by H it is a disk.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Convex: Intersection with projective lines is connected.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● ● ● ●

- Convex: Intersection with projective lines is connected.
- Properly Convex: Convex and closure is contained in an affine patch ⇐⇒ Disjoint from some projective hyperplane.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

- Convex: Intersection with projective lines is connected.
- Properly Convex: Convex and closure is contained in an affine patch ⇐⇒ Disjoint from some projective hyperplane.
- *Strictly Convex*: Properly convex and boundary contains no non-trivial projective line segments.

(日) (日) (日) (日) (日) (日) (日)

- Convex: Intersection with projective lines is connected.
- *Strictly Convex*: Properly convex and boundary contains no non-trivial projective line segments.

Convex projective geometry focuses on the geometry of properly (sometimes stictly) convex domains.

Let Ω be a properly convex set and PGL(Ω) be the projective automorphisms preserving Ω .

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q ()

Let Ω be a properly convex set and PGL(Ω) be the projective automorphisms preserving Ω .

Every properly convex set Ω admits a Hilbert metric given by

$$d_{\Omega}(x,y) = \log[a,x;y,b] = \log\left(rac{|x-b||y-a|}{|x-a||y-b|}
ight)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Let Ω be a properly convex set and PGL(Ω) be the projective automorphisms preserving Ω .

Every properly convex set Ω admits a Hilbert metric given by

$$d_\Omega(x,y) = \log[a,x;y,b] = \log\left(rac{|x-b|\,|y-a|}{|x-a|\,|y-b|}
ight)$$

• When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Let Ω be a properly convex set and PGL(Ω) be the projective automorphisms preserving Ω .

Every properly convex set Ω admits a Hilbert metric given by

$$d_\Omega(x,y) = \log[a,x;y,b] = \log\left(rac{|x-b|\,|y-a|}{|x-a|\,|y-b|}
ight)$$

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.

(日) (日) (日) (日) (日) (日) (日)

Let Ω be a properly convex set and PGL(Ω) be the projective automorphisms preserving Ω .

Every properly convex set $\boldsymbol{\Omega}$ admits a Hilbert metric given by

$$d_\Omega(x,y) = \log[a,x;y,b] = \log\left(rac{|x-b|\,|y-a|}{|x-a|\,|y-b|}
ight)$$

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.
- Discrete subgroups of PGL(Ω) act properly discontinuously on Ω.

Classification of Isometries

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If Ω is an open properly convex then $PGL(\Omega)$ embeds in $SL_{n+1}^{\pm}(\mathbb{R})$ which allows us to talk about eigenvalues.

Classification of Isometries

If Ω is an open properly convex then $PGL(\Omega)$ embeds in $SL_{n+1}^{\pm}(\mathbb{R})$ which allows us to talk about eigenvalues. If $\gamma \in PGL(\Omega)$ then γ is

- 1. *elliptic* if γ fixes a point in Ω ,
- 2. *parabolic* if γ acts freely on Ω and has all eigenvalues of modulus 1, and

(日) (日) (日) (日) (日) (日) (日)

3. *hyperbolic* otherwise

1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2. When Ω is strictly convex parabolic isometries have a unique fixed point on $\partial \Omega$.

- 1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.
- 2. When Ω is strictly convex parabolic isometries have a unique fixed point on $\partial \Omega$.
- 3. When Ω is strictly convex, hyperbolic isometries have 2 fixed points on $\partial \Omega$ and act by translation along the line connecting them.

- 1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.
- 2. When Ω is strictly convex parabolic isometries have a unique fixed point on $\partial \Omega$.
- 3. When Ω is strictly convex, hyperbolic isometries have 2 fixed points on $\partial\Omega$ and act by translation along the line connecting them.
- 4. When Ω is strictly convex, parabolic and hyperbolic elements in a common discrete subgroup do not share fixed points.

- 1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.
- 2. When Ω is strictly convex parabolic isometries have a unique fixed point on $\partial \Omega$.
- 3. When Ω is strictly convex, hyperbolic isometries have 2 fixed points on $\partial\Omega$ and act by translation along the line connecting them.
- When Ω is strictly convex, parabolic and hyperbolic elements in a common discrete subgroup do not share fixed points.
- 5. When Ω is strictly convex, a discrete, torsion-free subgroup of elements fixing a geodesic is infinite cyclic.

Let M^n be a manifold with $\pi_1(M) = \Gamma$. A *convex projective structure* on *M* is a pair (Ω, ρ) such that

- 1. Ω is a properly convex open subset of $\mathbb{R}P^n$.
- ρ : Γ → PGL(Ω) is a discrete and faithful representation.
 M ≅ Ω/ρ(Γ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let M^n be a manifold with $\pi_1(M) = \Gamma$. A *convex projective structure* on *M* is a pair (Ω, ρ) such that

1. Ω is a properly convex open subset of $\mathbb{R}P^n$.

