Flexibility and Rigidity of 3-Dimensional Convex Projective Structures

Sam Ballas

April 24, 2013
Thesis Defense

What is Convex Projective Geometry?

- Convex projective geometry is a generalization of hyperbolic geometry.

What is Convex Projective Geometry?

- Convex projective geometry is a generalization of hyperbolic geometry.
- Retains many features of hyperbolic geometry.

What is Convex Projective Geometry?

- Convex projective geometry is a generalization of hyperbolic geometry.
- Retains many features of hyperbolic geometry.
- No Mostow rigidity.

Projective Space

- There is a natural action of \mathbb{R}^{\times}on $\mathbb{R}^{n+1} \backslash\{0\}$ by scaling.
- Let $\mathbb{R} P^{n}=P\left(\mathbb{R}^{n+1} \backslash\{0\}\right)$ be the quotient of this action.

Projective Space

- There is a natural action of \mathbb{R}^{\times}on $\mathbb{R}^{n+1} \backslash\{0\}$ by scaling.
- Let $\mathbb{R} P^{n}=P\left(\mathbb{R}^{n+1} \backslash\{0\}\right)$ be the quotient of this action.
- Alternatively, $\mathbb{R} P^{n}$ is the space of lines in \mathbb{R}^{n+1}

Projective Space

- There is a natural action of \mathbb{R}^{\times}on $\mathbb{R}^{n+1} \backslash\{0\}$ by scaling.
- Let $\mathbb{R} P^{n}=P\left(\mathbb{R}^{n+1} \backslash\{0\}\right)$ be the quotient of this action.
- Alternatively, $\mathbb{R} P^{n}$ is the space of lines in \mathbb{R}^{n+1}
- A Projective Line is the projectivization of a 2-plane in \mathbb{R}^{n+1}

Projective Space

- There is a natural action of \mathbb{R}^{\times}on $\mathbb{R}^{n+1} \backslash\{0\}$ by scaling.
- Let $\mathbb{R} P^{n}=P\left(\mathbb{R}^{n+1} \backslash\{0\}\right)$ be the quotient of this action.
- Alternatively, $\mathbb{R} P^{n}$ is the space of lines in \mathbb{R}^{n+1}
- A Projective Line is the projectivization of a 2-plane in \mathbb{R}^{n+1}
- A Projective Hyperplane is the projectivization of an n-plane in \mathbb{R}^{n+1}.

Projective Space

- There is a natural action of \mathbb{R}^{\times}on $\mathbb{R}^{n+1} \backslash\{0\}$ by scaling.
- Let $\mathbb{R} P^{n}=P\left(\mathbb{R}^{n+1} \backslash\{0\}\right)$ be the quotient of this action.
- Alternatively, $\mathbb{R} P^{n}$ is the space of lines in \mathbb{R}^{n+1}
- A Projective Line is the projectivization of a 2-plane in \mathbb{R}^{n+1}
- A Projective Hyperplane is the projectivization of an n-plane in \mathbb{R}^{n+1}.
- The automorphism group of $\mathbb{R} P^{n}$ is $\operatorname{PGL}_{n+1}(\mathbb{R}):=\operatorname{GL}_{n+1}(\mathbb{R}) / \mathbb{R}^{\times}$.

A Splitting of $\mathbb{R} P^{n}$

- Let H be a hyperplane in \mathbb{R}^{n+1}.
- H gives rise to a splitting of $\mathbb{R} P^{n}=\mathbb{R}^{n} \sqcup \mathbb{R} P^{n-1}$ into an affine part and an ideal part (inhomogeneous coordinates).

A Splitting of $\mathbb{R} P^{n}$

- Let H be a hyperplane in \mathbb{R}^{n+1}.
- H gives rise to a splitting of $\mathbb{R} P^{n}=\mathbb{R}^{n} \sqcup \mathbb{R} P^{n-1}$ into an affine part and an ideal part (inhomogeneous coordinates).

A Splitting of $\mathbb{R} P^{n}$

- Let H be a hyperplane in \mathbb{R}^{n+1}.
- H gives rise to a splitting of $\mathbb{R} P^{n}=\mathbb{R}^{n} \sqcup \mathbb{R} P^{n-1}$ into an affine part and an ideal part (inhomogeneous coordinates).

- $\mathbb{R} P^{n} \backslash P(H)$ is called an affine patch.

The Klein Model

- Let $\langle x, y\rangle=x_{1} y_{1}+\ldots+x_{n} y_{n}-x_{n+1} y_{n+1}$ be standard form of signature $(n, 1)$ on \mathbb{R}^{n+1}.
- Let $C=\left\{x \in \mathbb{R}^{n+1} \mid\langle x, x\rangle<0\right\}$
- $P(C)$ is the Klein model of \mathbb{H}^{n}.
- In the affine patch defined by H it is a disk.

Nice Properties of Hyperbolic Space

- Convex: Intersection with projective lines is connected.

Nice Properties of Hyperbolic Space

- Convex: Intersection with projective lines is connected.
- Properly Convex: Convex and closure is contained in an affine patch \Longleftrightarrow Disjoint from some projective hyperplane.

Nice Properties of Hyperbolic Space

- Convex: Intersection with projective lines is connected.
- Properly Convex: Convex and closure is contained in an affine patch \Longleftrightarrow Disjoint from some projective hyperplane.
- Strictly Convex: Properly convex and boundary contains no non-trivial projective line segments.

Nice Properties of Hyperbolic Space

- Convex: Intersection with projective lines is connected.
- Properly Convex: Convex and closure is contained in an affine patch \Longleftrightarrow Disjoint from some projective hyperplane.
- Strictly Convex: Properly convex and boundary contains no non-trivial projective line segments.

Convex projective geometry focuses on the geometry of properly (sometimes stictly) convex domains.

Hilbert Metric

Let Ω be a properly convex set and $\operatorname{PGL}(\Omega)$ be the projective automorphisms preserving Ω.

Hilbert Metric

Let Ω be a properly convex set and $\operatorname{PGL}(\Omega)$ be the projective automorphisms preserving Ω.

Every properly convex set Ω admits a Hilbert metric given by

$$
d_{\Omega}(x, y)=\log [a, x ; y, b]=\log \left(\frac{|x-b||y-a|}{|x-a||y-b|}\right)
$$

Hilbert Metric

Let Ω be a properly convex set and $\operatorname{PGL}(\Omega)$ be the projective automorphisms preserving Ω.

