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Abstract. These notes form a rough outline of the correspondence between the PSL4(R)-
Hitchin component and convex foliated projective structures from [33,3].

1. Introduction

Let Σ be an orientable hyperbolic surface. The Teichmüller space of Σ, denoted
T 2(Σ), consists of conjugacy classes of discrete and faithful representations from Γ := π1(Σ)
into PSL2(R). This set is well known to have the topology of a ball of dimension 3 |χ(Σ)|.
There is a well known unique irreducible representation, ρn, from PSL2(R) into PSLn(R)
coming from the natural action of PSL2(R) on the symmetric product, Symn−1(R2) ∼= Rn.
In his article [66, 6], Hitchin showed that the the component of the space of conjugacy
classes, X(Γ,PSLn(R)), containing the image of T 2(Σ) under ρn is also a ball of dimension
(n2 − 1) |χ(Σ)|. This component is typically referred to as the Hitchin component and we
will denote it as T n(Σ).

For small values of n these Hitchin component can be thought of as moduli spaces
of geometric structures on manifolds. For n = 2, the Hitchin component is the same as
Teichmüller space which allows us to identify T 2(Σ) with the space of marked hyperbolic
structures on Σ. More specifically, let [ρ] ∈ T 2(Σ). Since PSL2(R) can be identified with
the orientation preserving isometry group of H2 we can identify the quotient H2/ρ(Γ) ∼= Σ,
thus giving a marked hyperbolic structure on Σ. Conversely, the holonomy representation of
any hyperbolic structure is a discrete and faithful representation from Γ into PSL2(R), and
equivalent marked hyperbolic structures have conjugate holonomy.

When n = 3, work of Goldman [22,2] and Goldman-Choi [11, 1] show that the space
T 3(Σ) can be identified with the moduli space of marked convex projective structures on Σ.
Roughly speaking, a convex projective structure on Σ is a realization of Σ as Ω/ρ(Γ), where Ω
is a convex set that sits inside of an affine patch (see Exercise 1) of RP2 and ρ : Γ→ PSL3(R)
is a discrete and faithful representation. For example, when ρ factors through PSL2(R) the
set Ω can be taken to be the unit disk in R2 ⊂ RP2 (See Exercise 2). While it is easy
to associate a conjugacy class of discrete faithful representations with a marked projective
structure, it is much more difficult to start with a representation and find an appropriate
convex projective structure.

Exercise 1. Let RPn be the quotient of Rn+1\{0} by the action of R× by scaling and
let H be a hyperplane RPn. RPn\H is called an affine patch. The purpose of this
exercise is to justify this terminology.

(1) Show that an affine patch can be identified with the affine space Rn.
1
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(2) Show that the subgroup PGLn+1(R) consisting of elements that preserve H is equiv-
ariantly isomorphic (with respect to the identification from part (1)) to the affine
group of matrices of the form (

A b
0 1

)
,

where A ∈ GLn(R) and b ∈ Rn.

Exercise 2. Let 〈x, y〉 = x1y1 + x2y2− x3y3 be the standard bilinear form of signature (2, 1)
on R3. Let C = {x ∈ R3|〈x, x〉 < 0} be the cone of vectors with negative self pairing. The
image, P (C), of C in RP2 serves as a model for H2.

(1) Let H be the image of the x1x2−plane in RP2. Show that in the affine patch defined
by H that P (C) can be identified with the unit disk. This model is know as the Klein
Model

(2) Let K be the image of the plane x3 − x2 = 0 in RP2. Show that in the affine patch
defined by that P (C) can be identified with the set v > u2. (Hint, use coordinates
u = x1, v = x3 + x2, w = x3 − x2 and use inhomogeneous coordinates w = 1). This
model is known as the paraboloid model.

