Convex Projective Structures on Non-hyperbolic 3-manifolds

Sam Ballas

(joint with J. Danciger and G.-S. Lee)

Higher Teichmüller theory and Higgs bundles Heidelberg November 3, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 If you want to construct/understand hyperbolic structures on a closed surface Σ you...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 If you want to construct/understand hyperbolic structures on a closed surface Σ you...

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q ()

• Cut Σ into pairs of pants.

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ □ ● ● ● ●

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Understand hyperbolic structures on pants.

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

• Understand hyperbolic structures on pants. (Completely determined by geometry of boundary)

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

- Understand hyperbolic structures on pants. (Completely determined by geometry of boundary)
- Understand how to glue together pants.

- If you want to construct/understand hyperbolic structures on a closed surface Σ you...
 - Cut Σ into pairs of pants.

- Understand hyperbolic structures on pants. (Completely determined by geometry of boundary)
- Understand how to glue together pants. (Matching problem + twisting)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

• By geometrization, you can cut *M* into pieces along tori.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• By geometrization, you can cut *M* into pieces along tori.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Can put a complete finite volume Thurston geometric structure on each of the pieces.

- By geometrization, you can cut *M* into pieces along tori.
- Can put a complete finite volume Thurston geometric structure on each of the pieces.
- If there are multiple geometric pieces, we can't glue them to get a Thurston geometric structure on all of *M*.

イロト イポト イヨト イヨト ヨー のくぐ

- By geometrization, you can cut *M* into pieces along tori.
- Can put a complete finite volume Thurston geometric structure on each of the pieces.
- If there are multiple geometric pieces, we can't glue them to get a Thurston geometric structure on all of *M*.
- However, if we allow more general geometric structures then this strategy still works (at least some of the time)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

To construct/understand geometric structures on a closed 3-manifold M we try to:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

To construct/understand geometric structures on a closed 3-manifold M we try to:

1. Cut *M* into nice pieces.

To construct/understand geometric structures on a closed 3-manifold M we try to:

- 1. Cut *M* into nice pieces.
- 2. In many cases these pieces behave like pairs of pants (geometry of the pieces are (locally) determined by boundary geometry).

イロト イポト イヨト イヨト ヨー のくぐ

To construct/understand geometric structures on a closed 3-manifold M we try to:

- 1. Cut *M* into nice pieces.
- 2. In many cases these pieces behave like pairs of pants (geometry of the pieces are (locally) determined by boundary geometry).
- 3. Try to glue the pieces together by matching the geometry on the boundary.

イロト イポト イヨト イヨト ヨー のくぐ

To construct/understand geometric structures on a closed 3-manifold M we try to:

- 1. Cut *M* into nice pieces.
- 2. In many cases these pieces behave like pairs of pants (geometry of the pieces are (locally) determined by boundary geometry).
- 3. Try to glue the pieces together by matching the geometry on the boundary.
- 4. Analyze the different ways to glue structures with matching boundary geometry.

Projective Space

- \mathbb{RP}^n is the space of lines through origin in \mathbb{R}^{n+1} .
- Let $P : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$ be the obvious projection.

• The automorphism group of \mathbb{RP}^n is $\mathrm{PGL}_{n+1}(\mathbb{R}) := \mathrm{GL}_{n+1}(\mathbb{R})/\mathbb{R}^{\times}$.

Affine Patches

• Every hyperplane H in \mathbb{R}^{n+1} gives rise to a decomposition of $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$ into an affine part and an ideal part.

Affine Patches

• Every hyperplane H in \mathbb{R}^{n+1} gives rise to a decomposition of $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$ into an affine part and an ideal part.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Affine Patches

• Every hyperplane H in \mathbb{R}^{n+1} gives rise to a decomposition of $\mathbb{RP}^n = \mathbb{R}^n \sqcup \mathbb{RP}^{n-1}$ into an affine part and an ideal part.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

• $\mathbb{RP}^n \setminus P(H)$ is called an *affine patch*.

Convex Projective Domains

- Ω ⊂ ℝPⁿ is *properly convex* if it is a bounded convex subset of some affine patch.
- If ∂Ω contains no non-trivial line segments then Ω is strictly convex.

Properly Convex

・ロト・四ト・ヨト・ヨー シック

Convex Projecitve Structures

 A convex projective n-manifold is a manifold of the form Γ\Ω, where Ω ⊂ ℝPⁿ is properly convex and Γ ⊂ PGL(Ω) is a discrete torsion free subgroup.