ρ : Γ → PGL(Ω) is a discrete and faithful representation.
 M ≅ Ω/ρ(Γ)

(日) (日) (日) (日) (日) (日) (日)

• ρ is called the *holonomy* of the structure

Let M^n be a manifold with $\pi_1(M) = \Gamma$. A *convex projective structure* on *M* is a pair (Ω, ρ) such that

1. Ω is a properly convex open subset of $\mathbb{R}P^n$.

ρ : Γ → PGL(Ω) is a discrete and faithful representation.
 M ≅ Ω/ρ(Γ)

- ρ is called the *holonomy* of the structure
- The structure is *strictly convex* if Ω is strictly convex

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let M^n be a manifold with $\pi_1(M) = \Gamma$. A *convex projective structure* on *M* is a pair (Ω, ρ) such that

- 1. Ω is a properly convex open subset of $\mathbb{R}P^n$.
- ρ : Γ → PGL(Ω) is a discrete and faithful representation.
 M ≅ Ω/ρ(Γ)
 - *ρ* is called the *holonomy* of the structure
 - The structure is strictly convex if Ω is strictly convex
 - When Ω is an ellipsoid then PGL(Ω) ≃ Isom(ℍⁿ) and a complete hyperbolic structure is a strictly convex projective structure.

Projective Equivalence

Suppose that $M^n \cong \Omega_i / \rho_i(\Gamma)$ for i = 1, 2, then (Ω_1, ρ_1) and (Ω_2, ρ_2) are *projectively equivalent* if there exists $h \in \text{PGL}_{n+1}(\mathbb{R})$ such that $h(\Omega_1) = \Omega_2$ and for each $\gamma \in \pi_1(M)$

Projective Equivalence

Suppose that $M^n \cong \Omega_i / \rho_i(\Gamma)$ for i = 1, 2, then (Ω_1, ρ_1) and (Ω_2, ρ_2) are *projectively equivalent* if there exists $h \in \text{PGL}_{n+1}(\mathbb{R})$ such that $h(\Omega_1) = \Omega_2$ and for each $\gamma \in \pi_1(M)$

• If (Ω_1, ρ_1) and (Ω_2, ρ_2) are projectively equivalent then $\rho_2(\Gamma) = h\rho_1(\Gamma)h^{-1}$

(日) (日) (日) (日) (日) (日) (日)

Projective Equivalence

Suppose that $M^n \cong \Omega_i / \rho_i(\Gamma)$ for i = 1, 2, then (Ω_1, ρ_1) and (Ω_2, ρ_2) are *projectively equivalent* if there exists $h \in \text{PGL}_{n+1}(\mathbb{R})$ such that $h(\Omega_1) = \Omega_2$ and for each $\gamma \in \pi_1(M)$

- If (Ω_1, ρ_1) and (Ω_2, ρ_2) are projectively equivalent then $\rho_2(\Gamma) = h\rho_1(\Gamma)h^{-1}$
- Let X(Γ, PGL_{n+1}(ℝ)) be the set of conjugacy classes of representations from Γ to PGL_{n+1}(ℝ).

(日本本語を本書を本書を入事を入り)
Projective Equivalence

Suppose that $M^n \cong \Omega_i / \rho_i(\Gamma)$ for i = 1, 2, then (Ω_1, ρ_1) and (Ω_2, ρ_2) are *projectively equivalent* if there exists $h \in \text{PGL}_{n+1}(\mathbb{R})$ such that $h(\Omega_1) = \Omega_2$ and for each $\gamma \in \pi_1(M)$

- If (Ω_1, ρ_1) and (Ω_2, ρ_2) are projectively equivalent then $\rho_2(\Gamma) = h\rho_1(\Gamma)h^{-1}$
- Let X(Γ, PGL_{n+1}(ℝ)) be the set of conjugacy classes of representations from Γ to PGL_{n+1}(ℝ). Projective equivalence classes of *M* are in bijective correspondence with elements of X(Γ, PGL_{n+1}(ℝ)) that are faithful, discrete, and preserve a properly convex set.

Mostow Rigidity

Let M^n be a finite volume hyperbolic manifold $(n \ge 3)$ and let (Ω_1, ρ_1) and (Ω_2, ρ_2) be two complete hyperbolic structures on M. Mostow rigidity tells us that (Ω_1, ρ_1) and (Ω_2, ρ_2) are projectively equivalent.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Mostow Rigidity

Let M^n be a finite volume hyperbolic manifold $(n \ge 3)$ and let (Ω_1, ρ_1) and (Ω_2, ρ_2) be two complete hyperbolic structures on M. Mostow rigidity tells us that (Ω_1, ρ_1) and (Ω_2, ρ_2) are projectively equivalent.

There is a distinguished projective equivalence class of convex projective structures on *M* consisting of complete hyperbolic structures on *M*.

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on *M* near the complete hyperbolic structure?

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on *M* near the complete hyperbolic structure?

Yes

No

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on *M* near the complete hyperbolic structure?