Our goal in this lecture to explain a correspondence between the space T 4(Σ) and
certain types of projective structures on the unit tangent bundle, SΣ, of Σ. This result is
originally due to Guichard and Wienhard [33,3]. The rough idea is that there is an R action
on SΣ given by the geodesic flow. This flow gives rise to a pair of foliations, F and G,
which are referred to as the stable foliation and geodesic foliation, respectively. We will show
that representations in T 4(Σ) correspond to projective structures in which these foliations
can be realized in a geometrically meaningful way inside of RP3. When [ρ] ∈ T 4(Σ) factors
through PSL2(R) then we can regard these projective structures as projective realizations of

the familiar S̃L2(R) structures on these manifolds.

2. SΣ and the Geodesic Flow

In this section we will discuss important properties of M := SΣ and the action of the
geodesic flow. Let Γ = π1(M), then Γ is a central (non-split) extension of Γ that fits into
the following short exact sequence.

(2.1) 0→ Z→ Γ→ Γ→ 1.

The manifold M has an important regular cover, M , corresponding from the Z subgroup in
(2.1). Furthermore, the foliations F and G lift to foliations F and G of M . The foliations
F and G can also be lifted to the universal cover, M̃ . These lifts will be denoted F̃ and G̃,
respectively. We now give two descriptions of M .

Let [ρ] ∈ T 2(Σ) be a (conjugacy class of) representation. Choose and identification of
Σ̃ with H2 that is equivariant with respect to ρ, such an identification is called a uniformiza-
tion. The uniformization allows us to equivariantly identify M with the unit tangent bundle
SH2. With this in mind we can think of a leaf of G as an oriented geodesic in H2 and a leaf
of F as the union of all oriented geodesics with a common positive endpoint on ∂H2. Since
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Figure 1. The identification between M and ∂Γ3+. Picture from [33,3]

PSL2(R) acts simply transitively on SH2 we can further identify M with PSL2(R). Under
this identification we see that M = ρ(Γ)\PSL2(R). Additionally, if we let

A =

{(
et/2 0
0 e−t/2

)}
, and P =

{(
a b
0 1/a

)}
,

be Cartan and parabolic subgroups of PSL2(R), then the leaves of the geodesic and stable
foliations can be identified with right orbits of A and P , respectively.

The uniformization also allows us to identify the boundary of Γ, ∂Γ, with ∂H2 ∼= RP1.
Furthermore, this identification gives an action of Γ on ∂Γ that is ρ-equivariant. This
boundary gives us another way to describe M , F , and G. ∂Γ inherits an orientation coming
from the orientation on H2 and we can identify M with the set ∂Γ3+ of pairwise distinct,
positively oriented triples of points in ∂Γ. To see this observe that a point of M can be
thought of as an oriented geodesic, L, in H2 and a point, x, on L. Such a point can
be identified with (t+, t0, t−), where t+ and t− are the positive and negative endpoints of
L, respectively, and t0 is the endpoint of the geodesic that intersects L perpendicularly
and passes through x and makes the above triple positively oriented (see Figure 1). This
identification is also equivariant with respect to the action of Γ and allows us to identify F
with ∂Γ and G with ∂Γ(2) := ∂Γ2\∆.

3. Convex Foliated Projective Structures

In this section we describe the geometric structures whose moduli space T 4(Σ) de-
scribes. We begin with a description of projective structures. Roughly speaking, a projective
structure on a manifold is a way to locally identify the manifold with RPn in such a way
that the transition functions are locally elements of PGLn+1(R). As such projective struc-
tures can be described in terms of atlases of charts. However, we will take a more global
(but equivalent) point of view in our definition. Let N be an n−manifold. A projective
structure consists of a pair (dev, hol), where hol : π1(N) → PGLn+1(R) is a representation
and dev is a hol−equivariant local homeomorphism from Ñ to RPn. Furthermore, we say
that (dev1, hol1) and (dev2, hol2) are equivalent projective structures on N if there exists a
homeomorphism h : N → N that is isotopic to the identity and an element g ∈ PGLn+1(R)
such that
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• dev1 ◦ h̃ = g ◦ dev2, where h̃ is a lift of h to Ñ , and
• hol2 = g−1hol1g.

