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Introduction

1. Given a system dyi
dz =

∑n
1 Rij(z)yj , i = 1, ..., n, of homogenous differential

equations of order 1 with rational coefficients,it is common knowledge that their
solutions are in general not unique and meromorph in the Riemann sphere P 1.
Though, each solution has just finitely many isolated singularities, which can be
either the poles x1, ..., xk of the coefficients Rij(z) or maybe the point x0 =∞.
If the solutions ηi = (y1i(z), ..., yni(z)), i = 1, ..., n form a fundamental system
of solutions, then while circulation around the singular point xχ the vector ηi
turns over into a vector

∑
aχij . The matrix A(χ) := (a(χ)

ij ) is not singular and
the so called Riemannian Relation A0 · ... ·A(k) = 0 is true. This relation yields
that every fundamental system η1, ...ηn of solutions induces a homomorphisms
from the fundamental group of P 1_({x0, ..., xk}) into the general linear group
GL(n,C) over the field of complex numbers C.

2. In the year 1857 B. Riemann [21] already brought up the question if con-
versely to every homomorphism from the fundamental group of P 1_{x0, ..., xk},
where x0, ..., xk are given randomly, there belongs a system of n linear homoge-
nous ordinary differential equations of order 1 with rational coefficients that
has a fundamental system of solutions which induces the given homomorphism.
Moreover Riemann required that the system of differential equations has to be of
Fuchssian type (compare preliminary remarks). In the same year [20] he proved
this problem for k = n = 2 by giving explicit fundamental systems of that type.
Afterwards among others H. Poincaré [19] and L. Schliesinger [23, 24] dealt with
the Riemannian problem, but their proofs are incomplete and not exact from
the modern point of view, which was already pointed out by J. Plemelj [18], who
provided the first mainly flawless existence proof for arbitrary k and n. In 1900
D. Hilbert includes the Riemannian problem to his mathematical problems [8]
(since then it’s called Riemann-Hilbert’s problem). In 1905 D. Hilbert [10, 11]
solved it for n = 2 and arbitrary k, which is a special case prior also approached
by O. Kellog [12]. Similar to D. Hilbert’s and O. Kellog’s approaches Plemelj’s
proof is based on the theory of Fredholm’s integral equations. In 1913 G. D.
Birkhoff [2] got Plemelj’s general result through certain approximations. At
the same time he finished a generalisation of Riemann-Hilbert’s problem that
he claimed earlier. Around 1924 O. Haupt [6-8] worked on a question strongly
related to Riemann-Hilbert’s problem.

Out of the monographs that deal with Riemann-Hilbert’s problem the works
of J. A. Lappo-Danilevsky [14] and N. I. Muskhelishvili [15] need to be mentioned
particularly. [14] also covers the question of dependence of the fundamental
system and the "bifurcation points" x0, ..., xk in sufficient generality.

3. In a certain way the result of J. Plemelj led the general theory about
systems of linear homogenous differential equations of order 1 and Fuchsian
type with rational coefficients to a satisfying end, because one was now able
to understand the local and global function theoretical behavior of the solu-
tions completely. Analog studies about systems of linear homogenous differen-
tial equations of order 1 whose coefficients are meromorphic functions on an
arbitrary compact or non compact Riemannian surface are still missing. Obvi-
ously the local theory runs similar to the classical case. Alike on the Riemann
sphere one can characterize the set of singularities X ′ of a solution system.
Each fundamental system of solutions again generates a homomorphism from
the fundamental group of X −X ′ in GL(n,C). Therefore it’s possible to trans-



1 Preliminary notes

fer Riemann-Hilbert’s problem and finally ask for dependence of solutions and
bifurcation points. The difficulty in treating this type of questions mainly lies
in the existence of non-breaking return steps.

4. This thesis proves the general Riemann-Hilbert problem for arbitrary
(compact or non compact) Riemannian surfaces. The used methods contrary
to the ones used before are of pure function theoretical type. Some funda-
mental theorems of modern theory of functions in multiple variables and the
theory of complex-analytical fiber spaces will be used. The existence problems
for differential equations will be translated to statements about existence of
complex-analytical sections in complex-analytical fiber spaces (theorem 1 and
2). The presence of such sections will in some cases (theorem 3) be ensured by
triviality of the defining cocycle. In the remaining cases that refer to compact
Riemannian surfaces the existence will be satisfied either by direct construction
or by a theorem of S. Nakano about complex-analytical vector space bundles
(theorem 4). It’s an easy consideration that with the help of theorem 3 and 4 one
can also answer Birkhoff’s [2] generalization of Riemann-Hilbert’s problem to
arbitrary Riemannian surfaces: one only has to replace the cocycle ξB (we won’t
carry this out in detail). As known theorem 3 and 4 even yield more. Theorem
3 for example contains the Weierstrass factorization theorem for non compact
Riemannian surfaces and matrices (instead of functions), which in case of the
Riemann sphere was already proved by G. D. Birkhoff [3]. It’s known that the
Weierstrass factorization theorem doesn’t hold for non compact Riemannian sur-
faces, but Theorem 4 yields: let X be a compact Riemannian surface, x1, ..., xk
a set of points on X and f1(x), ..., fk(x) functions which are meromorphic in a
suitable reduced neighborhood of xi (i ∈ {1, ..., k}), then there exists a mero-
morphic function f(x) on X −{x1, ..., xk} such that f(x)f−1

κ (x), κ = 1, ..., k, is
meromorphic extendable in xκ. Obviously this is the corresponding formulation
of the Weierstrass factorization theorem for compact Riemannian surfaces. Be-
cause of the fact, that theorem 4 remains true for algebraic manifolds, one gets
a corresponding of the Cousin-II-problem for algebraic manifolds. In contrast to
the Cousin-II-problem for holomorphic complete spaces this admits unlimited
solutions.

