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affine part and an ideal part (inhomogeneous coordinates).
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The Klein Model

• Let 〈x , y〉 = x1y1 + . . .+ xnyn − xn+1yn+1
be standard form of signature (n,1) on Rn+1.

• Let C = {x ∈ Rn+1|〈x , x〉 < 0}
• P(C) is the Klein model of Hn.
• In the affine patch defined by H it is a disk.



Nice Properties of Hyperbolic Space

• Convex: Intersection with projective lines is connected.

• Properly Convex: Convex and closure is contained in an
affine patch⇐⇒ Disjoint from some projective hyperplane.

• Strictly Convex: Properly convex and boundary contains
no non-trivial projective line segments.

Convex projective geometry focuses on the geometry of
properly (sometimes stictly) convex domains.



Nice Properties of Hyperbolic Space

• Convex: Intersection with projective lines is connected.
• Properly Convex: Convex and closure is contained in an

affine patch⇐⇒ Disjoint from some projective hyperplane.

• Strictly Convex: Properly convex and boundary contains
no non-trivial projective line segments.

Convex projective geometry focuses on the geometry of
properly (sometimes stictly) convex domains.



Nice Properties of Hyperbolic Space

• Convex: Intersection with projective lines is connected.
• Properly Convex: Convex and closure is contained in an

affine patch⇐⇒ Disjoint from some projective hyperplane.
• Strictly Convex: Properly convex and boundary contains

no non-trivial projective line segments.

Convex projective geometry focuses on the geometry of
properly (sometimes stictly) convex domains.



Nice Properties of Hyperbolic Space

• Convex: Intersection with projective lines is connected.
• Properly Convex: Convex and closure is contained in an

affine patch⇐⇒ Disjoint from some projective hyperplane.
• Strictly Convex: Properly convex and boundary contains

no non-trivial projective line segments.

Convex projective geometry focuses on the geometry of
properly (sometimes stictly) convex domains.



Hilbert Metric
Let Ω be a properly convex set and PGL(Ω) be the projective
automorphisms preserving Ω.

Every properly convex set Ω admits a Hilbert metric given by

dΩ(x , y) = log[a, x ; y ,b] = log
(
|x − b| |y − a|
|x − a| |y − b|

)

• When Ω is an ellipsoid dΩ is twice the hyperbolic metric.
• PGL(Ω) ≤ Isom(Ω) and equal when Ω is strictly convex.
• Discrete subgroups of PGL(Ω) act properly discontinuously

on Ω.
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Classification of Isometries

If Ω is an open properly convex then PGL(Ω) embeds in
SL±

n+1(R) which allows us to talk about eigenvalues.

If γ ∈ PGL(Ω) then γ is
1. elliptic if γ fixes a point in Ω,
2. parabolic if γ acts freely on Ω and has all eigenvalues of

modulus 1, and
3. hyperbolic otherwise
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1. When Ω is an ellipsoid this classification is the same as the
standard classification of hyperbolic isometries.

2. When Ω is strictly convex parabolic isometries have a
unique fixed point on ∂Ω.

3. When Ω is strictly convex, hyperbolic isometries have 2
fixed points on ∂Ω and act by translation along the line
connecting them.

4. When Ω is strictly convex, parabolic and hyperbolic
elements in a common discrete subgroup do not share
fixed points.

5. When Ω is strictly convex, a discrete, torsion-free subgroup
of elements fixing a geodesic is infinite cyclic.
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Convex Projective Manifolds

Let Mn be a manifold with π1(M) = Γ. A convex projective
structure on M is a pair (Ω, ρ) such that

1. Ω is a properly convex open subset of RPn.
2. ρ : Γ→ PGL(Ω) is a discrete and faithful representation.
3. M ∼= Ω/ρ(Γ)

• ρ is called the holonomy of the structure
• The structure is strictly convex if Ω is strictly convex
• When Ω is an ellipsoid then PGL(Ω) ∼= Isom(Hn) and a

complete hyperbolic structure is a strictly convex projective
structure.
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Projective Equivalence
Suppose that Mn ∼= Ωi/ρi(Γ) for i = 1,2, then (Ω1, ρ1) and
(Ω2, ρ2) are projectively equivalent if there exists
h ∈ PGLn+1(R) such that h(Ω1) = Ω2 and for each γ ∈ π1(M)

Ω1

ρ1(γ)
��

h // Ω2

ρ2(γ)
��

Ω1
h // Ω2

• If (Ω1, ρ1) and (Ω2, ρ2) are projectively equivalent then
ρ2(Γ) = hρ1(Γ)h−1

• Let X(Γ,PGLn+1(R)) be the set of conjugacy classes of
representations from Γ to PGLn+1(R).