Every properly convex set Ω admits a Hilbert metric given by

$$
d_{\Omega}(x, y)=\log [a, x ; y, b]=\log \left(\frac{|x-b||y-a|}{|x-a||y-b|}\right)
$$

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.

Hilbert Metric

Let Ω be a properly convex set and $\operatorname{PGL}(\Omega)$ be the projective automorphisms preserving Ω.

Every properly convex set Ω admits a Hilbert metric given by

$$
d_{\Omega}(x, y)=\log [a, x ; y, b]=\log \left(\frac{|x-b||y-a|}{|x-a||y-b|}\right)
$$

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- $\operatorname{PGL}(\Omega) \leq \operatorname{Isom}(\Omega)$ and equal when Ω is strictly convex.

Hilbert Metric

Let Ω be a properly convex set and $\operatorname{PGL}(\Omega)$ be the projective automorphisms preserving Ω.

Every properly convex set Ω admits a Hilbert metric given by

$$
d_{\Omega}(x, y)=\log [a, x ; y, b]=\log \left(\frac{|x-b||y-a|}{|x-a||y-b|}\right)
$$

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- $\operatorname{PGL}(\Omega) \leq \operatorname{Isom}(\Omega)$ and equal when Ω is strictly convex.
- Discrete subgroups of PGL (Ω) act properly discontinuously on Ω.

Classification of Isometries

If Ω is an open properly convex then $\operatorname{PGL}(\Omega)$ embeds in $\mathrm{SL}_{n+1}^{ \pm}(\mathbb{R})$ which allows us to talk about eigenvalues.

Classification of Isometries

If Ω is an open properly convex then $\operatorname{PGL}(\Omega)$ embeds in $\mathrm{SL}_{n+1}^{ \pm}(\mathbb{R})$ which allows us to talk about eigenvalues.
If $\gamma \in \operatorname{PGL}(\Omega)$ then γ is

1. elliptic if γ fixes a point in Ω,
2. parabolic if γ acts freely on Ω and has all eigenvalues of modulus 1, and
3. hyperbolic otherwise

Similarities to Hyperbolic Isometries

1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.

Similarities to Hyperbolic Isometries

1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.
2. When Ω is strictly convex parabolic isometries have a unique fixed point on $\partial \Omega$.

Similarities to Hyperbolic Isometries

1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.
2. When Ω is strictly convex parabolic isometries have a unique fixed point on $\partial \Omega$.
3. When Ω is strictly convex, hyperbolic isometries have 2 fixed points on $\partial \Omega$ and act by translation along the line connecting them.

Similarities to Hyperbolic Isometries

1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.
2. When Ω is strictly convex parabolic isometries have a unique fixed point on $\partial \Omega$.
3. When Ω is strictly convex, hyperbolic isometries have 2 fixed points on $\partial \Omega$ and act by translation along the line connecting them.
4. When Ω is strictly convex, parabolic and hyperbolic elements in a common discrete subgroup do not share fixed points.

Similarities to Hyperbolic Isometries

1. When Ω is an ellipsoid this classification is the same as the standard classification of hyperbolic isometries.
2. When Ω is strictly convex parabolic isometries have a unique fixed point on $\partial \Omega$.
3. When Ω is strictly convex, hyperbolic isometries have 2 fixed points on $\partial \Omega$ and act by translation along the line connecting them.
4. When Ω is strictly convex, parabolic and hyperbolic elements in a common discrete subgroup do not share fixed points.
5. When Ω is strictly convex, a discrete, torsion-free subgroup of elements fixing a geodesic is infinite cyclic.

Convex Projective Manifolds

Let M^{n} be a manifold with $\pi_{1}(M)=\Gamma$. A convex projective structure on M is a pair (Ω, ρ) such that

1. Ω is a properly convex open subset of $\mathbb{R} P^{n}$.
2. $\rho: \Gamma \rightarrow \operatorname{PGL}(\Omega)$ is a discrete and faithful representation.
3. $M \cong \Omega / \rho(\Gamma)$

Convex Projective Manifolds

Let M^{n} be a manifold with $\pi_{1}(M)=\Gamma$. A convex projective structure on M is a pair (Ω, ρ) such that

1. Ω is a properly convex open subset of $\mathbb{R} P^{n}$.
2. $\rho: \Gamma \rightarrow \operatorname{PGL}(\Omega)$ is a discrete and faithful representation.
3. $M \cong \Omega / \rho(\Gamma)$

- ρ is called the holonomy of the structure

Convex Projective Manifolds

Let M^{n} be a manifold with $\pi_{1}(M)=\Gamma$. A convex projective structure on M is a pair (Ω, ρ) such that

1. Ω is a properly convex open subset of $\mathbb{R} P^{n}$.
2. $\rho: \Gamma \rightarrow \operatorname{PGL}(\Omega)$ is a discrete and faithful representation.
3. $M \cong \Omega / \rho(\Gamma)$

- ρ is called the holonomy of the structure
- The structure is strictly convex if Ω is strictly convex

Convex Projective Manifolds

Let M^{n} be a manifold with $\pi_{1}(M)=\Gamma$. A convex projective structure on M is a pair (Ω, ρ) such that

1. Ω is a properly convex open subset of $\mathbb{R} P^{n}$.
2. $\rho: \Gamma \rightarrow \operatorname{PGL}(\Omega)$ is a discrete and faithful representation.
3. $M \cong \Omega / \rho(\Gamma)$

- ρ is called the holonomy of the structure
- The structure is strictly convex if Ω is strictly convex
- When Ω is an ellipsoid then $\operatorname{PGL}(\Omega) \cong \operatorname{Isom}\left(\mathbb{H}^{n}\right)$ and a complete hyperbolic structure is a strictly convex projective structure.