Yes

No

イロト イポト イヨト イヨト ヨー のくぐ

 Dimension 2 (Goldman-Choi)

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on *M* near the complete hyperbolic structure?

Yes

No

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on *M* near the complete hyperbolic structure?

Yes

No

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)
- Flexing (Cooper-Long-Thistlethwaite)

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on *M* near the complete hyperbolic structure?

Yes

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)
- Flexing (Cooper-Long-Thistlethwaite)
- Certain surgeries on Figure-8 (Huesener-Porti)

No

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on *M* near the complete hyperbolic structure?

Yes

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)
- Flexing (Cooper-Long-Thistlethwaite)
- Certain surgeries on Figure-8 (Huesener-Porti)

No

 Most closed 2-generator census manifolds (Cooper-Long-Thistlethwaite)

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on *M* near the complete hyperbolic structure?

Yes

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)
- Flexing (Cooper-Long-Thistlethwaite)
- Certain surgeries on Figure-8 (Huesener-Porti)
- 2. How do we know when deformations exist?

No

 Most closed 2-generator census manifolds (Cooper-Long-Thistlethwaite)

A decomposition of M

Let M be an orientable, finite volume, hyperbolic 3-manifold. Then

$$M=M_{K}\cup (\sqcup_{i}C_{i}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $C_i \cong T^2 \times [1, \infty)$ are called *cusps* and $\pi_1(C_i)$ is a *peripheral* subgroup.

A decomposition of M

Let M be an orientable, finite volume, hyperbolic 3-manifold. Then

$$M=M_{K}\cup (\sqcup_{i}C_{i}).$$

 $C_i \cong T^2 \times [1, \infty)$ are called *cusps* and $\pi_1(C_i)$ is a *peripheral* subgroup.

 If ρ₀ is the holonomy of the complete hyperbolic structure on *M* then *T*² × {*x*} has the same Euclidean structure for each *x* ∈ [1,∞).

A decomposition of M

Let M be an orientable, finite volume, hyperbolic 3-manifold. Then

$$M=M_{K}\cup (\sqcup_{i}C_{i}).$$

 $C_i \cong T^2 \times [1, \infty)$ are called *cusps* and $\pi_1(C_i)$ is a *peripheral* subgroup.

- If ρ₀ is the holonomy of the complete hyperbolic structure on *M* then *T*² × {*x*} has the same Euclidean structure for each *x* ∈ [1,∞).
- If ρ₁ is the holonomy of a general convex projective structure on *M* then *T*² × {*x*} has the same *affine* structure for each *x* ∈ [1,∞).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

What does the holonomy of a strictly convex structure on *M* look like?

What does the holonomy of a strictly convex structure on *M* look like?

Lemma 1 (Cooper-Long-Tillman)

Let $\Omega \subset \mathbb{R}P^3$ be properly convex. If $\gamma \in PGL(\Omega)$ is parabolic then γ is conjugate in $PGL_4(\mathbb{R})$ to

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

What does the holonomy of a strictly convex structure on *M* look like?

Lemma 1 (Cooper-Long-Tillman)

Let $\Omega \subset \mathbb{R}P^3$ be properly convex. If $\gamma \in PGL(\Omega)$ is parabolic then γ is conjugate in $PGL_4(\mathbb{R})$ to

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

If $\gamma \in PGL_4(\mathbb{R})$ is conjugate the above matrix then we say that γ is a *strictly convex parabolic*.

Lemma 2

If ρ is the holonomy of a strictly convex projective structure on *M* then $\rho(\pi_1(C))$ is parabolic for each cusp *C* of *M*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lemma 2

If ρ is the holonomy of a strictly convex projective structure on *M* then $\rho(\pi_1(C))$ is parabolic for each cusp *C* of *M*.

Let $\mathfrak{X}_{scp}(\Gamma, PGL_4(\mathbb{R}))$ be conjugacy classes of representations such that the image of every peripheral element is a strictly convex parabolic element.

(日) (日) (日) (日) (日) (日) (日)

Lemma 2

If ρ is the holonomy of a strictly convex projective structure on *M* then $\rho(\pi_1(C))$ is parabolic for each cusp *C* of *M*.

Let $\mathfrak{X}_{scp}(\Gamma, PGL_4(\mathbb{R}))$ be conjugacy classes of representations such that the image of every peripheral element is a strictly convex parabolic element.

Corollary 3

If ρ is the holonomy of a strictly convex projective structure on *M* then $[\rho] \in \mathfrak{X}_{scp}(\Gamma, PGL_4(\mathbb{R}))$

Two-Bridge Knots

If *M* is a two bridge knot complement then $\Gamma = \pi_1(M) = \langle \alpha, \beta | \alpha \omega = \omega \beta \rangle$, where ω is a word in α and β that depends on the knot.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Two-Bridge Knots

If *M* is a two bridge knot complement then $\Gamma = \pi_1(M) = \langle \alpha, \beta | \alpha \omega = \omega \beta \rangle$, where ω is a word in α and β that depends on the knot.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

• α and β can be taken to be meridians

Two-Bridge Knots

If *M* is a two bridge knot complement then

 $\Gamma = \pi_1(M) = \langle \alpha, \beta | \alpha \omega = \omega \beta \rangle$, where ω is a word in α and β that depends on the knot.