Let P(N) be the set of equivalence classes of projective structures onN . The above discussion
shows that we have a map

hol : P(N)→ X(π1(N),PGLn+1(R)).

The map dev is called the developing map of the structure and the representation hol is
called the holonomy of the structure.

As we mentioned before we are interested in projective structures that play well with
the foliations coming from the geodesic flow. With this in mind, we say that a projective
structure, (dev, hol), on M is foliated if the following conditions are satisfied.

• For each leaf g̃ ∈ G̃, dev(g̃) is contained in a projective line, and

• For each leaf f̃ ∈ F̃ , dev(f̃) is contained in a projective plane.

Two foliated projective structures are equivalent if they are equivalent as projective
structures and the map h : M → M preserves the foliations F and G. We denote the set
of equivalence classes of foliated projective structures by Pf (M). We now further refine this
notion in order to arrive at the correct geometric structures. Let C ⊂ RPn, then C is convex
if its intersection with every projective line is connected. If C is a convex subset of RPn then
C is properly convex if its closure does not contain a affine line.

Exercise 3. Show that a subset of RPn is properly convex if and only if its closure is con-
tained in an affine patch.

We can now define the appropriate projective structures. We say that a foliated
projective structure on M is convex if the image of each leaf of F̃ under the developing
map is a convex set of a projective plane. Additionally, we define a properly convex foliated
projective structure on M to be a foliated projective structure for which the image of each
leaf of F̃ is mapped to a properly convex subset of a projective plane by the developing map.
Let Ppcf (M) subset of Pf (M) consisting of equivalence classes of properly convex foliated
projective structures.

We can now rephrase the correspondence between T 4(Σ) and projective structures
in more precise terms. Let p : Γ → Γ be the projection implicit in (2.1). The map p gives
an embedding of T 4(Σ) ⊂ X(Γ,PSL4(R)) ⊂ X(Γ,PSL4(R)), and the correspondence can be
succinctly stated as

Proposition 3.1. The map hol is a homeomorphism between Ppcf (M) and T 4(Σ).

Remark 3.2. Since Γ has trivial center (2.1) implies that the center of Γ is cyclic, and we
denote its generator by τ . The above correspondence implies that the holonomy of a properly
convex foliated projective structure on M factors through p and thus every such holonomy
kills τ .

4. Examples and Ideas

In this section we will discuss certain examples of properly convex foliated projective
structures on M and discuss some of the ideas required to prove Proposition 3.1. Let
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[ρ] ∈ T 2(Σ), then we can define an element of Ppcf (M) as follows. Let [Q] ∈ RP3, where
Q = x(x2 + y2) (here we are using the fact that R4 ∼= Sym3(R2)). Using the fact that M ∼=
PSL2(R) we can define a projective structure by letting dev1 be the map g 7→ ρ4(ρ(g)) · [Q],
where g ∈ PSL2(R) and letting hol = ρ4 ◦ρ. The vector Q = (1, 0, 1, 0) in the standard basis
for Sym3(R2) and so

(
et/2 0
0 e−t/2

)
7→


e3t/2 0 0 0

0 et/2 0 0
0 0 e−t/2 0
0 0 0 e−3t/2




1
0
1
0

 =


e3t/t

0
e−t/2

0

 =


e2t

0
1
0

 ,

and (
a b
0 1/a

)
7→


a3 a2b ab2 b3

0 a 2b 3b2/a
0 0 1/a 3b/a2

0 0 0 1/a3




1
0
1
0

 =


a3 + ab2

2b
1/a
0

 =


a2(a2 + b2)

2ab
1
0

 .

Under the coordinate change v = a2(a2 + b2), u = 2ab, we see that the above image can be
identified with v > u2/4, and is thus properly convex (See Exercise 3). In fact, this set can
be identified with H2 (see Exercise 2). Thus we see that this projective structure is properly
convex foliated.