Projective Equivalence

Suppose that $M^{n} \cong \Omega_{i} / \rho_{i}(\Gamma)$ for $i=1,2$, then $\left(\Omega_{1}, \rho_{1}\right)$ and $\left(\Omega_{2}, \rho_{2}\right)$ are projectively equivalent if there exists $h \in \operatorname{PGL}_{n+1}(\mathbb{R})$ such that $h\left(\Omega_{1}\right)=\Omega_{2}$ and for each $\gamma \in \pi_{1}(M)$

$$
\begin{gathered}
\Omega_{1} \xrightarrow{h} \Omega_{2} \\
\rho_{1}(\gamma) \mid \\
\Omega_{1} \xrightarrow{\downarrow} \xrightarrow{\downarrow_{2}}{ }^{\rho_{2}(\gamma)}
\end{gathered}
$$

Projective Equivalence

Suppose that $M^{n} \cong \Omega_{i} / \rho_{i}(\Gamma)$ for $i=1,2$, then $\left(\Omega_{1}, \rho_{1}\right)$ and $\left(\Omega_{2}, \rho_{2}\right)$ are projectively equivalent if there exists $h \in \operatorname{PGL}_{n+1}(\mathbb{R})$ such that $h\left(\Omega_{1}\right)=\Omega_{2}$ and for each $\gamma \in \pi_{1}(M)$

$$
\begin{aligned}
& \Omega_{1} \xrightarrow{h} \Omega_{2}
\end{aligned}
$$

- If $\left(\Omega_{1}, \rho_{1}\right)$ and $\left(\Omega_{2}, \rho_{2}\right)$ are projectively equivalent then $\rho_{2}(\Gamma)=h \rho_{1}(\Gamma) h^{-1}$

Projective Equivalence

Suppose that $M^{n} \cong \Omega_{i} / \rho_{i}(\Gamma)$ for $i=1$, 2 , then $\left(\Omega_{1}, \rho_{1}\right)$ and $\left(\Omega_{2}, \rho_{2}\right)$ are projectively equivalent if there exists $h \in \operatorname{PGL}_{n+1}(\mathbb{R})$ such that $h\left(\Omega_{1}\right)=\Omega_{2}$ and for each $\gamma \in \pi_{1}(M)$

$$
\begin{gathered}
\Omega_{1} \xrightarrow{h} \Omega_{2} \\
\rho_{1}(\gamma) \mid \\
\Omega_{1} \xrightarrow{\downarrow} \stackrel{\Omega_{2}(\gamma)}{\rho_{2}}
\end{gathered}
$$

- If $\left(\Omega_{1}, \rho_{1}\right)$ and $\left(\Omega_{2}, \rho_{2}\right)$ are projectively equivalent then $\rho_{2}(\Gamma)=h \rho_{1}(\Gamma) h^{-1}$
- Let $\mathfrak{X}\left(\Gamma, \mathrm{PGL}_{n+1}(\mathbb{R})\right)$ be the set of conjugacy classes of representations from Γ to $\mathrm{PGL}_{n+1}(\mathbb{R})$.

Projective Equivalence

Suppose that $M^{n} \cong \Omega_{i} / \rho_{i}(\Gamma)$ for $i=1$, 2 , then $\left(\Omega_{1}, \rho_{1}\right)$ and $\left(\Omega_{2}, \rho_{2}\right)$ are projectively equivalent if there exists $h \in \operatorname{PGL}_{n+1}(\mathbb{R})$ such that $h\left(\Omega_{1}\right)=\Omega_{2}$ and for each $\gamma \in \pi_{1}(M)$

- If $\left(\Omega_{1}, \rho_{1}\right)$ and $\left(\Omega_{2}, \rho_{2}\right)$ are projectively equivalent then $\rho_{2}(\Gamma)=h \rho_{1}(\Gamma) h^{-1}$
- Let $\mathfrak{X}\left(\Gamma, \mathrm{PGL}_{n+1}(\mathbb{R})\right)$ be the set of conjugacy classes of representations from Γ to $\mathrm{PGL}_{n+1}(\mathbb{R})$. Projective equivalence classes of M are in bijective correspondence with elements of $\mathfrak{X}\left(\Gamma, \mathrm{PGL}_{n+1}(\mathbb{R})\right)$ that are faithful, discrete, and preserve a properly convex set.

Mostow Rigidity

Let M^{n} be a finite volume hyperbolic manifold ($n \geq 3$) and let (Ω_{1}, ρ_{1}) and (Ω_{2}, ρ_{2}) be two complete hyperbolic structures on M. Mostow rigidity tells us that $\left(\Omega_{1}, \rho_{1}\right)$ and $\left(\Omega_{2}, \rho_{2}\right)$ are projectively equivalent.

Mostow Rigidity

Let M^{n} be a finite volume hyperbolic manifold ($n \geq 3$) and let (Ω_{1}, ρ_{1}) and $\left(\Omega_{2}, \rho_{2}\right)$ be two complete hyperbolic structures on M. Mostow rigidity tells us that $\left(\Omega_{1}, \rho_{1}\right)$ and $\left(\Omega_{2}, \rho_{2}\right)$ are projectively equivalent.

There is a distinguished projective equivalence class of convex projective structures on M consisting of complete hyperbolic structures on M.

Rigidity and Flexibility

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on M near the complete hyperbolic structure?

Rigidity and Flexibility

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on M near the complete hyperbolic structure?
Yes
No

Rigidity and Flexibility

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on M near the complete hyperbolic structure?

Yes

No

- Dimension 2 (Goldman-Choi)

Rigidity and Flexibility

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on M near the complete hyperbolic structure?

Yes

No

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)

Rigidity and Flexibility

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on M near the complete hyperbolic structure?

Yes

No

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)
- Flexing (Cooper-LongThistlethwaite)

Rigidity and Flexibility

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on M near the complete hyperbolic structure?

Yes

No

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)
- Flexing (Cooper-LongThistlethwaite)
- Certain surgeries on

Figure-8 (Huesener-Porti)

Rigidity and Flexibility

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on M near the complete hyperbolic structure?

Yes

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)
- Flexing (Cooper-LongThistlethwaite)
- Certain surgeries on Figure-8 (Huesener-Porti)
- Most closed 2-generator census manifolds (Cooper-Long-Thistlethwaite)

Rigidity and Flexibility

Questions

1. Are there other projective equivalence classes of (strictly) convex projective structures on M near the complete hyperbolic structure?

Yes

- Dimension 2 (Goldman-Choi)
- Bending (Johnson-Millson)
- Flexing (Cooper-LongThistlethwaite)
- Certain surgeries on Figure-8 (Huesener-Porti)

2. How do we know when deformations exist?

A decomposition of M

Let M be an orientable, finite volume, hyperbolic 3-manifold. Then

$$
M=M_{K} \cup\left(\sqcup_{i} C_{i}\right) .
$$

$C_{i} \cong T^{2} \times[1, \infty)$ are called cusps and $\pi_{1}\left(C_{i}\right)$ is a peripheral subgroup.

A decomposition of M

Let M be an orientable, finite volume, hyperbolic 3-manifold. Then

$$
M=M_{K} \cup\left(\sqcup_{i} C_{i}\right) .
$$

$C_{i} \cong T^{2} \times[1, \infty)$ are called cusps and $\pi_{1}\left(C_{i}\right)$ is a peripheral subgroup.