The question of dependence between solutions and bifurcation points will be
examined with similar methods as Riemann-Hilbert’s problem itself. The main
result is: if the bifurcation points vary in simple connected and pairwise distinct
areas we can always give solutions B, depending on the bifurcation points in a
meromorphic way, for Riemann-Hilberts problem. Regarding the exact formula-
tion we refer to Theorem II. The methods used in this paper can also successfully
be used for a couple of questions concerning the work of O. Teichmueller [25]
about varying Riemannian surfaces. Additional it should be indicated that sim-
ilar questions arise while dealing with certain existence problems in theory of
functions in multiple variables.

1 Preliminary notes
Let X be an abstract Riemannian surface, which is always supposed to be
connected in this paper. Consider a system of n linear homogenous differential
equations of order 1

dη = ηΩ′(x), (1)

3



1 Preliminary notes

where Ω′(x) denotes a matrix of the type (n, n) whose components are mero-
morphic differential forms on X of degree 1. We say (1) is asystem of differential
equations on X. Moreover X ′ denotes the entirety of poles of the components of
Ω′(x) and we call the union of divisors of the components of Ω′(x) the divisor of
Ω′(x). As known there always exist non trivial solutions for this system of dif-
ferential equations. These are vectors η(x̃), whose components are meromorph
and not all equal to zero on the universal covering space X̃ −X ′ of X −X ′ and
who satisfy the equation

dη(x̃) = η(x̃)ψ∗(Ω′(x)) (1’)

,
where ψ denotes the natural map X̃ −X ′ → X−X ′ and ψ∗ the correspond-

ing monomorphism from the field (ring) of meromorphic functions (differential
equations) on X −X ′ to the field (ring) of meromorphic functions (differential
equations) on X̃ −X ′. The entirety L of solutions of (1) is a n-dimensional
vector space over C.

Let x0 ∈ X−X ′ and consider the fundamental group π1(X−X ′, x0). Given
x̃0 ∈ X̃ −X ′ such that ψ(x̃0) = x0, according to the usual construction of the
universal covering space the elements α ∈ π1(X − X ′, x0) coincide invertible
unique with the points of {ψ−1(x0)}. The point belonging to α under this
mapping is denoted by α(x̃0). Moreover η(x̃) denotes the germ of η in x̃ ∈
X̃ −X ′. For α ∈ π1(X −X ′, x0) we define

α∗ · η(x̃0) := η(α(x̃0)).

As known α∗ is a C-automorphism on L. Because of (αβ)∗ = β∗α∗ the
mapping α→ α∗ yields an anti-homomorphism µ0 : π1(X −X ′, x0)→ Aut(L),
where Aut(L) denotes the group of automorphisms on L. Fixing a basis of L,
α∗ corresponds in a natural way to an element µ(α) ∈ GL(n,C). Obviously
α → µ(α) is a homomorphism. Furthermore it’s clear that chosing another
basis one needs to change α → µ(α) with an equivalent representation. µ0 is
usually called the monodromy of (1) and X ′ is the set of bifurcation points.

The question arises if there exists a system (1) on X for every representation
µ of π1(X−X ′, x0) in GL(n,C) such that L yields to µ by the given algorithm.
Therefor we assume X ′ ⊂ X to have no accumulation points on X and x0 ∈
X −X ′.

Let B(x̃) be the matrix whose rows are the vectors of a basis of L. Then for
α ∈ π1(X −X ′, x0) we get

α∗ ·B(x̃0 = µ(α))B(x̃0), (2)

where α∗ is defined analogously for matrices. B(x̃) is meromorphic and non
singular on X̃ −X ′, which means DetB(x̃) 6≡ 0. Conversely, given a meromor-
phic, non-singular matrix B(x̃) of type (n, n) that suffices (2) also B−1(x̃)dB(x̃)
is meromorphic on X̃ −X ′. Since

α∗ ·B−1(x̃0)dB(x̃0) = B−1(x̃0)dB(x̃0)

for α ∈ π1(X −X ′, x0), there exists
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2 Fiberspaces assigned to Riemann-Hilbert’s problem

ψ∗−1(B−1(x̃)dB(x̃)) =: Ω′(x).

Ω′(x) is meromorphic on X−X ′ and as linear combinations of the rows of B(x̃)
the solutions of the system of differential equations

dη = ηΩ′(x)

on X − X ′ yield the given representation µ of π1(X − X ′, x0). The branches
of B(x̃) generally have ugly singularities in the points of X ′ so that one cannot
expect Ω′(x) to expand meromorphic on X.

Experience has shown that in the theory of linear differential equations in
complex space the so called singular points of certainty are "good" singularities.
In slight modification of the usual terminology we call x′ ∈ X ′ a point of cer-
tainty for the on X̃ −X ′ meromorphic vector η(x̃) if there exists a neighborhood
U of x′ in X such that U ∩X ′ = {x′} and for every connected component Vj of
ψ−1(U − {x′}) there exists a matrix Uj which satof Fuchssian type if for each
element oisfies the existence and meromorphic extension of

ψ∗_1
j {exp(Uj logt ◦ ψj(x̃))η(x̃)}

in x′ for the local uniformiser t(x) of x′ in U with t(x′) = 0. Here ψj denotes
the restriction of ψ to Vj . This definition can analogously be made for matrices.

A system of differential equations (1) is called of Fuchsian type if for every
element of L all x′ ∈ X ′ are points of certainty. Given an on X̃ −X ′ meromor-
phic matrix B(x̃) such that each point x′ ∈ X ′ is a point of certainty and 2 is
true, it’s easy to see that Ω′(x) is meromorphically extendable on whole X.