イロト イポト イヨト イヨト ヨー のくぐ

Convex Projecitve Structures

- A convex projective n-manifold is a manifold of the form Γ\Ω, where Ω ⊂ ℝPⁿ is properly convex and Γ ⊂ PGL(Ω) is a discrete torsion free subgroup.
- A (marked) *convex projective structure* on a manifold *M* is an identification of *M* with a properly convex manifold (up to equivalence).

(日) (日) (日) (日) (日) (日) (日)

Convex Projecitve Structures

- A convex projective n-manifold is a manifold of the form Γ\Ω, where Ω ⊂ ℝPⁿ is properly convex and Γ ⊂ PGL(Ω) is a discrete torsion free subgroup.
- A (marked) *convex projective structure* on a manifold *M* is an identification of *M* with a properly convex manifold (up to equivalence).
- A marked convex projective structure gives rise to a (conjugacy class of) representation *ρ* : *π*₁*M* → PGL_{*n*+1}(ℝ) called a *holonomy* of the structure and an equivariant diffeomorphism Dev : *M* → Ω called a *developing map*.

Complete Hyperbolic Manifolds

- Let ⟨x, y⟩ = x₁y₁ + ... x_ny_n x_{n+1}y_{n+1} be the standard bilinear form of signature (n, 1) on ℝⁿ⁺¹
- Let $C = \{x \in \mathbb{R}^{n+1} | \langle x, x \rangle < 0\}$

(日) (日) (日) (日) (日) (日) (日)

Complete Hyperbolic Manifolds

- Let ⟨x, y⟩ = x₁y₁ + ... x_ny_n − x_{n+1}y_{n+1} be the standard bilinear form of signature (n, 1) on ℝⁿ⁺¹
- Let $C = \{x \in \mathbb{R}^{n+1} | \langle x, x \rangle < 0\}$
- $P(C) = \mathbb{H}^n$ is the *Klein model* of hyperbolic space.
- $\operatorname{PGL}(\mathbb{H}^n) \cong \operatorname{PO}(n,1) \leq \operatorname{PGL}_{n+1}(\mathbb{R})$

(日) (日) (日) (日) (日) (日) (日)

Complete Hyperbolic Manifolds

- Let $\langle x, y \rangle = x_1 y_1 + \dots x_n y_n x_{n+1} y_{n+1}$ be the standard bilinear form of signature (n, 1) on \mathbb{R}^{n+1}
- Let $\mathcal{C} = \{x \in \mathbb{R}^{n+1} | \langle x, x \rangle < 0\}$
- $P(C) = \mathbb{H}^n$ is the *Klein model* of hyperbolic space.
- $\operatorname{PGL}(\mathbb{H}^n) \cong \operatorname{PO}(n,1) \leq \operatorname{PGL}_{n+1}(\mathbb{R})$
- If Γ is a torsion-free Kleinian group then Γ\Hⁿ is a (strictly) convex projective manifold.

Hex Torus

Let O ⊂ ℝ³ is the positive orthant, then Δ = P(O) is a triangle.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- Let O ⊂ ℝ³ is the positive orthant, then Δ = P(O) is a triangle.
- Let $\Gamma \leq Diag_+ \leq PGL(\Delta)$ be lattice, then $\Gamma \cong \mathbb{Z}^2$ and $\Gamma \setminus \Delta$ is a torus (a Hex Torus)

Hilbert Metric

Let Ω be a properly convex set and PGL(Ω) be the projective automorphisms preserving Ω .

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q ()

Hilbert Metric

Let Ω be a properly convex set and PGL(Ω) be the projective automorphisms preserving Ω .

Every properly convex set Ω admits a Hilbert metric given by

$$d_\Omega(x,y) = \log[a:x:y:b] = \log\left(rac{|x-b|\,|y-a|}{|x-a|\,|y-b|}
ight)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

Hilbert Metric Properties

• When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.

Hilbert Metric Properties

• When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• In general the metric is not Riemannian, only Finsler

Hilbert Metric Properties

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- In general the metric is not Riemannian, only Finsler
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@
Hilbert Metric Properties

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- In general the metric is not Riemannian, only Finsler
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Point stabilizers are compact

Hilbert Metric Properties

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- In general the metric is not Riemannian, only Finsler
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.
- Point stabilizers are compact
- Discrete subgroups of PGL(Ω) act properly discontinuously on Ω.