- If ρ_{0} is the holonomy of the complete hyperbolic structure on M then $T^{2} \times\{x\}$ has the same Euclidean structure for each $x \in[1, \infty)$.

A decomposition of M

Let M be an orientable, finite volume, hyperbolic 3-manifold. Then

$$
M=M_{K} \cup\left(\sqcup_{i} C_{i}\right)
$$

$C_{i} \cong T^{2} \times[1, \infty)$ are called cusps and $\pi_{1}\left(C_{i}\right)$ is a peripheral subgroup.

- If ρ_{0} is the holonomy of the complete hyperbolic structure on M then $T^{2} \times\{x\}$ has the same Euclidean structure for each $x \in[1, \infty)$.
- If ρ_{1} is the holonomy of a general convex projective structure on M then $T^{2} \times\{x\}$ has the same affine structure for each $x \in[1, \infty)$.

Description of the Holonomy

What does the holonomy of a strictly convex structure on M look like?

Description of the Holonomy

What does the holonomy of a strictly convex structure on M look like?
Lemma 1 (Cooper-Long-Tillman)
Let $\Omega \subset \mathbb{R} P^{3}$ be properly convex. If $\gamma \in \operatorname{PGL}(\Omega)$ is parabolic then γ is conjugate in $\mathrm{PGL}_{4}(\mathbb{R})$ to

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Description of the Holonomy

What does the holonomy of a strictly convex structure on M look like?
Lemma 1 (Cooper-Long-Tillman)
Let $\Omega \subset \mathbb{R} P^{3}$ be properly convex. If $\gamma \in \operatorname{PGL}(\Omega)$ is parabolic then γ is conjugate in $\operatorname{PGL}_{4}(\mathbb{R})$ to

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

If $\gamma \in \operatorname{PGL}_{4}(\mathbb{R})$ is conjugate the above matrix then we say that γ is a strictly convex parabolic.

Description of the Holonomy

Lemma 2

If ρ is the holonomy of a strictly convex projective structure on M then $\rho\left(\pi_{1}(C)\right)$ is parabolic for each cusp C of M.

Description of the Holonomy

Lemma 2

If ρ is the holonomy of a strictly convex projective structure on M then $\rho\left(\pi_{1}(C)\right)$ is parabolic for each cusp C of M.

Let $\mathfrak{X}_{\text {scp }}\left(\Gamma, \mathrm{PGL}_{4}(\mathbb{R})\right)$ be conjugacy classes of representations such that the image of every peripheral element is a strictly convex parabolic element.

Description of the Holonomy

Lemma 2

If ρ is the holonomy of a strictly convex projective structure on M then $\rho\left(\pi_{1}(C)\right)$ is parabolic for each cusp C of M.

Let $\mathfrak{X}_{\text {scp }}\left(\Gamma, \mathrm{PGL}_{4}(\mathbb{R})\right)$ be conjugacy classes of representations such that the image of every peripheral element is a strictly convex parabolic element.

Corollary 3
If ρ is the holonomy of a strictly convex projective structure on M then $[\rho] \in \mathfrak{X}_{\text {scp }}\left(\Gamma, \operatorname{PGL}_{4}(\mathbb{R})\right)$

Two-Bridge Knots

If M is a two bridge knot complement then
$\Gamma=\pi_{1}(M)=\langle\alpha, \beta \mid \alpha \omega=\omega \beta\rangle$, where ω is a word in α and β that depends on the knot.

Two-Bridge Knots

If M is a two bridge knot complement then
$\Gamma=\pi_{1}(M)=\langle\alpha, \beta \mid \alpha \omega=\omega \beta\rangle$, where ω is a word in α and β that depends on the knot.

- α and β can be taken to be meridians

Two-Bridge Knots

If M is a two bridge knot complement then
$\Gamma=\pi_{1}(M)=\langle\alpha, \beta \mid \alpha \omega=\omega \beta\rangle$, where ω is a word in α and β that depends on the knot.

- α and β can be taken to be meridians
- We want to look for $\rho: \Gamma \rightarrow \operatorname{PGL}_{4}(\mathbb{R})$ where α and β are sent to strictly convex parabolic elements

A Normal Form

By work of Riley it is possible to uniquely conjugate non-commuting parabolic $a, b \in \operatorname{Isom}\left(\mathbb{H}^{3}\right) \cong \operatorname{PSL}_{2}(\mathbb{C})$ so that

$$
a=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad b=\left(\begin{array}{ll}
1 & 0 \\
z & 1
\end{array}\right)
$$

where z is a non-zero complex number.

A Normal Form

By work of Riley it is possible to uniquely conjugate non-commuting parabolic $a, b \in \operatorname{Isom}\left(\mathbb{H}^{3}\right) \cong \operatorname{PSL}_{2}(\mathbb{C})$ so that

$$
a=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad b=\left(\begin{array}{ll}
1 & 0 \\
z & 1
\end{array}\right)
$$

where z is a non-zero complex number.
Geometrically, this is done be moving the repsective fixed points of a and b to ∞ and 0

A Normal Form

Let ρ be a strictly convex holonomy near the complete hyperbolic holonomy. Let E_{α} and E_{β} be the 1-eigenspaces of $\rho(\alpha)$ and $\rho(\beta)$.

A Normal Form

Let ρ be a strictly convex holonomy near the complete hyperbolic holonomy. Let E_{α} and E_{β} be the 1-eigenspaces of $\rho(\alpha)$ and $\rho(\beta)$.
By irreduciblity, $\mathbb{R}^{4}=E_{\alpha} \oplus E_{\beta}$ and so we can find a basis where

$$
\rho(\alpha)=\left(\begin{array}{cc}
I & A_{u} \\
0 & A_{l}
\end{array}\right), \quad \rho(\beta)=\left(\begin{array}{cc}
B_{u} & 0 \\
B_{l} & I
\end{array}\right)
$$

A Normal Form

Let ρ be a strictly convex holonomy near the complete hyperbolic holonomy. Let E_{α} and E_{β} be the 1-eigenspaces of $\rho(\alpha)$ and $\rho(\beta)$.
By irreduciblity, $\mathbb{R}^{4}=E_{\alpha} \oplus E_{\beta}$ and so we can find a basis where

$$
\rho(\alpha)=\left(\begin{array}{cc}
I & A_{u} \\
0 & A_{l}
\end{array}\right), \quad \rho(\beta)=\left(\begin{array}{cc}
B_{u} & 0 \\
B_{l} & I
\end{array}\right)
$$