- α and β can be taken to be meridians
- We want to look for ρ : Γ → PGL₄(ℝ) where α and β are sent to strictly convex parabolic elements

By work of Riley it is possible to uniquely conjugate non-commuting parabolic $a, b \in \text{Isom}(\mathbb{H}^3) \cong \text{PSL}_2(\mathbb{C})$ so that

$$a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix},$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

where z is a non-zero complex number.

By work of Riley it is possible to uniquely conjugate non-commuting parabolic $a, b \in \text{Isom}(\mathbb{H}^3) \cong \text{PSL}_2(\mathbb{C})$ so that

$$a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix},$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

where z is a non-zero complex number.

Geometrically, this is done be moving the repsective fixed points of *a* and *b* to ∞ and 0

Let ρ be a strictly convex holonomy near the complete hyperbolic holonomy. Let E_{α} and E_{β} be the 1-eigenspaces of $\rho(\alpha)$ and $\rho(\beta)$.

Let ρ be a strictly convex holonomy near the complete hyperbolic holonomy. Let E_{α} and E_{β} be the 1-eigenspaces of $\rho(\alpha)$ and $\rho(\beta)$.

By irreduciblity, $\mathbb{R}^4 = E_{\alpha} \oplus E_{\beta}$ and so we can find a basis where

$$\rho(\alpha) = \begin{pmatrix} I & A_u \\ 0 & A_l \end{pmatrix}, \qquad \rho(\beta) = \begin{pmatrix} B_u & 0 \\ B_l & I \end{pmatrix}$$

Let ρ be a strictly convex holonomy near the complete hyperbolic holonomy. Let E_{α} and E_{β} be the 1-eigenspaces of $\rho(\alpha)$ and $\rho(\beta)$.

By irreduciblity, $\mathbb{R}^4 = E_{\alpha} \oplus E_{\beta}$ and so we can find a basis where

$$\rho(\alpha) = \begin{pmatrix} I & A_u \\ 0 & A_l \end{pmatrix}, \qquad \rho(\beta) = \begin{pmatrix} B_u & 0 \\ B_l & I \end{pmatrix}$$

The minimal polynomial of a strictly convex parabolic is $(x - 1)^3$. Therefore, neither A_l and B_u are diagonalizable and so by further conjugating we can assume that

$$A_I = egin{pmatrix} 1 & a_3 \ 0 & 1 \end{pmatrix}, \qquad B_u = egin{pmatrix} 1 & 0 \ b_1 & 1 \end{pmatrix}$$

Conjugacies that preserve this form look like

$$\begin{pmatrix} u_{11} & 0 & 0 & 0 \\ u_{21} & u_{22} & 0 & 0 \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{pmatrix}$$

・ロト・(部・・ヨ・・ヨ・・ヨ・ のへぐ

Conjugacies that preserve this form look like

$$\begin{pmatrix} u_{11} & 0 & 0 & 0 \\ u_{21} & u_{22} & 0 & 0 \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{pmatrix}$$

Therefore we can uniquely conjugate so that

$$\rho(\alpha) = \begin{pmatrix} 1 & 0 & 1 & a_1 \\ 0 & 1 & 1 & a_2 \\ 0 & 0 & 1 & a_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \rho(\beta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ b_1 & 1 & 0 & 0 \\ b_2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

Conjugacies that preserve this form look like

$$\begin{pmatrix} u_{11} & 0 & 0 & 0 \\ u_{21} & u_{22} & 0 & 0 \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{pmatrix}$$

Therefore we can uniquely conjugate so that

$$\rho(\alpha) = \begin{pmatrix} 1 & 0 & 1 & a_1 \\ 0 & 1 & 1 & a_2 \\ 0 & 0 & 1 & a_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \rho(\beta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ b_1 & 1 & 0 & 0 \\ b_2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

Each solution to the matrix equation $\rho(\alpha)\rho(\omega) - \rho(\omega)\rho(\beta) = 0$ gives a conjugacy class of representations for the two bridge knot complement.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let *M* be the figure-8 knot complement, then $\omega = \beta \alpha^{-1} \beta^{-1} \alpha$ and solutions to the previous equation are

Let *M* be the figure-8 knot complement, then $\omega = \beta \alpha^{-1} \beta^{-1} \alpha$ and solutions to the previous equation are

$$\rho_t(\alpha) = \begin{pmatrix} 1 & 0 & 1 & \frac{3-t}{t-2} \\ 0 & 1 & 1 & \frac{1}{2(t-2)} \\ 0 & 0 & 1 & \frac{t}{2(t-2)} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \rho_t(\beta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ t & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix},$$

and the complete hyperbolic structure occurs at t = 4.