Projective
equivalence classes of M are in bijective correspondence
with elements of X(Γ,PGLn+1(R)) that are faithful, discrete,
and preserve a properly convex set.
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Mostow Rigidity

Let Mn be a finite volume hyperbolic manifold (n ≥ 3) and let
(Ω1, ρ1) and (Ω2, ρ2) be two complete hyperbolic structures on
M. Mostow rigidity tells us that (Ω1, ρ1) and (Ω2, ρ2) are
projectively equivalent.

There is a distinguished projective equivalence class of convex
projective structures on M consisting of complete hyperbolic
structures on M.
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1. Are there other projective equivalence classes of (strictly)
convex projective structures on M near the complete
hyperbolic structure?

Yes

• Dimension 2
(Goldman-Choi)

• Bending (Johnson-Millson)

• Flexing (Cooper-Long-
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• Certain surgeries on
Figure-8 (Huesener-Porti)

No

• Most closed 2-generator
census manifolds (Cooper-
Long-Thistlethwaite)
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A decomposition of M

Let M be an orientable, finite volume, hyperbolic 3-manifold.
Then

M = MK ∪ (tiCi).

Ci
∼= T 2 × [1,∞) are called cusps and π1(Ci) is a peripheral

subgroup.

• If ρ0 is the holonomy of the complete hyperbolic structure
on M then T 2 × {x} has the same Euclidean structure for
each x ∈ [1,∞).

• If ρ1 is the holonomy of a general convex projective
structure on M then T 2 × {x} has the same affine structure
for each x ∈ [1,∞).



A decomposition of M

Let M be an orientable, finite volume, hyperbolic 3-manifold.
Then

M = MK ∪ (tiCi).

Ci
∼= T 2 × [1,∞) are called cusps and π1(Ci) is a peripheral

subgroup.
• If ρ0 is the holonomy of the complete hyperbolic structure

on M then T 2 × {x} has the same Euclidean structure for
each x ∈ [1,∞).

• If ρ1 is the holonomy of a general convex projective
structure on M then T 2 × {x} has the same affine structure
for each x ∈ [1,∞).



A decomposition of M

Let M be an orientable, finite volume, hyperbolic 3-manifold.
Then

M = MK ∪ (tiCi).

Ci
∼= T 2 × [1,∞) are called cusps and π1(Ci) is a peripheral

subgroup.
• If ρ0 is the holonomy of the complete hyperbolic structure

on M then T 2 × {x} has the same Euclidean structure for
each x ∈ [1,∞).

• If ρ1 is the holonomy of a general convex projective
structure on M then T 2 × {x} has the same affine structure
for each x ∈ [1,∞).



Description of the Holonomy

What does the holonomy of a strictly convex structure on M
look like?

Lemma 1 (Cooper-Long-Tillman)
Let Ω ⊂ RP3 be properly convex. If γ ∈ PGL(Ω) is parabolic
then γ is conjugate in PGL4(R) to

1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1


If γ ∈ PGL4(R) is conjugate the above matrix then we say that γ
is a strictly convex parabolic.
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Description of the Holonomy

Lemma 2
If ρ is the holonomy of a strictly convex projective structure on
M then ρ(π1(C)) is parabolic for each cusp C of M.

Let Xscp(Γ,PGL4(R)) be conjugacy classes of representations
such that the image of every peripheral element is a strictly
convex parabolic element.