Hilbert Metric Properties

- When Ω is an ellipsoid d_{Ω} is twice the hyperbolic metric.
- In general the metric is not Riemannian, only Finsler
- $PGL(\Omega) \leq Isom(\Omega)$ and equal when Ω is strictly convex.
- Point stabilizers are compact
- Discrete subgroups of PGL(Ω) act properly discontinuously on Ω.

Convex projective structures are like Thurston geometric structures, sans homogeneity

Convex Projective Structure in Dimension 3 Let $M \cong \Gamma \setminus \Omega$ be a closed indecomposable convex projective 3-manifold.

Theorem (Benoist 2006)

Let M be as above then either

- i *M* is strictly convex and admits a hyperbolic structure
- ii *M* is not strictly convex and contains a finite number of embedded totally geodesic Hex tori. The pieces obtained by cutting along these tori are a JSJ decomposition for *M*. Furthermore, each piece admits a finite volume hyperbolic structure.

Back to Dimension 2

Let \mathcal{P} be a thrice punctures sphere.

• Then there is a unique complete finite volume hyperbolic structure on $\ensuremath{\mathcal{P}}.$

Back to Dimension 2

Let $\ensuremath{\mathcal{P}}$ be a thrice punctures sphere.

- Then there is a unique complete finite volume hyperbolic structure on \mathcal{P} .
- We can deform this structure to a complete infinite volume structure.

Back to Dimension 2

Let $\ensuremath{\mathcal{P}}$ be a thrice punctures sphere.

- Then there is a unique complete finite volume hyperbolic structure on \mathcal{P} .
- We can deform this structure to a complete infinite volume structure.
- We can truncate the ends of this infinite volume structure along geodesics to get a structure on a pair of pants P.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Let N be a finite-volume hyperbolic 3-manifold

• $\mathfrak{B}(N)$ = Space of marked convex projective structures

- $\mathcal{X}(N) = \operatorname{Hom}(\pi_1 N, \operatorname{PGL}_4(\mathbb{R}))/\operatorname{conj}$
- Hol : $\mathfrak{B}(N) \to \mathcal{X}(N)$

Let N be a finite-volume hyperbolic 3-manifold

- $\mathcal{X}(N) = \operatorname{Hom}(\pi_1 N, \operatorname{PGL}_4(\mathbb{R}))/\operatorname{conj}$
- Hol : $\mathfrak{B}(N) \to \mathcal{X}(N)$

Some Facts

1 There is a canonical basepoint $[N_{hyp}] \in \mathfrak{B}(N)$ and $[\rho_{hyp}] = \operatorname{Hol}([N_{hyp}])$ (Mostow rigidity)

Let *N* be a finite-volume hyperbolic 3-manifold

- $\mathcal{X}(N) = \operatorname{Hom}(\pi_1 N, \operatorname{PGL}_4(\mathbb{R}))/\operatorname{conj}$
- Hol : $\mathfrak{B}(N) \to \mathcal{X}(N)$

Some Facts

- 1 There is a canonical basepoint $[N_{hyp}] \in \mathfrak{B}(N)$ and $[\rho_{hyp}] = \operatorname{Hol}([N_{hyp}])$ (Mostow rigidity)
- 2 When *N* is closed Hol is a local homemorphism near $[N_{hyp}]$ (Ehresmann-Thurston, Koszul)

Let *N* be a finite-volume hyperbolic 3-manifold

- $\mathcal{X}(N) = \operatorname{Hom}(\pi_1 N, \operatorname{PGL}_4(\mathbb{R}))/\operatorname{conj}$
- Hol : $\mathfrak{B}(N) \to \mathcal{X}(N)$

Some Facts

- 1 There is a canonical basepoint $[N_{hyp}] \in \mathfrak{B}(N)$ and $[\rho_{hyp}] = \operatorname{Hol}([N_{hyp}])$ (Mostow rigidity)
- 2 When *N* is closed Hol is a local homemorphism near $[N_{hyp}]$ (Ehresmann-Thurston, Koszul)
- 3 When *N* is non-compact, Hol is a local homeomorphism near $[N_{hyp}]$ onto a subset of $\mathcal{X}(N)$ (Cooper–Long–Tillmann)

Theorem 1 (B–Danciger–Lee)

Let N be a finite volume hyperbolic 3-manifold which is infinitesimally rigid rel boundary. Then N admits nearby convex projective structures with totally geodesic boundary.

