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Overview

• If you want to construct/understand hyperbolic structures
on a closed surface Σ you...

• Cut Σ into pairs of pants.

• Understand hyperbolic structures on pants.

(Completely
determined by geometry of boundary)

• Understand how to glue together pants.

(Matching problem
+ twisting)
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Overview

What about a (prime) closed 3 manifold?

• By geometrization, you can cut M into pieces along tori.
• Can put a complete finite volume Thurston geometric

structure on each of the pieces.
• If there are multiple geometric pieces, we can’t glue them

to get a Thurston geometric structure on all of M.
• However, if we allow more general geometric structures

then this strategy still works (at least some of the time)
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Goals

To construct/understand geometric structures on a closed
3-manifold M we try to:

1. Cut M into nice pieces.
2. In many cases these pieces behave like pairs of pants

(geometry of the pieces are (locally) determined by
boundary geometry).

3. Try to glue the pieces together by matching the geometry
on the boundary.

4. Analyze the different ways to glue structures with matching
boundary geometry.
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Projective Space

• RPn is the space of lines through origin in Rn+1.
• Let P : Rn+1\{0} → RPn be the obvious projection.
• The automorphism group of RPn is

PGLn+1(R) := GLn+1(R)/R×.



Affine Patches

• Every hyperplane H in Rn+1 gives rise to a decomposition
of RPn = Rn t RPn−1 into an affine part and an ideal part.

• RPn\P(H) is called an affine patch.
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Convex Projective Domains

• Ω ⊂ RPn is properly convex if it is a bounded convex
subset of some affine patch.

• If ∂Ω contains no non-trivial line segments then Ω is strictly
convex.

Properly Convex Strictly Convex



Convex Projecitve Structures

M̃

��

Dev
∼=
// Ω

��

M // Γ\Ω

• A convex projective n-manifold is a manifold of the form
Γ\Ω, where Ω ⊂ RPn is properly convex and Γ ⊂ PGL(Ω) is
a discrete torsion free subgroup.

• A (marked) convex projective structure on a manifold M is
an identification of M with a properly convex manifold (up
to equivalence).

• A marked convex projective structure gives rise to a
(conjugacy class of) representation ρ : π1M → PGLn+1(R)
called a holonomy of the structure and an equivariant
diffeomorphism Dev : M̃ → Ω called a developing map.
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Some Examples
Complete Hyperbolic Manifolds

• Let 〈x , y〉 = x1y1 + . . . xnyn − xn+1yn+1 be the standard
bilinear form of signature (n,1) on Rn+1

• Let C = {x ∈ Rn+1|〈x , x〉 < 0}

• P(C) = Hn is the Klein model of hyperbolic space.
• PGL(Hn) ∼= PO(n,1) ≤ PGLn+1(R)

• If Γ is a torsion-free Kleinian group then Γ\Hn is a (strictly)
convex projective manifold.
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Some Examples
Hex Torus

• Let O ⊂ R3 is the positive orthant, then ∆ = P(O) is a
triangle.

• Let Γ ≤ Diag+ ≤ PGL(∆) be lattice, then Γ ∼= Z2 and Γ\∆
is a torus (a Hex Torus)
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Hilbert Metric

Let Ω be a properly convex set and PGL(Ω) be the projective
automorphisms preserving Ω.

Every properly convex set Ω admits a Hilbert metric given by

dΩ(x , y) = log[a : x : y : b] = log
(
|x − b| |y − a|
|x − a| |y − b|

)
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Hilbert Metric
Properties

• When Ω is an ellipsoid dΩ is twice the hyperbolic metric.

• In general the metric is not Riemannian, only Finsler
• PGL(Ω) ≤ Isom(Ω) and equal when Ω is strictly convex.
• Point stabilizers are compact
• Discrete subgroups of PGL(Ω) act properly discontinuously

on Ω.

Convex projective structures are like Thurston geometric
structures, sans homogeneity
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Convex Projective Structure in Dimension 3
Let M ∼= Γ\Ω be a closed indecomposable convex projective
3-manifold.

Theorem (Benoist 2006)
Let M be as above then either

i M is strictly convex and admits a hyperbolic structure
ii M is not strictly convex and contains a finite number of

embedded totally geodesic Hex tori. The pieces obtained by
cutting along these tori are a JSJ decomposition for M.
Furthermore, each piece admits a finite volume hyperbolic
structure.



Back to Dimension 2
Let P be a thrice punctures sphere.
• Then there is a unique complete finite volume hyperbolic

structure on P.

• We can deform this structure to a complete infinite volume
structure.

• We can truncate the ends of this infinite volume structure
along geodesics to get a structure on a pair of pants P.
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Deforming Projective Structures

Let N be a finite-volume hyperbolic 3-manifold
• B(N) = Space of marked convex projective structures
• X (N) = Hom(π1N,PGL4(R))/conj
• Hol : B(N)→ X (N)

Some Facts

1 There is a canonical basepoint [Nhyp] ∈ B(N) and
[ρhyp] = Hol([Nhyp]) (Mostow rigidity)

2 When N is closed Hol is a local homemorphism near [Nhyp]
(Ehresmann-Thurston, Koszul)

3 When N is non-compact, Hol is a local homeomorphism near
[Nhyp] onto a subset of X (N) (Cooper–Long–Tillmann)
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Deforming Hyperbolic Structures

Theorem 1 (B–Danciger–Lee)
Let N be a finite volume hyperbolic 3-manifold which is
infinitesimally rigid rel boundary. Then N admits nearby convex
projective structures with totally geodesic boundary.
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Infinitesimal Rigidity

• N is infinitesimally rigid rel boundary if map
res : H1

ρhyp
(π1N, sl4)→ H1

ρhyp
(π1∂N, sl4) is injective.