The minimal polynomial of a strictly convex parabolic is $(x-1)^{3}$. Therefore, neither $A_{/}$and B_{u} are diagonalizable and so by further conjugating we can assume that

$$
A_{I}=\left(\begin{array}{cc}
1 & a_{3} \\
0 & 1
\end{array}\right), \quad B_{u}=\left(\begin{array}{cc}
1 & 0 \\
b_{1} & 1
\end{array}\right)
$$

A Normal Form

Conjugacies that preserve this form look like

$$
\left(\begin{array}{cccc}
u_{11} & 0 & 0 & 0 \\
u_{21} & u_{22} & 0 & 0 \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{array}\right)
$$

A Normal Form

Conjugacies that preserve this form look like

$$
\left(\begin{array}{cccc}
u_{11} & 0 & 0 & 0 \\
u_{21} & u_{22} & 0 & 0 \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{array}\right)
$$

Therefore we can uniquely conjugate so that

$$
\rho(\alpha)=\left(\begin{array}{llll}
1 & 0 & 1 & a_{1} \\
0 & 1 & 1 & a_{2} \\
0 & 0 & 1 & a_{3} \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho(\beta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
b_{1} & 1 & 0 & 0 \\
b_{2} & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

A Normal Form

Conjugacies that preserve this form look like

$$
\left(\begin{array}{cccc}
u_{11} & 0 & 0 & 0 \\
u_{21} & u_{22} & 0 & 0 \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{array}\right)
$$

Therefore we can uniquely conjugate so that

$$
\rho(\alpha)=\left(\begin{array}{llll}
1 & 0 & 1 & a_{1} \\
0 & 1 & 1 & a_{2} \\
0 & 0 & 1 & a_{3} \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho(\beta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
b_{1} & 1 & 0 & 0 \\
b_{2} & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

Each solution to the matrix equation $\rho(\alpha) \rho(\omega)-\rho(\omega) \rho(\beta)=0$ gives a conjugacy class of representations for the two bridge knot complement.

Figure-8 Example

Let M be the figure- 8 knot complement, then $\omega=\beta \alpha^{-1} \beta^{-1} \alpha$ and solutions to the previous equation are

Figure-8 Example

Let M be the figure- 8 knot complement, then $\omega=\beta \alpha^{-1} \beta^{-1} \alpha$ and solutions to the previous equation are

$$
\rho_{t}(\alpha)=\left(\begin{array}{cccc}
1 & 0 & 1 & \frac{3-t}{t-2} \\
0 & 1 & 1 & \frac{2}{2(t-2)} \\
0 & 0 & 1 & \frac{t}{2(t-2)} \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho_{t}(\beta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
t & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right),
$$

and the complete hyperbolic structure occurs at $t=4$.

Figure-8 Example

Let M be the figure- 8 knot complement, then $\omega=\beta \alpha^{-1} \beta^{-1} \alpha$ and solutions to the previous equation are

$$
\rho_{t}(\alpha)=\left(\begin{array}{cccc}
1 & 0 & 1 & \frac{3-t}{t-2} \\
0 & 1 & 1 & \frac{2}{2(t-2)} \\
0 & 0 & 1 & \frac{t}{2(t-2)} \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho_{t}(\beta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
t & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right),
$$

and the complete hyperbolic structure occurs at $t=4$.

- The element $I=\beta \alpha^{-1} \beta^{-1} \alpha^{2} \beta^{-1} \alpha^{-1} \beta$ is a longitude and $\rho_{t}(I)$ is parabolic iff $t=4$.

Figure-8 Example

Let M be the figure- 8 knot complement, then $\omega=\beta \alpha^{-1} \beta^{-1} \alpha$ and solutions to the previous equation are

$$
\rho_{t}(\alpha)=\left(\begin{array}{cccc}
1 & 0 & 1 & \frac{3-t}{t-2} \\
0 & 1 & 1 & \frac{1}{2(t-2)} \\
0 & 0 & 1 & \frac{t}{2(t-2)} \\
0 & 0 & 0 & 1
\end{array}\right), \quad \rho_{t}(\beta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
t & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right),
$$

and the complete hyperbolic structure occurs at $t=4$.

- The element $I=\beta \alpha^{-1} \beta^{-1} \alpha^{2} \beta^{-1} \alpha^{-1} \beta$ is a longitude and $\rho_{t}(I)$ is parabolic iff $t=4$.
- Locally, the complete hyperbolic structure is the unique strictly convex projective structure on M

Other Two-bridge Knots and Links

- There are similar rigidity results for the knots $5_{2}, 6_{1}$, and the Whitehead link.

Other Two-bridge Knots and Links

- There are similar rigidity results for the knots $5_{2}, 6_{1}$, and the Whitehead link.
- In these other cases there are no families of representations where $\rho(\alpha)$ and $\rho(\beta)$ are parabolic. (this is likely because of amphicheirality of the figure-8)

Other Two-bridge Knots and Links

- There are similar rigidity results for the knots $5_{2}, 6_{1}$, and the Whitehead link.
- In these other cases there are no families of representations where $\rho(\alpha)$ and $\rho(\beta)$ are parabolic. (this is likely because of amphicheirality of the figure-8)
- There is strong numerical evidence that several other two-bridge knots are rigid.

Other Two-bridge Knots and Links

- There are similar rigidity results for the knots $5_{2}, 6_{1}$, and the Whitehead link.
- In these other cases there are no families of representations where $\rho(\alpha)$ and $\rho(\beta)$ are parabolic. (this is likely because of amphicheirality of the figure-8)
- There is strong numerical evidence that several other two-bridge knots are rigid.
- Is there a general rigidity result for two-bridge knots and links?

Finding Deformations
 The Closed Case

Let M be a closed manifold (or orbifold). Which deformations of representations give rise to strictly convex projective structures?

Finding Deformations
 The Closed Case

Let M be a closed manifold (or orbifold). Which deformations of representations give rise to strictly convex projective structures?

Theorem 4 (Koszul, Benoist)
Let M be a closed, hyperbolic 3-manifold and ρ_{0} be the holonomy of the complete hyperbolic structure on M. If ρ_{t} is sufficiently close to ρ_{0} in $\operatorname{Hom}\left(\Gamma, \mathrm{PGL}_{4}(\mathbb{R})\right)$ then ρ_{t} is the holonomy of a strictly convex projective structure on M

Finding Deformations
 The Closed Case

Let M be a closed manifold (or orbifold). Which deformations of representations give rise to strictly convex projective structures?