Let *M* be the figure-8 knot complement, then $\omega = \beta \alpha^{-1} \beta^{-1} \alpha$ and solutions to the previous equation are

$$\rho_t(\alpha) = \begin{pmatrix} 1 & 0 & 1 & \frac{3-t}{t-2} \\ 0 & 1 & 1 & \frac{1}{2(t-2)} \\ 0 & 0 & 1 & \frac{t}{2(t-2)} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \rho_t(\beta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ t & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix},$$

and the complete hyperbolic structure occurs at t = 4.

• The element $I = \beta \alpha^{-1} \beta^{-1} \alpha^2 \beta^{-1} \alpha^{-1} \beta$ is a longitude and $\rho_t(I)$ is parabolic iff t = 4.

(日) (日) (日) (日) (日) (日) (日)

Let *M* be the figure-8 knot complement, then $\omega = \beta \alpha^{-1} \beta^{-1} \alpha$ and solutions to the previous equation are

$$\rho_t(\alpha) = \begin{pmatrix} 1 & 0 & 1 & \frac{3-t}{t-2} \\ 0 & 1 & 1 & \frac{1}{2(t-2)} \\ 0 & 0 & 1 & \frac{t}{2(t-2)} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \rho_t(\beta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ t & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix},$$

and the complete hyperbolic structure occurs at t = 4.

- The element $I = \beta \alpha^{-1} \beta^{-1} \alpha^2 \beta^{-1} \alpha^{-1} \beta$ is a longitude and $\rho_t(I)$ is parabolic iff t = 4.
- Locally, the complete hyperbolic structure is the unique strictly convex projective structure on *M*

Other Two-bridge Knots and Links

• There are similar rigidity results for the knots 5₂, 6₁, and the Whitehead link.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
Other Two-bridge Knots and Links

- There are similar rigidity results for the knots 5₂, 6₁, and the Whitehead link.
- In these other cases there are no families of representations where ρ(α) and ρ(β) are parabolic. (this is likely because of amphicheirality of the figure-8)

Other Two-bridge Knots and Links

- There are similar rigidity results for the knots 5₂, 6₁, and the Whitehead link.
- In these other cases there are no families of representations where ρ(α) and ρ(β) are parabolic. (this is likely because of amphicheirality of the figure-8)
- There is strong numerical evidence that several other two-bridge knots are rigid.

Other Two-bridge Knots and Links

- There are similar rigidity results for the knots 5₂, 6₁, and the Whitehead link.
- In these other cases there are no families of representations where ρ(α) and ρ(β) are parabolic. (this is likely because of amphicheirality of the figure-8)
- There is strong numerical evidence that several other two-bridge knots are rigid.
- Is there a general rigidity result for two-bridge knots and links?

The Closed Case

Let M be a closed manifold (or orbifold). Which deformations of representations give rise to strictly convex projective structures?

イロト イポト イヨト イヨト ヨー のくぐ

The Closed Case

Let *M* be a closed manifold (or orbifold). Which deformations of representations give rise to strictly convex projective structures?

Theorem 4 (Koszul, Benoist)

Let M be a closed, hyperbolic 3-manifold and ρ_0 be the holonomy of the complete hyperbolic structure on M. If ρ_t is sufficiently close to ρ_0 in Hom(Γ , PGL₄(\mathbb{R})) then ρ_t is the holonomy of a strictly convex projective structure on M

(日) (日) (日) (日) (日) (日) (日)

The Closed Case

Let *M* be a closed manifold (or orbifold). Which deformations of representations give rise to strictly convex projective structures?

Theorem 4 (Koszul, Benoist)

Let M be a closed, hyperbolic 3-manifold and ρ_0 be the holonomy of the complete hyperbolic structure on M. If ρ_t is sufficiently close to ρ_0 in Hom(Γ , PGL₄(\mathbb{R})) then ρ_t is the holonomy of a strictly convex projective structure on M

 Small deformations of holonomy correspond to small deformations of the convex projective structure

The Closed Case

Let *M* be a closed manifold (or orbifold). Which deformations of representations give rise to strictly convex projective structures?

Theorem 4 (Koszul, Benoist)

Let M be a closed, hyperbolic 3-manifold and ρ_0 be the holonomy of the complete hyperbolic structure on M. If ρ_t is sufficiently close to ρ_0 in Hom(Γ , PGL₄(\mathbb{R})) then ρ_t is the holonomy of a strictly convex projective structure on M

- Small deformations of holonomy correspond to small deformations of the convex projective structure
- To find deformations of convex projective structures we only need to deform the conjugacy class of representations.

Let $\rho_t : \Gamma \to \text{PGL}_4(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in (-\varepsilon, \varepsilon)$ we have

$$\rho_t(\gamma) = (I + z_1(\gamma)t + z_2(\gamma)t^2 + \ldots)\rho_0(\gamma),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

where $z_i : \Gamma \to \mathfrak{sl}_4$ are 1-cochain.