Despite knowing that these structures are properly convex foliated, we do not have a
very good idea of what they look like globally. In order to get a more global picture we will
try to understand the developing map in terms of the description of M as ∂Γ3+. Let V be a
vector space and let Flag(V ) denote the flag variety of V . If we think of R2 as Sym1(R2), then
the Veronese embedding gives the following equivariant curve ξ : ∂Γ ∼= RP1 → Flag(R4).
Given by ξ = (ξ1, ξ2, ξ3), where

• ξ1([S]) is the line of polynomials divisible by S3,
• ξ2([S]) is the plane of polynomials divisible by S2, and
• ξ3([S]) is the hyperplane of polynomials divisible by S.

If we let Ωξ be the set of polynomials in RP3 with a single real root (i.e. they factor over R
into a linear and a quadratic term), then Ωξ is the image of dev.

Exercise 4. Prove that Ωξ is the image of dev, namely that Ωξ is the PSL2(R) orbit of [Q]
under the action g · [R] = ρ4(ρ(g)) · [R].

The map ξ allows us to define a family, ξ1
t of equivariant maps from ∂Γ→ RP3, given

by

ξ1
t (t
′) =

{
ξ3(t) ∩ ξ2(t′) if t 6= t′

ξ1(t) if t = t′

For each t, the image of ξ1
t in ξ3(t) bounds the copy of H2

t given by dev(t) (here we are
thinking of t as a leaf of F). The geodesic leaf g = (t+, t−) is taken to the intersection of

H2
t and the projective line, ξ1(t+)ξ1

t+(t−), connecting ξ1(t+) and ξ1
t+

(t−). The tangent lines

to H2
t at ξ1(t+) and ξ1

t+
(t−) are ξ2(t+) and ξ3(t+) ∩ ξ3(t−), respectively. Furthermore, these

1Technically, dev is a lift of this map to M̃ .
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Figure 2. The image of the developing map. Picture from [33,3].

lines intersect in the point ξ3(t−) ∩ ξ2(t+) = ξ1
t−(t+). Finally, given t0 different from t+ and

t− there is a unique point of intersection between ξ1(t+)ξ1
t+(t−) and ξ1

t−(t+)ξ1
t+(t0). Thus we

see that in terms of ∂Γ3+ that dev is defined by

(4.1) (t+, t0, t−) 7→ ξ1(t+)ξ1
t+(t−) ∩ ξ1

t−(t+)ξ1
t+(t0).

The discussion of the previous paragraph is illustrated in Figure 2

5. Convex Representations

The proof of Proposition 3.1 relies on the fact that representations in T 4(Σ) can be
characterized by a certain convexity property which we now discuss. Work of Labourie and
Guichard [77, 755, 5] has shown that ρ ∈ T 4(Σ) if and only if ρ is a convex representation.
A representation is convex if we can find a ρ-equivariant curve ξ1 : ∂Γ→ RP3 such that for
t1, . . . t4 that are pairwise distinct,

ξ1(t1)⊕ . . .⊕ ξ1(t4) = R4.

A simple exercise shows that a convex curve in RP2 bounds a properly convex set. Addition-
ally, a curve ξ = (ξ1, . . . , ξn−1) : RP1 → Flag(Rn) is called Frenet (this is sometimes known
as hyperconvex) if

(1) For every (n1, . . . , nk) such that
∑k

i=1 ni = n and every t1, . . . , tk ∈ RP1 of pairwise
distinct elements the following sum is direct

k∑
i=1

ξni(xi) = Rn.
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(2) For every (m1, . . . ,mk) with
∑k

i=1mi = m ≤ n and every x ∈ RP1

lim
(xi)→x

k∑
i=1

ξmi(xi) = ξm(x),

where the limit is taken over k−tuples of pairwise distinct points.