Theorem 4 (Koszul, Benoist)

Let M be a closed, hyperbolic 3-manifold and ρ_{0} be the holonomy of the complete hyperbolic structure on M. If ρ_{t} is sufficiently close to ρ_{0} in $\operatorname{Hom}\left(\Gamma, \mathrm{PGL}_{4}(\mathbb{R})\right)$ then ρ_{t} is the holonomy of a strictly convex projective structure on M

- Small deformations of holonomy correspond to small deformations of the convex projective structure

Finding Deformations
 The Closed Case

Let M be a closed manifold (or orbifold). Which deformations of representations give rise to strictly convex projective structures?

Theorem 4 (Koszul, Benoist)

Let M be a closed, hyperbolic 3-manifold and ρ_{0} be the holonomy of the complete hyperbolic structure on M. If ρ_{t} is sufficiently close to ρ_{0} in $\operatorname{Hom}\left(\Gamma, \mathrm{PGL}_{4}(\mathbb{R})\right)$ then ρ_{t} is the holonomy of a strictly convex projective structure on M

- Small deformations of holonomy correspond to small deformations of the convex projective structure
- To find deformations of convex projective structures we only need to deform the conjugacy class of representations.

Group Cohomology

Let $\rho_{t}: \Gamma \rightarrow \mathrm{PGL}_{4}(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in(-\varepsilon, \varepsilon)$ we have

$$
\rho_{t}(\gamma)=\left(I+z_{1}(\gamma) t+z_{2}(\gamma) t^{2}+\ldots\right) \rho_{0}(\gamma)
$$

where $z_{i}: \Gamma \rightarrow \operatorname{sl}_{4}$ are 1-cochain.

Group Cohomology

Let $\rho_{t}: \Gamma \rightarrow \mathrm{PGL}_{4}(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in(-\varepsilon, \varepsilon)$ we have

$$
\rho_{t}(\gamma)=\left(I+z_{1}(\gamma) t+z_{2}(\gamma) t^{2}+\ldots\right) \rho_{0}(\gamma)
$$

where $z_{i}: \Gamma \rightarrow \operatorname{sl}_{4}$ are 1-cochain.

- The homomorphism condition tells us that z_{1} is a 1-cocyle in twisted group cohomology.

Group Cohomology

Let $\rho_{t}: \Gamma \rightarrow \mathrm{PGL}_{4}(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in(-\varepsilon, \varepsilon)$ we have

$$
\rho_{t}(\gamma)=\left(I+z_{1}(\gamma) t+z_{2}(\gamma) t^{2}+\ldots\right) \rho_{0}(\gamma)
$$

where $z_{i}: \Gamma \rightarrow \operatorname{sl}_{4}$ are 1-cochain.

- The homomorphism condition tells us that z_{1} is a 1-cocyle in twisted group cohomology.
- If $\rho_{t}(\gamma)=c_{t} \rho_{0}(\gamma) c_{t}^{-1}$, then z_{1} is a 1-coboundary.

Group Cohomology

Let $\rho_{t}: \Gamma \rightarrow \mathrm{PGL}_{4}(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in(-\varepsilon, \varepsilon)$ we have

$$
\rho_{t}(\gamma)=\left(I+z_{1}(\gamma) t+z_{2}(\gamma) t^{2}+\ldots\right) \rho_{0}(\gamma)
$$

where $z_{i}: \Gamma \rightarrow \operatorname{sl}_{4}$ are 1-cochain.

- The homomorphism condition tells us that z_{1} is a 1-cocyle in twisted group cohomology.
- If $\rho_{t}(\gamma)=c_{t} \rho_{0}(\gamma) c_{t}^{-1}$, then z_{1} is a 1-coboundary.
- $H^{1}(\Gamma)$ infinitesimally parametrizes conjugacy classes of deformations.

Group Cohomology

Let $\rho_{t}: \Gamma \rightarrow \operatorname{PGL}_{4}(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in(-\varepsilon, \varepsilon)$ we have

$$
\rho_{t}(\gamma)=\left(I+z_{1}(\gamma) t+z_{2}(\gamma) t^{2}+\ldots\right) \rho_{0}(\gamma),
$$

where $z_{i}: \Gamma \rightarrow \mathfrak{s l}_{4}$ are 1-cochain.

- The homomorphism condition tells us that z_{1} is a 1 -cocyle in twisted group cohomology.
- If $\rho_{t}(\gamma)=c_{t} \rho_{0}(\gamma) c_{t}^{-1}$, then z_{1} is a 1 -coboundary.
- $H^{1}(\Gamma)$ infinitesimally parametrizes conjugacy classes of deformations.
- Dimension of $H^{1}(\Gamma)$ gives an upper bound on the dimension of $\mathfrak{X}\left(\Gamma, \mathrm{PGL}_{4}(\mathbb{R})\right)$

Building Representations

Let $\rho_{t}: \Gamma \rightarrow \operatorname{PGL}_{4}(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in(-\varepsilon, \varepsilon)$ we have

$$
\rho_{t}(\gamma)=\left(I+z_{1}(\gamma) t+z_{2}(\gamma) t^{2}+\ldots\right) \rho_{0}(\gamma)
$$

Building Representations

Let $\rho_{t}: \Gamma \rightarrow \operatorname{PGL}_{4}(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in(-\varepsilon, \varepsilon)$ we have

$$
\rho_{t}(\gamma)=\left(I+z_{1}(\gamma) t+z_{2}(\gamma) t^{2}+\ldots\right) \rho_{0}(\gamma)
$$

- The homomorphism condition also says that

$$
\sum_{i=1}^{k-1} z_{i} \cup z_{k-i}=d z_{k}
$$

Building Representations

Let $\rho_{t}: \Gamma \rightarrow \operatorname{PGL}_{4}(\mathbb{R})$ be a representation, then for $\gamma \in \Gamma$ and $t \in(-\varepsilon, \varepsilon)$ we have

$$
\rho_{t}(\gamma)=\left(I+z_{1}(\gamma) t+z_{2}(\gamma) t^{2}+\ldots\right) \rho_{0}(\gamma)
$$

- The homomorphism condition also says that

$$
\sum_{i=1}^{k-1} z_{i} \cup z_{k-i}=d z_{k}
$$

- By a result of Artin, if we can find z_{i} satisfying the above condition then we can build a convergent family of representations.

Orbifold Surgery

Let M be the complement of an amphicheiral, hyperbolic knot, O_{n} be the orbifold obtained by the above gluing, and $\Gamma_{n}=\pi_{1}^{o r b}\left(O_{n}\right)$.