Let $\rho_t : \Gamma \to \text{PGL}_4(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in (-\varepsilon, \varepsilon)$ we have

$$\rho_t(\gamma) = (I + z_1(\gamma)t + z_2(\gamma)t^2 + \ldots)\rho_0(\gamma),$$

where $z_i : \Gamma \to \mathfrak{sl}_4$ are 1-cochain.

• The homomorphism condition tells us that *z*₁ is a 1-cocyle in twisted group cohomology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $\rho_t : \Gamma \to \text{PGL}_4(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in (-\varepsilon, \varepsilon)$ we have

$$\rho_t(\gamma) = (I + z_1(\gamma)t + z_2(\gamma)t^2 + \ldots)\rho_0(\gamma),$$

where $z_i : \Gamma \to \mathfrak{sl}_4$ are 1-cochain.

• The homomorphism condition tells us that *z*₁ is a 1-cocyle in twisted group cohomology.

• If $\rho_t(\gamma) = c_t \rho_0(\gamma) c_t^{-1}$, then z_1 is a 1-coboundary.

Let $\rho_t : \Gamma \to \text{PGL}_4(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in (-\varepsilon, \varepsilon)$ we have

$$\rho_t(\gamma) = (I + z_1(\gamma)t + z_2(\gamma)t^2 + \ldots)\rho_0(\gamma),$$

where $z_i : \Gamma \to \mathfrak{sl}_4$ are 1-cochain.

- The homomorphism condition tells us that *z*₁ is a 1-cocyle in twisted group cohomology.
- If $\rho_t(\gamma) = c_t \rho_0(\gamma) c_t^{-1}$, then z_1 is a 1-coboundary.
- H¹(Γ) infinitesimally parametrizes conjugacy classes of deformations.

Let $\rho_t : \Gamma \to \text{PGL}_4(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in (-\varepsilon, \varepsilon)$ we have

$$\rho_t(\gamma) = (I + z_1(\gamma)t + z_2(\gamma)t^2 + \ldots)\rho_0(\gamma),$$

where $z_i : \Gamma \to \mathfrak{sl}_4$ are 1-cochain.

- The homomorphism condition tells us that *z*₁ is a 1-cocyle in twisted group cohomology.
- If $\rho_t(\gamma) = c_t \rho_0(\gamma) c_t^{-1}$, then z_1 is a 1-coboundary.
- H¹(Γ) infinitesimally parametrizes conjugacy classes of deformations.

• Dimension of $H^1(\Gamma)$ gives an upper bound on the dimension of $\mathfrak{X}(\Gamma, \mathrm{PGL}_4(\mathbb{R}))$

Building Representations

Let $\rho_t : \Gamma \to \text{PGL}_4(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in (-\varepsilon, \varepsilon)$ we have

$$\rho_t(\gamma) = (I + z_1(\gamma)t + z_2(\gamma)t^2 + \ldots)\rho_0(\gamma)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Building Representations

Let $\rho_t : \Gamma \to \text{PGL}_4(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in (-\varepsilon, \varepsilon)$ we have

$$\rho_t(\gamma) = (I + z_1(\gamma)t + z_2(\gamma)t^2 + \ldots)\rho_0(\gamma)$$

The homomorphism condition also says that

$$\sum_{i=1}^{k-1} z_i \cup z_{k-i} = dz_k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Building Representations

Let $\rho_t : \Gamma \to PGL_4(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in (-\varepsilon, \varepsilon)$ we have

$$\rho_t(\gamma) = (I + z_1(\gamma)t + z_2(\gamma)t^2 + \ldots)\rho_0(\gamma)$$

The homomorphism condition also says that

$$\sum_{i=1}^{k-1} z_i \cup z_{k-i} = dz_k$$

• By a result of Artin, if we can find *z_i* satisfying the above condition then we can build a convergent family of representations.

Let *M* be the complement of an amphicheiral, hyperbolic knot, O_n be the orbifold obtained by the above gluing, and $\Gamma_n = \pi_1^{orb}(O_n)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Let *M* be the complement of an amphicheiral, hyperbolic knot, O_n be the orbifold obtained by the above gluing, and $\Gamma_n = \pi_1^{orb}(O_n)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

• By amphicheirality, there is a map $\phi : M \to M$ s.t $\phi(m) = m^{-1}$ and $\phi(l) = l$.

Let *M* be the complement of an amphicheiral, hyperbolic knot, O_n be the orbifold obtained by the above gluing, and $\Gamma_n = \pi_1^{orb}(O_n)$.

- By amphicheirality, there is a map $\phi : M \to M$ s.t $\phi(m) = m^{-1}$ and $\phi(l) = l$.
- ϕ extends to a symmetry $\phi : O_n \rightarrow O_n$

Let *M* be the complement of an amphicheiral, hyperbolic knot, O_n be the orbifold obtained by the above gluing, and $\Gamma_n = \pi_1^{orb}(O_n)$.