Theorem 1 (B–Danciger–Lee)

Let N be a finite volume hyperbolic 3-manifold which is infinitesimally rigid rel boundary. Then N admits nearby convex projective structures with totally geodesic boundary.

Theorem 1 (B–Danciger–Lee)

Let N be a finite volume hyperbolic 3-manifold which is infinitesimally rigid rel boundary. Then N admits nearby convex projective structures with totally geodesic boundary.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 1 (B–Danciger–Lee)

Let N be a finite volume hyperbolic 3-manifold which is infinitesimally rigid rel boundary. Then N admits nearby convex projective structures with totally geodesic boundary.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 N is infinitesimally rigid rel boundary if map res : H¹_{ρhyp}(π₁N, sl₄) → H¹_{ρhyp}(π₁∂N, sl₄) is injective.

- N is infinitesimally rigid rel boundary if map res : H¹_{ρhyp}(π₁N, sl₄) → H¹_{ρhyp}(π₁∂N, sl₄) is injective.
- $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4)$ is the "tangent space" to $\mathcal{X}(N)$ at $[\rho_{hyp}]$

(日) (日) (日) (日) (日) (日) (日)

- N is infinitesimally rigid rel boundary if map res : H¹_{ρhyp}(π₁N, sl₄) → H¹_{ρhyp}(π₁∂N, sl₄) is injective.
- $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4)$ is the "tangent space" to $\mathcal{X}(N)$ at $[\rho_{hyp}]$

(日) (日) (日) (日) (日) (日) (日)

 Infinitesimally, the geometry of N is determined by geometry near ∂N.

- N is infinitesimally rigid rel boundary if map res : H¹_{ρhyp}(π₁N, sι₄) → H¹_{ρhyp}(π₁∂N, sι₄) is injective.
- $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4)$ is the "tangent space" to $\mathcal{X}(N)$ at $[\rho_{hyp}]$
- Infinitesimally, the geometry of N is determined by geometry near ∂N.
- res always has half dimensional image (even when *N* is not inf. rigid rel boundary).

(日) (日) (日) (日) (日) (日) (日)

- N is infinitesimally rigid rel boundary if map res : H¹_{ρhyp}(π₁N, sι₄) → H¹_{ρhyp}(π₁∂N, sι₄) is injective.
- $H^1_{\rho_{hyp}}(\pi_1 N, \mathfrak{sl}_4)$ is the "tangent space" to $\mathcal{X}(N)$ at $[\rho_{hyp}]$
- Infinitesimally, the geometry of N is determined by geometry near ∂N.
- res always has half dimensional image (even when *N* is not inf. rigid rel boundary).

(日) (日) (日) (日) (日) (日) (日)

Proving Theorem 1

1. Find deformations $[\rho_t]$ through $[\rho_{hyp}]$ whose restriction to $\pi_1 \partial N$ is diagonalizable over the reals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proving Theorem 1

- 1. Find deformations $[\rho_t]$ through $[\rho_{hyp}]$ whose restriction to $\pi_1 \partial N$ is diagonalizable over the reals.
- 2. Use Cooper–Long–Tillmann holonomy principle to show that ρ_t are holonomies of *some* convex projective structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proving Theorem 1

- 1. Find deformations $[\rho_t]$ through $[\rho_{hyp}]$ whose restriction to $\pi_1 \partial N$ is diagonalizable over the reals.
- 2. Use Cooper–Long–Tillmann holonomy principle to show that ρ_t are holonomies of *some* convex projective structure

(日) (日) (日) (日) (日) (日) (日)

3. Use a convex hull construction to build a structure with totally geodesic boundary.

Theorem (folklore,B–D–L)

If N is a 1-cusped finite volume hyperbolic 3-manifold that is infinitesimally rigid rel boundary then $[\rho_{hyp}]$ is a smooth point of $\mathcal{X}(N)$. Furthermore, $\mathcal{X}(N)$ is 3-dimensional near $[\rho_{hyp}]$

Theorem (folklore,B–D–L)

If N is a 1-cusped finite volume hyperbolic 3-manifold that is infinitesimally rigid rel boundary then $[\rho_{hyp}]$ is a smooth point of $\mathcal{X}(N)$. Furthermore, $\mathcal{X}(N)$ is 3-dimensional near $[\rho_{hyp}]$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ● ●