It is easy to see that if ξ is Frenet then ξ1 is a convex curve and that ξ1 determines ξ
via the limit condition. By work of Labourie [77,7] has shown that If a ρ is convex then it is
possible to find a unique ρ-equivariant Frenet curve. Given a non-degenerate bilinear form
on Rn and a curve f = (f 1, . . . , fn−1) : RP1 → Flag(Rn), it is possible to define a dual curve
f⊥ = (fn−1,⊥, . . . , f 1,⊥) : RP1 → Flag(Rn∗). Work of Guichard [44, 4] shows that a curve ξ
is Frenet if and only if ξ⊥ is Frenet. This duality will be crucial in the proof of Proposition
3.1.

5.1. convex implies properly convex foliated. We begin by showing that an element
[ρ] ∈ T 4(Σ) gives rise to a properly convex foliated projective structure on M . By the
previous paragraph we see that ρ is a convex representation and thus we can find a ρ-
equivariant flag curve ξ. We begin by using this curve to define a family of ρ-equivariant
lower dimensional flag curves. Define ξt : RP1 → Flag(ξ3(t)) by

(5.1) ξt(t
′) =

{
(ξ3(t) ∩ ξ2(t′), ξ3(t) ∩ ξ3(t′)) if t 6= t′

(ξ1(t), ξ2(t)) if t = t′

For each t ∈ RP1 the curve ξt is also Frenet. This is proven by showing that ξ⊥t is Frenet
and using the basic fact that if W and V are linear subspace then (V + W )⊥ = V ⊥ ∩W⊥.

For example, to show that ξ⊥t is Frenet we need to show that (ξ2,⊥
t (t1) + ξ1,⊥

t (t2) = R3 for all
distinct pairs t1, t2. To show this we observe that

(ξ2,⊥
t (t1)+ξ

1,⊥
t (t2))

⊥ = ξ2
t (t1)∩ξ1

t (t2) = ξ3(t)∩ξ3(t1)∩ξ2(t2) = (ξ3,⊥(t)+ξ3,⊥(t1)+ξ
2,⊥(t2))

⊥ = {0},

with the last equality coming from the fact that ξ⊥ is Frenet. We now define a developing
map using the formula in (4.1). For each t the image of ξ1

t bounds is convex and thus bounds
a properly convex subset Ct of ξ3(t). The Frenet properties of ξ this new developing map has
all the same nice properties as the map given to us in the previous example by the Veronese
embedding.

5.2. properly convex foliated implies convex. The more difficult direction is to show
that given a properly convex foliated projective structure on M that the holonomy repre-
sentation is a convex representation. Details can be found in [33, 3] and we simply outline
the key ideas. Suppose that we have such a structure with holonomy ρ. Since we know that
the image of a leaf of F̃ ∼= Γ̃ under the developing map is contained in a projective plane we
get a map2 ξ3 : ∂̃Γ→ RP3∗taking t ∈ ∂̃Γ to the projective plane containing dev(t). The first
thing that we have to do is to show that the map ξ3 descends to a map defined on ∂Γ (this

2Here we are implicitly identifying the space of projective planes in RP3 with RP3∗ using a non-degenerate
bilinear form.
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part is highly non-trivial and comprises a good chunk of [33, 3]). We must then show that
this map is convex. Namely that for t1, . . . , t4 pairwise distinct points that

ξ3(t1) + . . .+ ξ3(t4) = R4∗,

or equivalently that

(5.2) ξ3(t1) ∩ . . . ∩ ξ3(t4) = ∅.
The fact that these planes do not have a common intersection can be viewed geomet-

rically. Fix t1, then the fact that the intersection from (5.2) is empty is equivalent to the
three lines lines ξ3(t1) ∩ ξ3(ti), 2 ≤ i ≤ 4, not intersecting. Let Ct1 be the properly convex
set that is the image of the developing map restricted to plane ξ3(t1). Then it can be shown
(with a good deal of work) that the domain Ct is strictly convex (contains no line segments
in its boundary) and that the lines ξ3(t1) ∩ ξ3(ti) for 2 ≤ i ≤ 4 are tangent lines to Ct1 at
distinct points, and thus do not intersect. Try drawing tangents to the domain in Figure 2
to convince yourself that these lines must be disjoint.

6. Projective Duality
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