Riemann-Hilbert’s problem is about constructing a system (1) of Fuchsian
type on X for a given X ′ ⊂ X and representation µ of π1(X − X ′, x0) in
GL(n,C), such that the set of solutions L yields µ. Because of the remarks
above it suffices to construct an on X̃ −X ′ meromorphic, nonsingular matrix
B(x̃) that suffices (2) and the property that every x′ ∈ X ′ is a point of certainty.
We denote this existence problem by (X,X ′, µ). B(x̃) is called a holomorphi-
cally invertible solution of (X,X ′, µ) if B(x̃) is holomorphic on X̃ −X ′ and
holomorphically invertible.

2 Fiberspaces assigned to Riemann-Hilbert’s prob-
lem

It’s appropriate to solve (X−X ′, ∅, µ)1 first and remove the points of uncertainty
in X ′ in a second step. In the discussion of (X − X ′, ∅, µ) we can always
assume that X − X ′ is not compact. Indeed, if X is compact and X ′ = ∅,
let X ′′ ∈ XX ′′ := {x′′} and consider (X − X ′, ∅, µ∗), where µ∗ = µ ◦ i∗ and
i∗ : π1(X − X ′′) → π1(X − X ′, x0) is the natural homomorphism. Then a
solution of (X − X ′′, ∅, µ∗) is also a solution of (X, ∅, µ) over X − X ′′ which
yields there is at most one singularity in x′′ left to be removed.

LetX be a non compact Riemannian surface and {Ui}i∈I be an open covering
of X with connected coordinate neighbourhoods Ui such that π1(Ui) = 0 for

1∅ is the empty set
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2 Fiberspaces assigned to Riemann-Hilbert’s problem

i ∈ I and Ui∩Uj is connected. A GL(n,C)-cozycle ξµ ∈ H1(X,GL(n,C)ω) will
be assinged to (X, ∅, µ) in the fallowing way. Choose a point xi ∈ Ui for every
Ui and connect x0 and xi with a curve Ki starting in x0. For x ∈ Ui ∩ Uj let
Dij(x) be a curve from xi to x in Ui and Dij(x) be a curve from xj to x in Uj ,
We denote the homotopy class of a curve K by 〈K〉. Define

gij(x) := µ(〈KiDij(x)Dji(x)−1K−1
j 〉)

for x ∈ Ui ∩ Uj . Since gij(x) is constant in each connected component of
Ui ∩ Uj due to π1(Uj) = {0} we obtain gij(x) is a holomorphic map Ui ∩ Uj →
GL(n,C). One calculates easily that gij(x) suffices gij(x)gjk(x) = gik(x) for
x ∈ Ui ∩ Uj ∩ Uk. The cozycle in H1(X,GL(n,C)ω) defined by the gij(x) is
denoted by ξµ and doesn’t depend on the choice of the points xi ∈ Ui and
curves Ki. Moreover two of these cozycles are similar, iff there exists an inner
automorphism γ of GL(n,C) such that µ′ = γ ◦ µ.

We want to assign another cozycle ξB to a holomorphic inertible solution
B(x̃) of (X −X ′, ∅, µ). Therefor we choose an open covering {Ui}i∈I of X such
that each Ui has the properties named above and in addition Ui ∩X ′ is at most
one point for every i ∈ I and every x′ ∈ X ′ is contained in at most one Ui. For
Ui ∩X ′ = ∅ define

fi(x) := 1 ∈ GL(n,C) for x ∈ Ui.

Moreover let Uj ∩ X ′ = {x′j} and let tj(x) be a local uniformizer in Uj such
that tj(x′j) = 0. Let Kj be a curve from x0 to xj ∈ Uj − {x′j} and Dj a curve
in Uj − {x′j} starting and ending in xj and whose homotopy class generates
π1(Uj − {x′j}). Then the meromorphic germ

exp

{
−
logµ(〈KjDjK

−1
j 〉)logtj ◦ ψ(〈Kj〉x̃0)

〈Dj〉logtj(xj)− logtj(xj)

}
〈Kj〉∗B(x̃0)

can be meromorphically extendet to the connected component Vj of ψ−1(Uj −
{x′j}) to which the point 〈Kj〉x̃0 belongs. This extension is given by

exp

{
−
logµ(〈KjDjK

−1
j 〉)logtj ◦ ψ(〈KjDj(x)〉x̃0)

〈Dj〉logtj(xj)− logtj(xj)

}
〈KjDj(x)〉∗B(x̃0),

where D(x) is a curve in Uj − {x′j} starting in xj and ending in x. One easily
sees that

fj(x) := ψ∗−1
j (exp

{
−
logµ(〈KjDjK

−1
j 〉)logtj ◦ ψ(〈KjDj(x)〉x̃0)

〈Dj〉logtj(xj)− logtj(xj)

}
〈KjDj(x)〉∗B(x̃0))

exists for x ∈ Uj{−x′j}. The maps

gij(x) := fi(x)fj(x)−1 for x ∈ Ui ∩ Uj

are holomorphic and compatible, thus they define a cozycle ξB ∈ H1(X,GL(n,C)ω).
If GL(n,C) operates as a complex automorphismgroup on the complex space
Y , we can associate a complex-analytical fiberbundle (X, ξB, Y ) to the recently

6



2 Fiberspaces assigned to Riemann-Hilbert’s problem

constructed cozycle. Here we just need the cases Y = GL(n,C), which leads
to the main-bundle, Y = Pn, where Pn denotes the n-dimensional complex-
projective space, and Y = Pn2 . Since GL(n,C) can be naturally understood as
a subgroup of PGL(n+ 1,C) we just need to define how GL(n,C) operates on
Pn2 . Therefor we fix a Cn2 corresponding to Pn2 and identify it with the set of
all matrices over C with n rows. GL(n,C) acts on the set of all matrices via
left-multiplication and thus on Cn2 as a group of linear automorphisms, which
as known can be uniquely extended to Pn2 .

Theorem 1. Assume X is not compact. To prove the existence of a holomorphic
invertible solution of (X, ∅, µ) it’s necessary and sufficient to show that ξµ is the
trivial cozycle.