Orbifold Surgery

Let M be the complement of an amphicheiral, hyperbolic knot, O_{n} be the orbifold obtained by the above gluing, and $\Gamma_{n}=\pi_{1}^{\text {orb }}\left(O_{n}\right)$.

- By amphicheirality, there is a map $\phi: M \rightarrow M$ s.t

$$
\phi(m)=m^{-1} \text { and } \phi(I)=I
$$

Orbifold Surgery

Let M be the complement of an amphicheiral, hyperbolic knot, O_{n} be the orbifold obtained by the above gluing, and $\Gamma_{n}=\pi_{1}^{\text {orb }}\left(O_{n}\right)$.

- By amphicheirality, there is a map $\phi: M \rightarrow M$ s.t $\phi(m)=m^{-1}$ and $\phi(I)=I$.
- ϕ extends to a symmetry $\phi: O_{n} \rightarrow O_{n}$

Orbifold Surgery

Let M be the complement of an amphicheiral, hyperbolic knot, O_{n} be the orbifold obtained by the above gluing, and $\Gamma_{n}=\pi_{1}^{o r b}\left(O_{n}\right)$.

- By amphicheirality, there is a map $\phi: M \rightarrow M$ s.t $\phi(m)=m^{-1}$ and $\phi(I)=I$.
- ϕ extends to a symmetry $\phi: O_{n} \rightarrow O_{n}$
- We can use this symmetry to build representations

$$
\rho_{t}: \Gamma_{n} \rightarrow \operatorname{PGL}_{4}(\mathbb{R})
$$

A Flexibility Theorem

Theorem 5 (B)

Let M be the complement of a hyperbolic, amphicheiral knot, and suppose that M is infinitesimally projectively rigid relative to the boundary at the complete hyperbolic structure and the longitude is a rigid slope. Then for sufficiently large n, O_{n} has a one dimensional space of strictly convex projective deformations near the complete hyperbolic structure.

Finding the Cochains

Let $H^{1}\left(O_{n}\right)$ and $H^{2}\left(O_{n}\right)$ be the first two cellular cohomology groups with twisted coefficients for O_{n}.

Finding the Cochains

Let $H^{1}\left(O_{n}\right)$ and $H^{2}\left(O_{n}\right)$ be the first two cellular cohomology groups with twisted coefficients for O_{n}. Claim: $H^{1}\left(O_{n}\right)$ and $H^{2}\left(O_{n}\right)$ are 1-dimensional and ϕ^{*} acts on them by ± 1 respectively.

Finding the Cochains

Let $H^{1}\left(O_{n}\right)$ and $H^{2}\left(O_{n}\right)$ be the first two cellular cohomology groups with twisted coefficients for O_{n}. Claim: $H^{1}\left(O_{n}\right)$ and $H^{2}\left(O_{n}\right)$ are 1-dimensional and ϕ^{*} acts on them by ± 1 respectively. By Mayer-Vietoris we have

$$
0 \rightarrow H^{1}\left(O_{n}\right) \xrightarrow{\iota_{1}^{*} \oplus \iota_{2}^{*}} H^{1}(M) \oplus H^{1}(N) \xrightarrow{\iota_{3}^{*}-\iota_{4}^{*}} H^{1}(\partial M) \cong \stackrel{1}{E_{1}} \oplus E_{-1}^{1} \xrightarrow{\Delta^{*}} H^{2}\left(O_{n}\right) \rightarrow 0
$$

Finding the Cochains

Let $H^{1}\left(O_{n}\right)$ and $H^{2}\left(O_{n}\right)$ be the first two cellular cohomology groups with twisted coefficients for O_{n}.
Claim: $H^{1}\left(O_{n}\right)$ and $H^{2}\left(O_{n}\right)$ are 1-dimensional and ϕ^{*} acts on them by ± 1 respectively.
By Mayer-Vietoris we have

$$
0 \rightarrow H^{1}\left(O_{n}\right)^{u^{*} \oplus \oplus_{2}^{*}} \xrightarrow{2} H^{1}(M) \oplus H^{1}(N)^{1} \xrightarrow{\iota_{3}^{*}-\tau_{4}^{*}} H^{1}(\partial M) \cong E_{1}^{2} \oplus E_{-1}^{1} \xrightarrow{2} \Delta^{*} H^{2}\left(O_{n}\right) \rightarrow 0
$$

Can show that

$$
H^{1}\left(O_{n}\right) \stackrel{l_{3}^{*} \circ \iota_{1}^{*}}{=} E_{1}
$$

Finding the Cochains

Let $H^{1}\left(O_{n}\right)$ and $H^{2}\left(O_{n}\right)$ be the first two cellular cohomology groups with twisted coefficients for O_{n}.
Claim: $H^{1}\left(O_{n}\right)$ and $H^{2}\left(O_{n}\right)$ are 1-dimensional and ϕ^{*} acts on them by ± 1 respectively.
By Mayer-Vietoris we have

Can show that

$$
H^{1}\left(O_{n}\right) \stackrel{\iota_{3}^{*} \circ_{1}^{*}}{=} E_{1}
$$

and

$$
E_{-1} \stackrel{\Delta^{*}}{\cong} H^{2}\left(O_{n}\right)
$$

Finding the Cochains

Let $\left[z_{1}\right] \in H^{1}\left(O_{n}\right)$ be a generator and assume that ϕ has order K.

Finding the Cochains

Let $\left[z_{1}\right] \in H^{1}\left(O_{n}\right)$ be a generator and assume that ϕ has order K.

- Replace z_{1} with $z_{1}^{*}=\frac{1}{K}\left(z_{1}+\phi^{*}\left(z_{1}\right)+\ldots\left(\phi^{*}\right)^{K-1}\left(z_{1}\right)\right)$

Finding the Cochains

Let $\left[z_{1}\right] \in H^{1}\left(O_{n}\right)$ be a generator and assume that ϕ has order K.

- Replace z_{1} with $z_{1}^{*}=\frac{1}{K}\left(z_{1}+\phi^{*}\left(z_{1}\right)+\ldots\left(\phi^{*}\right)^{K-1}\left(z_{1}\right)\right)$
- $z_{1} \cup z_{1}=\phi^{*}\left(z_{1}\right) \cup \phi^{*}\left(z_{1}\right)=\phi^{*}\left(z_{1} \cup z_{1}\right) \sim-z_{1} \cup z_{1}$

Finding the Cochains

Let $\left[z_{1}\right] \in H^{1}\left(O_{n}\right)$ be a generator and assume that ϕ has order K.