• $\mathcal{X}(\partial N)$ is 6 dimensional (sort of)

Theorem (folklore,B–D–L)

If N is a 1-cusped finite volume hyperbolic 3-manifold that is infinitesimally rigid rel boundary then $[\rho_{hyp}]$ is a smooth point of $\mathcal{X}(N)$. Furthermore, $\mathcal{X}(N)$ is 3-dimensional near $[\rho_{hyp}]$

- $\mathcal{X}(\partial N)$ is 6 dimensional (sort of)
- res : $\mathcal{X}(N) \to \mathcal{X}(\partial N)$ is smooth local embedding near $[\rho_{hyp}]$

Theorem (folklore,B–D–L)

If N is a 1-cusped finite volume hyperbolic 3-manifold that is infinitesimally rigid rel boundary then $[\rho_{hyp}]$ is a smooth point of $\mathcal{X}(N)$. Furthermore, $\mathcal{X}(N)$ is 3-dimensional near $[\rho_{hyp}]$

- $\mathcal{X}(\partial N)$ is 6 dimensional (sort of)
- res : $\mathcal{X}(N) \to \mathcal{X}(\partial N)$ is smooth local embedding near $[\rho_{hyp}]$
- There is a 4-dimensional slice S ⊂ X(∂N) of generically diagonalizable representations transverse to res at [ρ_{hyp}]

(日) (日) (日) (日) (日) (日) (日)

Theorem (folklore,B–D–L)

If N is a 1-cusped finite volume hyperbolic 3-manifold that is infinitesimally rigid rel boundary then $[\rho_{hyp}]$ is a smooth point of $\mathcal{X}(N)$. Furthermore, $\mathcal{X}(N)$ is 3-dimensional near $[\rho_{hyp}]$

- $\mathcal{X}(\partial N)$ is 6 dimensional (sort of)
- res : $\mathcal{X}(N) \to \mathcal{X}(\partial N)$ is smooth local embedding near $[\rho_{hyp}]$
- There is a 4-dimensional slice S ⊂ X(∂N) of generically diagonalizable representations transverse to res at [ρ_{hyp}]
- We get a curve $[\rho_t]$ in $\mathcal{X}(N)$ diagonalizable over \mathbb{R} on $\pi_1 \partial N$.

Let γ_1 and γ_2 be generators for $\pi_1 \partial N \cong \mathbb{Z}^2$.

Let γ_1 and γ_2 be generators for $\pi_1 \partial N \cong \mathbb{Z}^2$. For t > 0 define

$$egin{aligned} x_{t, heta} &= egin{pmatrix} 2t\cos(heta+2\pi/3) & & & \ & 2t\cos(heta+4\pi/3) & & \ & & 0 \end{pmatrix} \in \mathfrak{a} \ & & y_{t, heta} &= egin{pmatrix} 2t\sin(heta+2\pi/3) & & & \ & & & 2t\sin(heta+4\pi/3) & \ & & & & 0 \end{pmatrix} \in \mathfrak{a} \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Let γ_1 and γ_2 be generators for $\pi_1 \partial N \cong \mathbb{Z}^2$. For t > 0 define

$$egin{aligned} & x_{t, heta} = egin{pmatrix} 2t\cos(heta+2\pi/3) & & & \ & 2t\cos(heta+4\pi/3) & & \ & & 0 \end{pmatrix} \in \mathfrak{a} \ & & y_{t, heta} = egin{pmatrix} 2t\sin(heta+2\pi/3) & & & \ & & & 2t\sin(heta+4\pi/3) & & \ & & & & 0 \end{pmatrix} \in \mathfrak{a} \end{aligned}$$

Define $\rho_{(t,\theta,a,b)}: \pi_1 \partial N \to A = \exp(\mathfrak{a}) \subset \operatorname{PGL}_4(\mathbb{R})$ by

 $\rho_{(t,\theta,a,b)}(\gamma_1) = \exp(x_{t,\theta}), \rho_{(t,\theta,a,b)}(\gamma_2) = \exp(ax_{t,\theta} + by_{t,\theta}).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Another model for \mathbb{H}^3 is

 $\{[x_1:x_2:x_3:1]\in \mathbb{RP}^3\mid x_1>2(x_2^2+x_3^2)\}$

For t > 0, let S_t cross-section of $\partial \mathbb{H}^n$ at $x_1 = \frac{1}{4t^2}$.