Proof. Let B(x) be a holomorphic invertible solution of (X, ∅, µ). Moreover
denote by ψi the restriction of ψ to the component Vi of ψ−1(Ui) that contains
〈Ki〉x̃0. 〈Ki〉∗B(x̃0) is extendable to 〈KiDi(x)〉∗B(x0), which is an on Vi holo-
morphic and holomorphically invertible matrix. Since ψi maps Vi topologically
to Ui there exists

si(x) := ψ∗−1
i (〈KiDi(x)〉∗B(x̃0)) for x ∈ Ui

and is holomorphic and holomorphically invertible. Due to

si = ψ∗i (〈KiDi(x)D−1
j (x)K−1

j KjDj(x)〉∗B(x̃0))
= ψ∗−1

i (〈KjDj(x)〉∗〈KiDi(x)D−1
j (x)K−1

j 〉
∗B(x̃0))

= gij(x)ψ∗−1
j (〈KjDj(x)〉∗B(x̃0))

= gij(x)sj(x)

the collection of si(x) forms a complex-analytical section in the main-bundle
corresponding to xiµ, but that means ξµ is trivial. On the other hand let s(x)
be a complex-analytical section in the main-bundle corresponding to ξµ; such a
section obviously exists if ξµ is trivial. Let the maps φi(x, y) from Ui×GL(n,C)
to th main-bundle corresponting to ξµ be a system of local coordinates of the
fiber structure. Define

si(x) := φ−1
i,x(s(x)) for x ∈ Ui.

si(x) is holomorphic and holomorphically invertible in Ui and we get si(x)s−1
j (x) =

gij(x) in Ui∩Uj . We want to show that s0(x) can be analytically extendet along
any path K starting and ending in a fixed x0 ∈ U0, i.e. it yields to an on X̃ −X ′
meromorphic and non-singular matrix B(x̃). Besides we’ll obtain that B(x̃) is
holomorphic and holomorphically invertible and suffices (2). With an appropri-
ate choose of x′ρ, ρ = 0, ..., r + 1, x0 = x′0 = x′r+1, we can split K in sub-paths
K ′ρ from x′ρ to x′ρ+1, such that Kρ ⊂ Uρ is true for ρ = 0, ..., r and appropriate
elements Uρ, ρ = 0, ..., r, U0 = Ur, of the given covering of X. Moreover let
Dρ ⊂ Uρ be a curve that connects xρ with x′ρ. We get

K = (K ′0D−1
1 K−1

1 )(K1D1K
′
1D
−1
2 K−1

2 )...(Kr−1Dr−1K
′
r−1K

′
r)

and therefore

(〈K〉) = g01(x′1)...gr−1,0(x′r). (3)
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2 Fiberspaces assigned to Riemann-Hilbert’s problem

gi,i+1(x) is constant in Ui ∩ Uj , so gi,i+1(x′i+1)si+1(x) extends si(x) to Ui+1.
With that we can extend s0(x) analytically along the whole path K which
yields an on X̃ −X ′ holomorphic and holomorphically invertible matrix B(x̃).
Because of (3) B(x̃) obviously suffices (2).

Corollary. If X is not compact we get a natural equivalence of holomorphically
invertible solutions of (X, ∅, µ) and complex-analytical sections in the main-
bundle corresponding to ξµ.

The Theorem above yields a criterium for existence of matrices with the
desired "ramification behavior". The fallowing Theorem shows which conditions
are necessary to remove points of uncertainty that may occur.

Theorem 2. If B(x̃) is a holomorphically invertible solution of (X −X ′, ∅, µ),
the fallowing are true:

1. If X is not compact, for the existence of a holomorphically invertible so-
lution of (X,X ′, µ) it’s necessary and sufficient to prove that ξB is the
trivial cozycle.

2. If X is compact, for the existence of a solution of (X,X ′, µ) it’s necessary
and sufficient that the bundle (X, ξB,Pn

2) with fiber Pn2 corresponding to
ξB admits a complex-analytical section s(x) for which there exists at least
one x ∈ X such that φ−1

i,x(s(x)) ∈ GL(n,C).

Proof. 1. If s(x) is a complex-analytical section in the main-bundle corre-
sponding to ξB and

si(x) := φ−1
i,x(s(x)) for x ∈ Ui

we have f−1
i (x)si(x) = f−1

j (x)sj(x) in Ui ∩ Uj . Therefore the collection
of f−1

i (x)si(x) defines a matrix W(x), which is holomorphic and holomor-
phically invertible in X − X ′. Define B := B(x̃)ψ∗(W(x)), then B(x) is
holomorphic and holomorphically invertible on X̃ −X ′ and suffices (2).
It remains to prove that for B(x̃) all points of X ′ are points of certainty.

〈Ki〉∗B(x̃0) = 〈Ki〉∗B)x̃0 · ψ∗(W(〈Ki〉x̃0))
= 〈Ki〉∗B(x̃0) · ψ∗(f−1

i si(ψ(〈Ki〉x̃0)))
= 〈Ki〉∗B(x̃0) · ψ∗(f−1

i (ψ(〈Ki〉x̃0))) · ψ∗(si(ψ(〈Ki〉x̃0)))
= 〈Ki〉∗B(x̃0){〈Ki〉∗(x̃0)}−1×

× exp
{
logµ(〈KiDiK

−1
i 〉)logti ◦ ψ(〈Ki〉x̃0)

〈Di〉logti(xi)− logti(xi)

}
· ψ∗(si(ψ(〈Ki〉x̃0)))

yields

exp

{
− logµ(〈KiDiK

−1
i 〉)ilogti ◦ ψi(x̃)

〈Di〉logti(xi)− logti(xi)