- By amphicheirality, there is a map $\phi : M \to M$ s.t $\phi(m) = m^{-1}$ and $\phi(l) = l$.
- ϕ extends to a symmetry $\phi : O_n \rightarrow O_n$
- We can use this symmetry to build representations

 ρ_t : Γ_n → PGL₄(ℝ)

A Flexibility Theorem

Theorem 5 (B)

Let M be the complement of a hyperbolic, amphicheiral knot, and suppose that M is infinitesimally projectively rigid relative to the boundary at the complete hyperbolic structure and the longitude is a rigid slope. Then for sufficiently large n, O_n has a one dimensional space of strictly convex projective deformations near the complete hyperbolic structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $H^1(O_n)$ and $H^2(O_n)$ be the first two cellular cohomology groups with twisted coefficients for O_n .

Let $H^1(O_n)$ and $H^2(O_n)$ be the first two cellular cohomology groups with twisted coefficients for O_n . Claim: $H^1(O_n)$ and $H^2(O_n)$ are 1-dimensional and ϕ^* acts on them by ± 1 respectively.

Let $H^1(O_n)$ and $H^2(O_n)$ be the first two cellular cohomology groups with twisted coefficients for O_n . Claim: $H^1(O_n)$ and $H^2(O_n)$ are 1-dimensional and ϕ^* acts on them by ± 1 respectively. By Mayer-Vietoris we have

$$0 \to H^1(\mathcal{O}_n) \stackrel{\iota_1^* \oplus \iota_2^*}{\to} H^1(\mathcal{M}) \oplus H^1(\mathcal{N}) \stackrel{\iota_3^* - \iota_4^*}{\to} H^1(\stackrel{2}{\partial}\mathcal{M}) \cong \stackrel{1}{E_1} \oplus \stackrel{1}{E_{-1}} \stackrel{\Delta^*}{\to} H^2(\mathcal{O}_n) \to 0$$

Let $H^1(O_n)$ and $H^2(O_n)$ be the first two cellular cohomology groups with twisted coefficients for O_n . Claim: $H^1(O_n)$ and $H^2(O_n)$ are 1-dimensional and ϕ^* acts on them by ± 1 respectively. By Mayer-Vietoris we have

$$0 \to H^1(\mathcal{O}_n) \stackrel{{}^{\iota_1^* \oplus \iota_2^*}}{\to} H^1(\mathcal{M}) \oplus H^1(\mathcal{N}) \stackrel{{}^{\iota_3^* - \iota_4^*}}{\to} H^1(\stackrel{^2}{\partial}\mathcal{M}) \cong \stackrel{1}{E_1} \oplus \stackrel{1}{E_{-1}} \stackrel{\Delta^*}{\to} H^2(\mathcal{O}_n) \to 0$$

Can show that

$$H^1(O_n) \stackrel{\iota_3^* \circ \iota_1^*}{\cong} E_1$$

(日) (日) (日) (日) (日) (日) (日)

Let $H^1(O_n)$ and $H^2(O_n)$ be the first two cellular cohomology groups with twisted coefficients for O_n . Claim: $H^1(O_n)$ and $H^2(O_n)$ are 1-dimensional and ϕ^* acts on them by ± 1 respectively. By Mayer-Vietoris we have

$$0 \to H^1(\mathcal{O}_n) \stackrel{\iota_1^* \oplus \iota_2^*}{\to} H^1(\mathcal{M}) \oplus H^1(\mathcal{N}) \stackrel{\iota_3^* - \iota_4^*}{\to} H^1(\stackrel{2}{\partial}\mathcal{M}) \cong \stackrel{1}{E_1} \oplus \stackrel{1}{E_{-1}} \stackrel{\Delta^*}{\to} H^2(\mathcal{O}_n) \to 0$$

Can show that

$$H^1(O_n) \stackrel{\iota_3^* \circ \iota_1^*}{\cong} E_1$$

and

$$E_{-1} \stackrel{\Delta^*}{\cong} H^2(O_n)$$

(日) (日) (日) (日) (日) (日) (日)

Let $[z_1] \in H^1(O_n)$ be a generator and assume that ϕ has order K.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Let $[z_1] \in H^1(O_n)$ be a generator and assume that ϕ has order K.

• Replace z_1 with $z_1^* = \frac{1}{K}(z_1 + \phi^*(z_1) + \dots (\phi^*)^{K-1}(z_1))$

Let $[z_1] \in H^1(O_n)$ be a generator and assume that ϕ has order K.

• Replace z_1 with $z_1^* = \frac{1}{K}(z_1 + \phi^*(z_1) + \dots (\phi^*)^{K-1}(z_1))$

• $Z_1 \cup Z_1 = \phi^*(Z_1) \cup \phi^*(Z_1) = \phi^*(Z_1 \cup Z_1) \sim -Z_1 \cup Z_1$

Let $[z_1] \in H^1(O_n)$ be a generator and assume that ϕ has order K.