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q ()

Another model for \mathbb{H}^3 is

 $\{[x_1:x_2:x_3:1]\in \mathbb{RP}^3\mid x_1>2(x_2^2+x_3^2)\}$

For t > 0, let S_t cross-section of $\partial \mathbb{H}^n$ at $x_1 = \frac{1}{4t^2}$.

• Using $x_{t,\theta}$ and $y_{t,\theta}$ we construct three complex numbers $\{z_{t,\theta}^i\}_{i=1}^3$ equally spaced on the circle of radius 2*t*.

(日) (日) (日) (日) (日) (日) (日)

Another model for \mathbb{H}^3 is

 $\{[x_1:x_2:x_3:1]\in \mathbb{RP}^3 \mid x_1>2(x_2^2+x_3^2)\}$

For t > 0, let S_t cross-section of $\partial \mathbb{H}^n$ at $x_1 = \frac{1}{4t^2}$.

- Using $x_{t,\theta}$ and $y_{t,\theta}$ we construct three complex numbers $\{z_{t,\theta}^i\}_{i=1}^3$ equally spaced on the circle of radius 2*t*.
- Let $p_{t,\theta}^i$ be the point on S_t that projects to $(z_{t,\theta}^i)^{-1}$.

Another model for \mathbb{H}^3 is

 $\{[x_1:x_2:x_3:1]\in \mathbb{RP}^3 \mid x_1>2(x_2^2+x_3^2)\}$

For t > 0, let S_t cross-section of $\partial \mathbb{H}^n$ at $x_1 = \frac{1}{4t^2}$.

- Using $x_{t,\theta}$ and $y_{t,\theta}$ we construct three complex numbers $\{z_{t,\theta}^i\}_{i=1}^3$ equally spaced on the circle of radius 2*t*.
- Let $p_{t,\theta}^i$ be the point on S_t that projects to $(z_{t,\theta}^i)^{-1}$.
- Let C_{t,θ} ∈ PGL₄ be an element taking the vertices of the standard simplex to p¹_{t,θ}, p²_{t,θ}, p³_{t,θ}, and p[∞].

Let
$$\rho'_{(t,\theta,a,b)} = C_{t,\theta}\rho_{(t,\theta,a,b)}C_{t,\theta}^{-1}$$

$$\lim_{t \to 0} \rho'_{(t,\theta,a,b)}(\gamma_1) = \begin{pmatrix} 1 & 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\lim_{t \to 0} \rho'_{(t,\theta,a,b)}(\gamma_2) = \begin{pmatrix} 1 & a & b & \frac{1}{2}(a^2 + b^2) \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

・ロト・日本・日本・日本・日本・日本
The Slice

Let
$$\rho'_{(t,\theta,a,b)} = C_{t,\theta}\rho_{(t,\theta,a,b)}C_{t,\theta}^{-1}$$

$$\lim_{t \to 0} \rho'_{(t,\theta,a,b)}(\gamma_1) = \begin{pmatrix} 1 & 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\lim_{t \to 0} \rho'_{(t,\theta,a,b)}(\gamma_2) = \begin{pmatrix} 1 & a & b & \frac{1}{2}(a^2 + b^2) \\ 0 & 1 & 0 & a \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 $S = \{ [\rho'_{(t,\theta,a,b)}] \mid a, b, \theta \in \mathbb{R}, t \in \mathbb{R}^{\ge 0} \}$

The Slice Properties

- If $t \neq 0$ then elements of S are diagonalizable over reals.
- If z = x + iy is the cusp shape of N w.r.t. $\{\gamma_1, \gamma_2\}$ then $res(\rho_{hyp}) = \rho'_{(0,0,x,y)}$.
- S is transverse to res(X(N)) at [ρ_{hyp}] with 1-dimensional intersection [ρ_s].

• $[\rho_s]$ is diagonalizable over \mathbb{R} for $s \neq 0$.

 Let M₁ ≃ Γ₁\Ω₁ and M₂ ≃ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂

 Let M₁ ≅ Γ₁\Ω₁ and M₂ ≅ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂

• Let $f: \partial_1 \to \partial_2$ be a diffeomorphism.