}
B(x̃) = ψ∗i (si ◦ ψ(x̃))

for x̃ ∈ V . Thus

ψ∗−1
i

(
exp

{
− logµ(〈KiDiK

−1
i 〉)logti ◦ ψi(x̃)

〈Di〉logti(xi)− logti(xi)

})
B(x̃) = si(x),

8



3 Complex-analytical fiberspaces over non compact Riemannian surfaces

which means Vi suffices the requirement of certainty. α∗B(x̃0) = µ(α)B(x̃0)
yields the same statement for the remaining components. On the other
hand, if B(x̃) is a holomorphic invertible solution of (X,X ′, µ) we ob-
tain that B−1(x̃)B(x̃) is holomorphic and holomorphically invertible on
X̃ −X ′. Since α∗ · B−1(x̃)B(x̃) = B−1(x̃)B(x̃) for α ∈ π1(X − X ′, x0)
there exists W(x) := ψ∗−1(B−1(x̃§̃)). W is holomorphic and holomorphi-
cally invertible on X−X ′. Trivially s∗i (x) := fi(x)W(x) is meromorphic in
Ui and holomorphic and holomorphically invertible in Ui−Ui∩X ′. Now we
search for a matrixB(x), which is meroporphic onX and holomorphic and
holomorphically invertible on X−X ′, such that s∗i (x)B(x) is holomorphic
and holomorphically invertible in every Ui. Obviously this is a general-
ization of the Cousin-II-problem. Analogue to the Cousin-II-problem we
can assign a cozycle in H1(X,GL(n,C)ω) to our question. Just like in the
ancient case the sections in the associated main-bundle are equivalent to
the solutions of the generalized Cousin-II-problem. Due to theorem 3 the
defining cozycle is trivial, which means there exists a matrix B(x) with
the desired properties. Obviously the collection of si(x) := s∗i (x)B(x) for
x ∈ Ui is a complex-analytical section in the main-bundle corresponding
to ξB.

2. The proof of 1) can be transferred to 2).

Corollary. For a holomorphically invertible solution B(x̃) of (X −X ′, ∅, µ) we
get:

1. If X is not compact the holomorphically invertible solutions of (X,X ′, µ)
are naturally equivalent to the complex-analytical sections in the main-
bundle associated to ξB.

2. If X is compact the solutions of (X,X ′, µ) are naturally equivalent to the
complex-analytical sections s(x) in the bundle (X, ξB,Pn

2) associated to
ξB, such that there exists x ∈ X with φ−1

i,x(s(x)) ∈ GL(n,C).

3 Complex-analytical fiberspaces over non com-
pact Riemannian surfaces

Consider complex-analytical fiber spaces with a basis consisting of a non com-
pact Riemannian surface X and a complex Liegroup G as structure group. We’ll
proof that these complex-analytical fiber spaces are complex-analytical trivial.

Theorem 3. Given a non compact Riemannian surface X and a complex
Liegroup G, the group H1(X,Gω) consists only of the trivial element.

Proof. For ξ ∈ H1(X,G) we have to prove that there exists a complex-analytical
section in the main bundle associated to ξ. First we’ll prove the existence of a
continuous section in this main-bundle. Due to dimensional reasons there can
only be two-dimensional non trivial sections in the main-bundle, so we just need
to show that these vanish. This is true, because such a section is an element
of H2(X,π1(G)), which is zero due to the universal coefficient theorem and the

9



3 Complex-analytical fiberspaces over non compact Riemannian surfaces

fact that for a non compact Riemannian surface X the two-dimensional integral
homology group H2(X,Z) consists only of the zero element. Therefore the
main-bundle associated to ξ is trivial. Since moreover K. Stein [1] verified that
every non compact Riemannian surface is a holomorphically complete space we
can use a theorem of H. Grauert [5] to conclude complex-analytical triviality
from topological triviality which is the desired statement.

Since there isn’t a published proof for the quoted theorem of H. Grauert
yet we’ll proof theorem 3 again for the special case G = GL(n,C), which is of
interest for Riemann-Hilberts problem. Therefor we need a generalization of
Runge’s famous theorem. H. Grauert [5] uses a similar generalization of the
statement needet here to proof his quoted theorem. Let A = (aik) be a matrix

over the field of complex numbers C and define ‖A‖ :=
(∑

i,k |aik|
2
) 1

2 .
If A(x) = (aik(x)) is a matrix of holomorphical functions B ⊂ X, define

‖A(x)‖B := sup{‖A(x)‖ : x ∈ B}. As known the fallowing rules are true:

1. ‖A + B‖ ≤ ‖A‖+ ‖B‖

2. ‖AB‖ ≤ ‖A‖ · ‖B‖

3. ‖αA‖ = |α| ‖A‖, for α ∈ C

4.
∥∥eAeBeC − 1

∥∥ ≤ e‖A‖+‖B‖+‖C‖−(1+‖A‖+‖B‖+‖C‖), for A+B+C = 0.

We’ll use the fallowing generalization of Runge’s theorem: Consider B ⊂ B′ ⊂
X, where B is compact in B′ and B′ is compact in X, B relative B′ is simply
connected and A(x) is a holomorphical map from B to GL(n,C). Then for
every ε > 0 there exists a holomorphic map A′(x) from B′ to GL(n,C) such
that ‖A′(x)− A(x)‖B < ε.

This means A(x) can be approximated by holomorphical maps from B′

to GL(n,C) in accordance with the topology of uniform convergence. For
n = 1 this statement fallows from H. Behnke-K. Stein’s [1] proof of a gener-
alization of Runge’s theorem and another result of his work, which says that
for given periods there always exists an integral of genus 1 on a Riemannian
surface. These two theorems also yield that given x ∈ B′ − B for every
ε > 0 there exists an on B′ holomorphic function h(x), whose Divisor on
B′ is {x} and for which ‖h(x)− 1‖B < ε is true. To construct such a func-
tion we first choose a holomorphic function h1(x) on B′ with divisor {x} and
give an integral f(x) of genus 1 on B′ which has the same integral periods
on B as a certain branch of logh1(x). Then we approximate the on B holo-
morphic function logh1(x) − f(x) by a function h2(x) which is holomorphic
on B′, such that ‖logh1(x)− f(x)− h2(x)‖B < η where eη − 1 < ε. Finally
h(x) := exp(logh1(x)− f(x)− h2(x)) is the desired function.