Corollary 3
If ρ is the holonomy of a strictly convex projective structure on
M then [ρ] ∈ Xscp(Γ,PGL4(R))
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Two-Bridge Knots

If M is a two bridge knot complement then
Γ = π1(M) = 〈α, β|αω = ωβ〉, where ω is a word in α and β that
depends on the knot.

• α and β can be taken to be meridians
• We want to look for ρ : Γ→ PGL4(R) where α and β are

sent to strictly convex parabolic elements
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• We want to look for ρ : Γ→ PGL4(R) where α and β are

sent to strictly convex parabolic elements



A Normal Form

By work of Riley it is possible to uniquely conjugate
non-commuting parabolic a,b ∈ Isom(H3) ∼= PSL2(C) so that

a =

(
1 1
0 1

)
, b =

(
1 0
z 1

)
,

where z is a non-zero complex number.

Geometrically, this is done be moving the repsective fixed
points of a and b to∞ and 0
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A Normal Form

Let ρ be a strictly convex holonomy near the complete
hyperbolic holonomy. Let Eα and Eβ be the 1-eigenspaces of
ρ(α) and ρ(β).

By irreduciblity, R4 = Eα ⊕ Eβ and so we can find a basis where

ρ(α) =

(
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, ρ(β) =

(
Bu 0
Bl I

)

The minimal polynomial of a strictly convex parabolic is
(x − 1)3. Therefore, neither Al and Bu are diagonalizable and
so by further conjugating we can assume that

Al =

(
1 a3
0 1

)
, Bu =

(
1 0
b1 1

)
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Therefore we can uniquely conjugate so that
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0 1 1 a2
0 0 1 a3
0 0 0 1

 , ρ(β) =


1 0 0 0
b1 1 0 0
b2 1 1 0
1 1 0 1


Each solution to the matrix equation ρ(α)ρ(ω)− ρ(ω)ρ(β) = 0
gives a conjugacy class of representations for the two bridge
knot complement.
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Figure-8 Example

Let M be the figure-8 knot complement, then ω = βα−1β−1α
and solutions to the previous equation are

ρt (α) =


1 0 1 3−t

t−2
0 1 1 1

2(t−2)

0 0 1 t
2(t−2)

0 0 0 1

 , ρt (β) =


1 0 0 0
t 1 0 0
2 1 1 0
1 1 0 1

 ,

and the complete hyperbolic structure occurs at t = 4.
• The element l = βα−1β−1α2β−1α−1β is a longitude and
ρt (l) is parabolic iff t = 4.

• Locally, the complete hyperbolic structure is the unique
strictly convex projective structure on M
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Other Two-bridge Knots and Links

• There are similar rigidity results for the knots 52, 61, and
the Whitehead link.

• In these other cases there are no families of
representations where ρ(α) and ρ(β) are parabolic.

(this is likely because of amphicheirality of the figure-8)

• There is strong numerical evidence that several other
two-bridge knots are rigid.

• Is there a general rigidity result for two-bridge knots and
links?
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Finding Deformations
The Closed Case

Let M be a closed manifold (or orbifold). Which deformations of
representations give rise to strictly convex projective
structures?

Theorem 4 (Koszul, Benoist)
Let M be a closed, hyperbolic 3-manifold and ρ0 be the
holonomy of the complete hyperbolic structure on M. If ρt is
sufficiently close to ρ0 in Hom(Γ,PGL4(R)) then ρt is the
holonomy of a strictly convex projective structure on M

• Small deformations of holonomy correspond to small
deformations of the convex projective structure

• To find deformations of convex projective structures we
only need to deform the conjugacy class of
representations.
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Group Cohomology

Let ρt : Γ→ PGL4(R) be a representation, then for γ ∈ Γ and
t ∈ (−ε, ε) we have

ρt (γ) = (I + z1(γ)t + z2(γ)t2 + . . .)ρ0(γ),

where zi : Γ→ sl4 are 1-cochain.

• The homomorphism condition tells us that z1 is a 1-cocyle
in twisted group cohomology.

• If ρt (γ) = ctρ0(γ)c−1
t , then z1 is a 1-coboundary.

• H1(Γ) infinitesimally parametrizes conjugacy classes of
deformations.