• H1
ρhyp

(π1N, sl4) is the “tangent space” to X (N) at [ρhyp]

• Infinitesimally, the geometry of N is determined by
geometry near ∂N.

• res always has half dimensional image (even when N is
not inf. rigid rel boundary).
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Proving Theorem 1

1. Find deformations [ρt ] through [ρhyp] whose restriction to
π1∂N is diagonalizable over the reals.

2. Use Cooper–Long–Tillmann holonomy principle to show
that ρt are holonomies of some convex projective structure

3. Use a convex hull construction to build a structure with
totally geodesic boundary.
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More on Step 1

Theorem (folklore,B–D–L)
If N is a 1-cusped finite volume hyperbolic 3-manifold that is
infinitesimally rigid rel boundary then [ρhyp] is a smooth point of
X (N). Furthermore, X (N) is 3-dimensional near [ρhyp]

• X (∂N) is 6 dimensional (sort of)
• res : X (N)→ X (∂N) is smooth local embedding near

[ρhyp]

• There is a 4-dimensional slice S ⊂ X (∂N) of generically
diagonalizable representations transverse to res at [ρhyp]

• We get a curve [ρt ] in X (N) diagonalizable over R on
π1∂N.
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The Slice

Let γ1 and γ2 be generators for π1∂N ∼= Z2.

For t > 0 define

xt ,θ =


2t cos θ

2t cos(θ + 2π/3)
2t cos(θ + 4π/3)

0

 ∈ a

yt ,θ =


2t sin θ

2t sin(θ + 2π/3)
2t sin(θ + 4π/3)

0

 ∈ a

Define ρ(t ,θ,a,b) : π1∂N → A = exp(a) ⊂ PGL4(R) by

ρ(t ,θ,a,b)(γ1) = exp(xt ,θ), ρ(t ,θ,a,b)(γ2) = exp(axt ,θ + byt ,θ).
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The Slice
Another model for H3 is

{[x1 : x2 : x3 : 1] ∈ RP3 | x1 > 2(x2
2 + x2

3 )}

For t > 0, let St cross-section of ∂Hn at x1 = 1
4t2 .

• Using xt ,θ and yt ,θ we construct three complex numbers
{z i

t ,θ}3i=1 equally spaced on the circle of radius 2t .

• Let pi
t ,θ be the point on St that projects to

(
z i

t ,θ

)−1
.

• Let Ct ,θ ∈ PGL4 be an element taking the vertices of the
standard simplex to p1

t ,θ,p
2
t ,θ,p

3
t ,θ, and p∞.
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The Slice

Let ρ′(t ,θ,a,b) = Ct ,θρ(t ,θ,a,b)C
−1
t ,θ

lim
t→0

ρ′(t ,θ,a,b)(γ1) =


1 1 0 1

2
0 1 0 1
0 0 1 0
0 0 0 1



lim
t→0

ρ′(t ,θ,a,b)(γ2) =


1 a b 1

2(a2 + b2)
0 1 0 a
0 0 1 b
0 0 0 1



S = {[ρ′(t ,θ,a,b)] | a,b, θ ∈ R, t ∈ R≥0}
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The Slice
Properties

• If t 6= 0 then elements of S are diagonalizable over reals.
• If z = x + iy is the cusp shape of N w.r.t. {γ1, γ2} then

res(ρhyp) = ρ′(0,0,x ,y).

• S is transverse to res(X (N)) at [ρhyp] with 1-dimensional
intersection [ρs].

• [ρs] is diagonalizable over R for s 6= 0.



Gluing Manifolds with Totally Geodesic Boundary
• Let M1

∼= Γ1\Ω1 and M2
∼= Γ2\Ω2 be a properly convex

3-manifolds with principal totally geodesic torus boundary
components, ∂1 and ∂2

• Let f : ∂1 → ∂2 be a diffeomorphism.
• Let M = M1 tf M2

Theorem (B–D–L)
If there exists g ∈ PGL4(R) such that f∗ : π1∂1 → π1∂2 is
induced by conjugation by g then there is a properly convex
projective structure on M such that the inclusion Mi ↪→ M is a
projective embedding.

Corollary
If N is a 1-cusped hyperbolic 3-manifold that is infinitesimally
rigid rel. boundary then 2N admits a properly convex projective
structure.
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Let N1 and N2 are infinitesimally rigid rel. boundary hyperbolic
3-manifolds and M be obtained by gluing N1 and N2 along their
boundaries. Can we find a convex projective structure on M?
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Twist Coordinates

If N properly convex manifold that contains a totally geodesic
hex torus, T then

π1N ∼= π1N1 ∗π1T π1N2

or π1N ∼= π1(N\T )∗α
each g ∈ CPGL4(R)(π1T )◦  different projective structure on N

We get “twist coordinates” on B(N)!
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• Which finite volume hyperbolic 3-manifolds are
infinitesimally rigid rel. boundary?

• Is the converse to Benoist’s theorem true?
• If not, what are some obstructions to gluing?
• What are good “length coordinates”?
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Thank you