Now let A(x) be a holomorphic map from B to GL(n,C). If A(x) = (aik(x)),
referring to H. Behnke-K. Stein [1] we can find functions a(0)

ik (x), which are
holomorohic on B′ and satisfy

∥∥A0(x)− A(x)
∥∥
B
< ε

2 for A0(x) := (a0
ik(x)).

For a sufficiently small ε every matrix B(x), holomorphic on B and satisfying
‖B(x)− A(x)‖ < ε, is holomorphically invertible on B. In general the divisor
D0 of DetA0(x) on B′ is not zero, but contains no prime divisors of B. Let
g denote the total order of the divisor of DetA0(x). If {x′} contained in D0

and a
(0)
i0k

(x′) = 0 for a prime divisor {x′} and k = 1, ..., n, choose an on B′

10



3 Complex-analytical fiberspaces over non compact Riemannian surfaces

meromorphic function m1(x), whose divisor on B′ is equal to −{x′} and which
satisfies

‖m1(x)− 1‖B <
ε

2g

∥∥∥A(0)(x)
∥∥∥
B
.

Then for A(0)(x) := (a(1)
ik (x)), where a(1)

i0k
(x) := m1(x)a(0)

i0k
(x) for k = 1, ..., n

and a(1)
ik (x) := a

(0)
ik (x) else the fallowing is true:∥∥∥A(1)(x)− A(x)

∥∥∥
B
<
ε

2 + ε

2g .

The divisor D1 of DetA(1)(x) is equal to D0 − {x′}. Similarly we can treat all
prime divisors of D0 who are a common zero for at least one line. Incomplete
induction yields matrix A(l)(x), which is holomorphic on B′ and whose greatest
common divisor of each line in B′ is 1. Moreover∥∥∥A(l)(x)− A(x)

∥∥∥
B
<
ε

2 + εl

2g

is true and the divisor Dl of DetA(l)(x) on B′ is contained in D0 and has total
order g− l. Let x′ ∈ Dl. There exist complex numbers λi, i = 1, ..., n, such that∑n
i=1 λiaik(x′) = 0 for k = 1, ..., n. For λi0 6= 0 define

A(l+1)(x) :=



1 0
.

.
0 1

λ1 . . . λi0 . . . λn
1 0

0 .
.

1



−1

·



1 0
.
.

0 1
λ1ml+1(x) . . . λi0ml+1(x) . . . λnml+1(x)

1 0
.

.
0 1


A(l)(x),

11



3 Complex-analytical fiberspaces over non compact Riemannian surfaces

where ml+1(x) is a meromorphic function on B′ with divisor {x′}, such that

‖ml+1(x)− 1‖B <
ε

2g
∥∥A(l)(x)

∥∥
B
· ‖Λ‖

√
‖λ1‖2 + ...+ ‖λn‖2

,

for Λ =



1 0
.
0 .

1
λ1 . . . λi0 . . . λn

1 0
.

0 .
1



−1

.

A(l+1)(x) is holomorphic on B′ and the divisor Dl+1 of DetA(l+1)(x) satisfies
Dl+1 = Dl − {x′}. Moreover

∥∥A(l+1)(x)− A(x)
∥∥
B
< ε

2 + ε(l+1)
2g .Incomplete in-

duction finally yields a matrix A′(x) := A(g)(x) satisfying the desired properties.
To prove the original statement we need the fallowing Lemma, which will

also be used in the proof of theorem 4.

Lemma 1. Let X be a non compact Riemannian surface, P ⊂ X compact in
X and {U1, U2} an open covering of P . Furthermore let {V1, V2} be an open
covering of P such that Vi is relatively compact in Ui, i = 1, 2. Then there exists
a positive number δ that only depends on the geometric constellation and has the
fallowing property: If h(x) is a holomorphic map from U1∩U2 to GL(n,C) such
that ‖h(x)− 1‖ < δ, then there exist holomorphic maps gi(x) from Vi, i = 1, 2,
to GL(n,C) with g1(x) = h(x)g2(x) for x ∈ V1 ∩ V2.

A Lemma analogous to this one was already proved by H. Cartan [4]. The
idea he used in his proof also leads to our destination, because referreing to
H. Behnke-K. Stein [1], H. Röhrl [22], respectively H. Tietz [26] we can always
give an elementary differential of order 1 in two variables, whose divisor on
(V1 ∪ V2)× (V1 ∪ V2) is the analytic set {(x, x)}. We renounce a detailed proof
at this point, because this will later be done by the proof of Lemma 2 and
the given modification. With the help of Lemma 1 now we’ll show that every
restriction of the main bundle associated to ξ to a subset P that is relatively
compact in X admits a complex-analytical section. Therefor consider an atlas
of the fiber structure of the main bundle. The chart supporter of this atlas are
open sets Ui×GL(n,C). Consider a triangulation of P such that everx simplex
is contained in at least one Ui and number the finitely many 2-simplices Sχ that
occur in that process. If a complex-analytical section over

⋃k
χ=1 Sχ is already

given, we can get a sufficiently small open neighborhood U of this union as a
chart supporter in a new atlas of the fiber structure of the main bundle. If U ′ is
a sufficiently small neighborhood of a 2-simplex Sk+1 of P , our atlas contains a
chart transformation h(x) mapping U∩U ′ holomorphically to GL(n,C). Since a
suitable choice of U ′ and an appropriate numbering of the 2-simplices1 yield U ′
is simply connected relative to a suitable neigborhood of U ∪U ′, due to Runge’s