- Replace z_{1} with $z_{1}^{*}=\frac{1}{K}\left(z_{1}+\phi^{*}\left(z_{1}\right)+\ldots\left(\phi^{*}\right)^{K-1}\left(z_{1}\right)\right)$
- $z_{1} \cup z_{1}=\phi^{*}\left(z_{1}\right) \cup \phi^{*}\left(z_{1}\right)=\phi^{*}\left(z_{1} \cup z_{1}\right) \sim-z_{1} \cup z_{1}$
- $\left[z_{1} \cup z_{1}\right]=0$ and there is z_{2} s.t. $d z_{2}=z_{1} \cup z_{1}$.

Finding the Cochains

Let $\left[z_{1}\right] \in H^{1}\left(O_{n}\right)$ be a generator and assume that ϕ has order K.

- Replace z_{1} with $z_{1}^{*}=\frac{1}{K}\left(z_{1}+\phi^{*}\left(z_{1}\right)+\ldots\left(\phi^{*}\right)^{K-1}\left(z_{1}\right)\right)$
- $z_{1} \cup z_{1}=\phi^{*}\left(z_{1}\right) \cup \phi^{*}\left(z_{1}\right)=\phi^{*}\left(z_{1} \cup z_{1}\right) \sim-z_{1} \cup z_{1}$
- $\left[z_{1} \cup z_{1}\right]=0$ and there is z_{2} s.t. $d z_{2}=z_{1} \cup z_{1}$.
- Replace z_{2} with z_{2}^{*}.

Finding the Cochains

Let $\left[z_{1}\right] \in H^{1}\left(O_{n}\right)$ be a generator and assume that ϕ has order K.

- Replace z_{1} with $z_{1}^{*}=\frac{1}{K}\left(z_{1}+\phi^{*}\left(z_{1}\right)+\ldots\left(\phi^{*}\right)^{K-1}\left(z_{1}\right)\right)$
- $z_{1} \cup z_{1}=\phi^{*}\left(z_{1}\right) \cup \phi^{*}\left(z_{1}\right)=\phi^{*}\left(z_{1} \cup z_{1}\right) \sim-z_{1} \cup z_{1}$
- $\left[z_{1} \cup z_{1}\right]=0$ and there is z_{2} s.t. $d z_{2}=z_{1} \cup z_{1}$.
- Replace z_{2} with z_{2}^{*}.
- $z_{1} \cup z_{2}+z_{2} \cup z_{1}=\phi^{*}\left(z_{1}\right) \cup \phi^{*}\left(z_{2}\right)+\phi^{*}\left(z_{2}\right) \cup \phi^{*}\left(z_{1}\right)=$ $\phi^{*}\left(z_{1} \cup z_{2}+z_{2} \cup z_{1}\right) \sim-\left(z_{1} \cup z_{2}+z_{2} \cup z_{1}\right)$

Finding the Cochains

Let $\left[z_{1}\right] \in H^{1}\left(O_{n}\right)$ be a generator and assume that ϕ has order K.

- Replace z_{1} with $z_{1}^{*}=\frac{1}{K}\left(z_{1}+\phi^{*}\left(z_{1}\right)+\ldots\left(\phi^{*}\right)^{K-1}\left(z_{1}\right)\right)$
- $z_{1} \cup z_{1}=\phi^{*}\left(z_{1}\right) \cup \phi^{*}\left(z_{1}\right)=\phi^{*}\left(z_{1} \cup z_{1}\right) \sim-z_{1} \cup z_{1}$
- $\left[z_{1} \cup z_{1}\right]=0$ and there is z_{2} s.t. $d z_{2}=z_{1} \cup z_{1}$.
- Replace z_{2} with z_{2}^{*}.
- $z_{1} \cup z_{2}+z_{2} \cup z_{1}=\phi^{*}\left(z_{1}\right) \cup \phi^{*}\left(z_{2}\right)+\phi^{*}\left(z_{2}\right) \cup \phi^{*}\left(z_{1}\right)=$ $\phi^{*}\left(z_{1} \cup z_{2}+z_{2} \cup z_{1}\right) \sim-\left(z_{1} \cup z_{2}+z_{2} \cup z_{1}\right)$
- $\left[z_{1} \cup z_{2}+z_{2} \cup z_{1}\right]=0$ and there is z_{3} s.t. $d z_{3}=z_{1} \cup z_{2}+z_{2} \cup z_{1}$

Finding the Cochains

Let $\left[z_{1}\right] \in H^{1}\left(O_{n}\right)$ be a generator and assume that ϕ has order K.

- Replace z_{1} with $z_{1}^{*}=\frac{1}{K}\left(z_{1}+\phi^{*}\left(z_{1}\right)+\ldots\left(\phi^{*}\right)^{K-1}\left(z_{1}\right)\right)$
- $z_{1} \cup z_{1}=\phi^{*}\left(z_{1}\right) \cup \phi^{*}\left(z_{1}\right)=\phi^{*}\left(z_{1} \cup z_{1}\right) \sim-z_{1} \cup z_{1}$
- $\left[z_{1} \cup z_{1}\right]=0$ and there is z_{2} s.t. $d z_{2}=z_{1} \cup z_{1}$.
- Replace z_{2} with z_{2}^{*}.
- $z_{1} \cup z_{2}+z_{2} \cup z_{1}=\phi^{*}\left(z_{1}\right) \cup \phi^{*}\left(z_{2}\right)+\phi^{*}\left(z_{2}\right) \cup \phi^{*}\left(z_{1}\right)=$ $\phi^{*}\left(z_{1} \cup z_{2}+z_{2} \cup z_{1}\right) \sim-\left(z_{1} \cup z_{2}+z_{2} \cup z_{1}\right)$
- $\left[z_{1} \cup z_{2}+z_{2} \cup z_{1}\right]=0$ and there is z_{3} s.t. $d z_{3}=z_{1} \cup z_{2}+z_{2} \cup z_{1}$
- Repeat indefinitely to get remaining z_{i}.

Consequences

- There are many flexible examples given by taking branched covers of the figure-8 knot

Consequences

- There are many flexible examples given by taking branched covers of the figure-8 knot
- There is strong numerical evidence that 6_{3} satisfies the hypotheses of the theorem and gives rise to more examples.

Consequences

- There are many flexible examples given by taking branched covers of the figure-8 knot
- There is strong numerical evidence that σ_{3} satisfies the hypotheses of the theorem and gives rise to more examples.
- There are infinitely many amphicheiral two-bridge knots.