• Dimension of H1(Γ) gives an upper bound on the
dimension of X(Γ,PGL4(R))
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Let ρt : Γ→ PGL4(R) be a representation, then for γ ∈ Γ and
t ∈ (−ε, ε) we have

ρt (γ) = (I + z1(γ)t + z2(γ)t2 + . . .)ρ0(γ)

• The homomorphism condition also says that

k−1∑
i=1

zi ∪ zk−i = dzk

• By a result of Artin, if we can find zi satisfying the above
condition then we can build a convergent family of
representations.
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Orbifold Surgery

Let M be the complement of an amphicheiral, hyperbolic knot,
On be the orbifold obtained by the above gluing, and
Γn = πorb

1 (On).

• By amphicheirality, there is a map φ : M → M s.t
φ(m) = m−1 and φ(l) = l .

• φ extends to a symmetry φ : On → On

• We can use this symmetry to build representations
ρt : Γn → PGL4(R)
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A Flexibility Theorem

Theorem 5 (B)
Let M be the complement of a hyperbolic, amphicheiral knot,
and suppose that M is infinitesimally projectively rigid relative to
the boundary at the complete hyperbolic structure and the
longitude is a rigid slope. Then for sufficiently large n, On has a
one dimensional space of strictly convex projective
deformations near the complete hyperbolic structure.



Finding the Cochains
Let H1(On) and H2(On) be the first two cellular cohomology
groups with twisted coefficients for On.

Claim: H1(On) and H2(On) are 1-dimensional and φ∗ acts on
them by ±1 respectively.
By Mayer-Vietoris we have

0→ H1(On)
ι∗1 ⊕ι∗2→

1

H1(M) ⊕
1

H1(N)
ι∗3 −ι∗4→

2

H1(∂M)∼=
1

E1 ⊕
1

E−1
∆∗
→ H2(On)→ 0

Can show that

H1(On)
ι∗3◦ι

∗
1∼= E1

and

E−1
∆∗
∼= H2(On)
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Finding the Cochains

Let [z1] ∈ H1(On) be a generator and assume that φ has order
K .

• Replace z1 with z∗
1 = 1

K (z1 + φ∗(z1) + . . . (φ∗)K−1(z1))

• z1 ∪ z1 = φ∗(z1) ∪ φ∗(z1) = φ∗(z1 ∪ z1) ∼ −z1 ∪ z1

• [z1 ∪ z1] = 0 and there is z2 s.t. dz2 = z1 ∪ z1.
• Replace z2 with z∗

2 .
• z1 ∪ z2 + z2 ∪ z1 = φ∗(z1) ∪ φ∗(z2) + φ∗(z2) ∪ φ∗(z1) =
φ∗(z1 ∪ z2 + z2 ∪ z1) ∼ −(z1 ∪ z2 + z2 ∪ z1)

• [z1 ∪ z2 + z2 ∪ z1] = 0 and there is z3 s.t.
dz3 = z1 ∪ z2 + z2 ∪ z1

• Repeat indefinitely to get remaining zi .
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• z1 ∪ z1 = φ∗(z1) ∪ φ∗(z1) = φ∗(z1 ∪ z1) ∼ −z1 ∪ z1

• [z1 ∪ z1] = 0 and there is z2 s.t. dz2 = z1 ∪ z1.
• Replace z2 with z∗

2 .
• z1 ∪ z2 + z2 ∪ z1 = φ∗(z1) ∪ φ∗(z2) + φ∗(z2) ∪ φ∗(z1) =
φ∗(z1 ∪ z2 + z2 ∪ z1) ∼ −(z1 ∪ z2 + z2 ∪ z1)

• [z1 ∪ z2 + z2 ∪ z1] = 0 and there is z3 s.t.
dz3 = z1 ∪ z2 + z2 ∪ z1

• Repeat indefinitely to get remaining zi .
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Consequences

• There are many flexible examples given by taking
branched covers of the figure-8 knot

• There is strong numerical evidence that 63 satisfies the
hypotheses of the theorem and gives rise to more
examples.

• There are infinitely many amphicheiral two-bridge knots.
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