1number the 2-symplices in a way that
⋃k

χ=1 and Sk+1 never have three 1-simplices in
common for k = 1, 2... The possibility of such a choice is pointed out in [1a].
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4 Complex-analytical fiber spaces with a compact Riemannian surface as
basis, structue group GL(n,C) and fiber Pn

approximation theorem we can find a holomorphic map h2(x) from U ∪ U ′ to
GL(n,C) in a way that

‖h1(x)h2(x)− 1‖V ∩V ′ < δ

for relatively compact sets v and V ′ in U respectively U ′ which cover the union
of simplices we already dealt with respectively the newly added simplex. We
can apply Lemma 1 to h(x) := h1(x)h2(x) and receive a complex-analytical
section in the main bundle over

⋃k+1
χ=1 Sχ. After finitely many steps this yields

a complex-analytical section over P . We apply this result to a sequence ((Pn))
of sets contained in X which have the fallowing properties:

1. Pn is relatively compact in Pn+1, n = 1, 2, ...

2. There exists a n for every relatively compact set B in X such that B ⊂ Pn.

3. Pn is simply connected relative Pn+1 for n = 1, 2, ...

The existence of these sequences is known (compare H. Behnke-K. Stein [1]).
Thus let sn(x) be a complex-analytical section over Pn in the main bundle
associated to ξ. Because of

{φ−1
i,x(sn(x))}−1φ−1

i,x(sn+1(x)) = {φ−1
j,x(sn(x))}−1φ−1

j,x(sn+1(x))

for x ∈ Ui∩Uj∩Pn, where {...}−1 is taking the inverse inGL(n,C), the collection
of {φ−1

i,x(sn(x))}−1φ−1
i,x(sn+1(x)) defines a holomorphic map fn(x) from Pn to

GL(n,C). Due to the fact that Pn relative Pn+1 is simply connected Runge’s
approximation theorem yields a holomorphic map hn(x) from Pn to GL(n,C)
with h1(x) = 1 such that

f(x) :=
∞∏
n=1

(h−1
n (x)fn(x)hn+1(x))

converges in X in the sense of compact convergence. Thus f(x) is a holomorphic
map from X to GL(n,C). Define

Hn+1(x) := hn+1(x)
∞∏
m=1

(h−1
n+m(x)fn+m(x)hn+m+1(x))

on Pn+1 then the definition

λi(x) := φ−1
i,x(sn(x)) ·Hn(x), for x ∈ Ui ∩ Pn

is consistent and the collection of λi(x) forms a complex-analytical section in
the main bundle.

4 Complex-analytical fiber spaces with a com-
pact Riemannian surface as basis, structue group
GL(n,C) and fiber P n

To examine complex-analytical vector space bundles (X, ξ,Cn) one should take a
look at the cohomology moduls Hq(X,Ω(X, ξ,Cn)), where Ω(X, ξ,Cn) denotes

13



4 Complex-analytical fiber spaces with a compact Riemannian surface as
basis, structue group GL(n,C) and fiber Pn

the sheaf of locally complex-analytical sections in (X, ξ,Cn). If the fiber is the
complex projective space Pn instead of Cn one usually replaces Ω(X, ξ,Cn) by a
sheaf Ω̂(X, ξ,Pn) defined in the fallowing way: We fix Cn in Pn by considering
z′0, ..., z

′
n with z′0zν = z′ν , ν = 1, ..., n, as coordinates in Pn for given coordinates

z1, ...zn of Cn. Then A ∈ GL(n,C) corresponds to the map in Pn characterized

by
(

1 0
0 A

)
. Given a complex-analytical section s(x) over U ⊂ X in the fiber

space (X, ξ,Pn) we can write the representations of s(x) in local coordinates and
thereby get z′ν as holomorphic functions in Ui. Define si(x) := (y′0(x), ..., z′n(x)).
If s(x) has the property that z′0(x) doesn’t vanish identically in one coordinate
representation, this property holds in every coordinate representation. Call a
section like this non-degenerated. The set of non-degenerated sections over U
naturally has the structure of anK(X)-module, whereK(X) denotes the field of
meromorphic functions on X. Let Ω̂(X, ξ,Pn) be the sheaf of non-degenerated
locally complex analytical sections. The goal of this paragraph is

Theorem 4. If X is a compact Riemannian surface, K(X) the field of mero-
morphic functions on X and ξ ∈ H1(X,GL(n,C)ω) the fallowing is true:

K(X)− dimH0(X, Ω̂(X, ξ,Pn)) = n.

Proof. A) Let s(1), ..., s(l) ∈ H0(X, ˆOmega(X, ξ,Pn)). We want to define the
rank of these l sections. Therefor choose a Ui and give coordinate representations
s

(λ)
i (x) = (z′0(x), ..., z′(λ)

n (x)), λ = 1, ..., l, of the given sections. Define the rank
so s(1), ..., s(l) in Ui to be the rank of

z
′(1)
1

z′(1)(x) , . . . ,
z′(1)
n (x)
z
′(1)
0 (x)

. . . . . . .
z
′(l)
1 (x)
z
′(l)
0(x)

, . . . ,
z′(l)n (x)
z
′(l)
0 (x)


It’s easy to calculate that this rank is independent of the choose of Ui which
makes it possible to speak about a general rank of s(1), ..., s(l). A few more
calculations lead s(1), ..., s(l) are linear independent over K(X) iff the rank of
s(1), ..., s(l) is smaller than l. Thus dim(H0(X, Ω̂(X, ξ,Pn))) ≤ n. To prove
"=" we use a theorem about complex-analytical vector space bundles with an
algebraic manifold as basis of S. Nakano [16]. Since we can think about X
as an algebraic manifold in P3 we can apply S. Nakano’s theorem 4 which
yields for a sufficiently chosen η ∈ H1(X,GL(1,C)ω) there exist n sections
t(1), ..., t(n) in H0(X, Ω̂(X, η ⊗ ξ,Pn)) with rank n and thus linear independent
over K(X). Since the dimension of H0(X, Ω̂(X, ξ,Pn)) is positive for every
ζ ∈ H1(X,GL(1,C)ω) - for example this fallows from a theorem of K. Kodaira
and D. C. Spencer [13] - there exists a section t ∈ H0(X, Ω̂(X, η−1,Pn)) different
to the zero section. Due to t⊗ t(1), ..., t⊗ t(n) ∈ H0(X, Ω̂(X, ξ,Pn)) this yields
sections in the desired cohomology module which are linear independent over
K(X).