• Replace z_1 with $z_1^* = \frac{1}{K}(z_1 + \phi^*(z_1) + \dots (\phi^*)^{K-1}(z_1))$

(日本本語を本書を本書を入事を入り)

- $Z_1 \cup Z_1 = \phi^*(Z_1) \cup \phi^*(Z_1) = \phi^*(Z_1 \cup Z_1) \sim -Z_1 \cup Z_1$
- $[z_1 \cup z_1] = 0$ and there is z_2 s.t. $dz_2 = z_1 \cup z_1$.

Let $[z_1] \in H^1(O_n)$ be a generator and assume that ϕ has order K.

• Replace z_1 with $z_1^* = \frac{1}{K}(z_1 + \phi^*(z_1) + \dots (\phi^*)^{K-1}(z_1))$

(日本本語を本書を本書を入事を入り)

- $Z_1 \cup Z_1 = \phi^*(Z_1) \cup \phi^*(Z_1) = \phi^*(Z_1 \cup Z_1) \sim -Z_1 \cup Z_1$
- $[z_1 \cup z_1] = 0$ and there is z_2 s.t. $dz_2 = z_1 \cup z_1$.
- Replace *z*₂ with *z*₂^{*}.

Let $[z_1] \in H^1(O_n)$ be a generator and assume that ϕ has order K.

- Replace z_1 with $z_1^* = \frac{1}{K}(z_1 + \phi^*(z_1) + \dots (\phi^*)^{K-1}(z_1))$
- $Z_1 \cup Z_1 = \phi^*(Z_1) \cup \phi^*(Z_1) = \phi^*(Z_1 \cup Z_1) \sim -Z_1 \cup Z_1$
- $[z_1 \cup z_1] = 0$ and there is z_2 s.t. $dz_2 = z_1 \cup z_1$.
- Replace z₂ with z₂^{*}.
- $Z_1 \cup Z_2 + Z_2 \cup Z_1 = \phi^*(Z_1) \cup \phi^*(Z_2) + \phi^*(Z_2) \cup \phi^*(Z_1) = \phi^*(Z_1 \cup Z_2 + Z_2 \cup Z_1) \sim -(Z_1 \cup Z_2 + Z_2 \cup Z_1)$

Let $[z_1] \in H^1(O_n)$ be a generator and assume that ϕ has order K.

- Replace z_1 with $z_1^* = \frac{1}{K}(z_1 + \phi^*(z_1) + \dots (\phi^*)^{K-1}(z_1))$
- $Z_1 \cup Z_1 = \phi^*(Z_1) \cup \phi^*(Z_1) = \phi^*(Z_1 \cup Z_1) \sim -Z_1 \cup Z_1$
- $[z_1 \cup z_1] = 0$ and there is z_2 s.t. $dz_2 = z_1 \cup z_1$.
- Replace z₂ with z₂^{*}.
- $Z_1 \cup Z_2 + Z_2 \cup Z_1 = \phi^*(Z_1) \cup \phi^*(Z_2) + \phi^*(Z_2) \cup \phi^*(Z_1) = \phi^*(Z_1 \cup Z_2 + Z_2 \cup Z_1) \sim -(Z_1 \cup Z_2 + Z_2 \cup Z_1)$

• $[z_1 \cup z_2 + z_2 \cup z_1] = 0$ and there is z_3 s.t. $dz_3 = z_1 \cup z_2 + z_2 \cup z_1$

Let $[z_1] \in H^1(O_n)$ be a generator and assume that ϕ has order K.

- Replace z_1 with $z_1^* = \frac{1}{K}(z_1 + \phi^*(z_1) + \dots (\phi^*)^{K-1}(z_1))$
- $Z_1 \cup Z_1 = \phi^*(Z_1) \cup \phi^*(Z_1) = \phi^*(Z_1 \cup Z_1) \sim -Z_1 \cup Z_1$
- $[z_1 \cup z_1] = 0$ and there is z_2 s.t. $dz_2 = z_1 \cup z_1$.
- Replace z₂ with z₂^{*}.
- $Z_1 \cup Z_2 + Z_2 \cup Z_1 = \phi^*(Z_1) \cup \phi^*(Z_2) + \phi^*(Z_2) \cup \phi^*(Z_1) = \phi^*(Z_1 \cup Z_2 + Z_2 \cup Z_1) \sim -(Z_1 \cup Z_2 + Z_2 \cup Z_1)$

- $[z_1 \cup z_2 + z_2 \cup z_1] = 0$ and there is z_3 s.t. $dz_3 = z_1 \cup z_2 + z_2 \cup z_1$
- Repeat indefinitely to get remaining z_i.

• There are many flexible examples given by taking branched covers of the figure-8 knot

- There are many flexible examples given by taking branched covers of the figure-8 knot
- There is strong numerical evidence that 6₃ satisfies the hypotheses of the theorem and gives rise to more examples.

Consequences

- There are many flexible examples given by taking branched covers of the figure-8 knot
- There is strong numerical evidence that 6₃ satisfies the hypotheses of the theorem and gives rise to more examples.
- There are infinitely many amphicheiral two-bridge knots.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@