 Let M₁ ≅ Γ₁\Ω₁ and M₂ ≅ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂

- Let $f : \partial_1 \to \partial_2$ be a diffeomorphism.
- Let $M = M_1 \sqcup_f M_2$

- Let M₁ ≅ Γ₁\Ω₁ and M₂ ≅ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂
- Let $f: \partial_1 \to \partial_2$ be a diffeomorphism.
- Let $M = M_1 \sqcup_f M_2$

Theorem (B–D–L)

If there exists $g \in PGL_4(\mathbb{R})$ such that $f_* : \pi_1\partial_1 \to \pi_1\partial_2$ is induced by conjugation by g then there is a properly convex projective structure on M such that the inclusion $M_i \hookrightarrow M$ is a projective embedding.

- Let M₁ ≅ Γ₁\Ω₁ and M₂ ≅ Γ₂\Ω₂ be a properly convex 3-manifolds with principal totally geodesic torus boundary components, ∂₁ and ∂₂
- Let $f: \partial_1 \to \partial_2$ be a diffeomorphism.
- Let $M = M_1 \sqcup_f M_2$

Theorem (B–D–L)

If there exists $g \in PGL_4(\mathbb{R})$ such that $f_* : \pi_1 \partial_1 \to \pi_1 \partial_2$ is induced by conjugation by g then there is a properly convex projective structure on M such that the inclusion $M_i \hookrightarrow M$ is a projective embedding.

Corollary

If N is a 1-cusped hyperbolic 3-manifold that is infinitesimally rigid rel. boundary then 2N admits a properly convex projective structure.

The Matching Problem

Let N_1 and N_2 are infinitesimally rigid rel. boundary hyperbolic 3-manifolds and M be obtained by gluing N_1 and N_2 along their boundaries. Can we find a convex projective structure on M?

(日) (日) (日) (日) (日) (日) (日)

The Matching Problem

Let N_1 and N_2 are infinitesimally rigid rel. boundary hyperbolic 3-manifolds and M be obtained by gluing N_1 and N_2 along their boundaries. Can we find a convex projective structure on M?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんぐ

The Matching Problem

Let N_1 and N_2 are infinitesimally rigid rel. boundary hyperbolic 3-manifolds and M be obtained by gluing N_1 and N_2 along their boundaries. Can we find a convex projective structure on M?

Blue curves \rightsquigarrow Zero locus of A-polynomial

If *N* properly convex manifold that contains a totally geodesic hex torus, T then

If N properly convex manifold that contains a totally geodesic hex torus, T then

$$\pi_1 N \cong \pi_1 N_1 *_{\pi_1 T} \pi_1 N_2$$

If N properly convex manifold that contains a totally geodesic hex torus, T then

 $\pi_1 N \cong \pi_1 N_1 *_{\pi_1 T} \pi_1 N_2$ or $\pi_1 N \cong \pi_1 (N \setminus T) *_{\alpha}$

▲ロ → ▲周 → ▲目 → ▲目 → □ → の Q ()

If N properly convex manifold that contains a totally geodesic hex torus, T then

$$\pi_1 N \cong \pi_1 N_1 *_{\pi_1 T} \pi_1 N_2$$

or $\pi_1 N \cong \pi_1 (N \setminus T) *_{\alpha}$

each $g \in C_{\mathrm{PGL}_4(\mathbb{R})}(\pi_1 T)^\circ \rightsquigarrow$ different projective structure on N

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

If *N* properly convex manifold that contains a totally geodesic hex torus, T then

$$\pi_1 N \cong \pi_1 N_1 *_{\pi_1 T} \pi_1 N_2$$

or $\pi_1 N \cong \pi_1 (N \setminus T) *_{\alpha}$

each $g \in C_{\mathrm{PGL}_4(\mathbb{R})}(\pi_1 T)^\circ \rightsquigarrow$ different projective structure on N

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

We get "twist coordinates" on $\mathfrak{B}(N)$!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Which finite volume hyperbolic 3-manifolds are infinitesimally rigid rel. boundary?

Questions

- Which finite volume hyperbolic 3-manifolds are infinitesimally rigid rel. boundary?
- Is the converse to Benoist's theorem true?

Questions

- Which finite volume hyperbolic 3-manifolds are infinitesimally rigid rel. boundary?
- Is the converse to Benoist's theorem true?
- If not, what are some obstructions to gluing?

Questions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Which finite volume hyperbolic 3-manifolds are infinitesimally rigid rel. boundary?
- Is the converse to Benoist's theorem true?
- If not, what are some obstructions to gluing?
- What are good "length coordinates"?

Thank you

(ロ)、(型)、(E)、(E)、(E)、(D)へ(C)