B) The given proof uses a lot of tools from algebraic geometry which can be
avoided if we consider the special case X = P1. We want to give a comparative
elementary proof for X = P1. Before we do that we’ll proof

Lemma 2. Let x1 ∈ P1, {U1, U2} be an open covering of P1 such that U1 ⊂
P1 − {x1} and let {V1, V2} be an open covering of P1 for Vi relatively compact
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4 Complex-analytical fiber spaces with a compact Riemannian surface as
basis, structue group GL(n,C) and fiber Pn

in Ui, i = 1, 2. Then there exists a positive number δ that only depends on the
geometric constellation and has the fallowing property:

If f(x) is a holomorphic map from U1 ∩ U2 to GL(n,C) such that
‖f(x)− 1‖ < δ, then there exist holomorphic functions gi(x) from Vi

to GL(n,C), i = 1, 2, with g1(x) = f(x)g2(x).

Proof. Without loss of generality we may assume t(x) maps U2 conformally to
the unit circle and moreover that the boundaries Ui and Vi are smooth curves.
Now choose a positive number a with

a < Min[Disr({t : ‖t‖ < 1}, t(RdV1)), Dist(t(RdU2), t(RdV2))],

where Dist(x, y) is the euclidean distance between x, y ∈ C and Vi,k, i = 1, 2,
k = 1, 2, ..., denote the domains on X, who are relatively compact in Ui and for
which t(RdVi,k) is a parallel curve to t(RdUi) with distance a−2−ka. Moreover
choose x2 ∈ X − U2. For an elementary differential dFx1(x, z) in two variables
and of first order like in [22] or H. Tietz [26], whose characteriszing divisors only
contain the prime divisor {x1}, there exists a number K such that∫

RdV1,k

∥∥dFx1(z,x)
∥∥ 5

2πK
a
· 2k−1, for x ∈ V1,k+1∫

RdV2,k

∥∥dFx1(z,x)
∥∥ 5

2πK
a
· 2k−1 for x ∈ V2,k+1

and for all k = 1, 2, ..... It’s claimed that δ := Min( 1
2 ,

1
25 (1 + K

a )−2e
−K
a ) suffices

the requirements of Lemma 2. To prove that we define f0(x) := f(x) for x ∈
V1,0 ∩ V2,0. If fk(x) is already defined as a holomorphic map from V1,k ∩ V2,k to
GL(n,C) and ‖fk(x)− 1‖V1,k∩V2,k

< 1, we define

hk(x) := −
∞∑
m=1

(−1)m

m
(fk(x)− 1)m

h1,k(x) := 1
2πi

∫
RdV1,k

hk(z)dFx1(z, x)

h2,k(x) := 1
2πi

∫
−RdV2,k

hk(z)dFx1(z, x)

in V1,k∩V 2,k. Then h1,k(x) + hk(x) + h2,k(x) = 0 and

‖hk(x)‖V1,k
∩ V2,k 5

δ

4k

‖h1,k(x)− 1‖V1,k+1
∩ V2,k+1 5

K

a
· δ2k , ‖h2,k − 1‖V1,k

∩ V2,k+1 5
K

a
· δ2k .

Finally define

fk+1(x) := exp(h1,k(x)) · fk(x) · exp(h2,k(x)) for x ∈ V1,k+1V2,k+1

which yields

‖fk+1(x)− 1‖V1,k+1∩V2,k+1
5

δ

4k+1 .
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5 Dependency of solutions and branching points

Since

f(x) = exp(−h1,0(x))...exp(−h1,k(x))fk+1(x) · exp(−h2,k(x))...exp(−h2,0(x))

for x ∈ V1 ∩V2 and the fact that the sequence of fk(x) converges uniformly to 1
and moreover the products

∏∞
k=0 exp(−h1,k(x)) converge uniformly in Vi due to

the estimates above, the proof is done. As mentioned earlier this proof fallows
a proof of H. Cartan [4].

Back to the proof of theorem 4 in the case X = P1. We fix a system
U1 ⊂ X − {x1}, U2 of open subsets as covering of X. Let U1 ∩ U2 be of the
type of the annulus. By theorem 3 the restriction of the cozycle ξ to U1 and
similar to U2 is trivial. Therefore we can define (X, ξ,Pn) by a holomorphic
map g(x) from U1 ∩ U2 to GL(n,C). Thus the proof will be done by giving an
open covering {V1, V2} of X with Vi ⊂ Ui, i = 1, 2, and non-singular matrices
mi(x), meromorphic in Vi and satisfying m1(x) = g(x)m2(x) for x ∈ V1 ∩V2. If
g(x) satisfies the assumptions of Lemma 2 one has already finished. If not, fix
two open, relatively compact subsets Wi in Ui, i = 1, 2, such that W1∪W2 = X
and Vi lies relatively compact in Vi. Moreover one can find a matrix m(x)
such that g−1(x) − m(x) is meromorphic and meromorphically invertible in
W1 ∩W2 and ‖m(x)‖W1∩W2

< ε
‖g(x)‖W1∩W2

. Choose ε sufficiently small then
f(x) := g(x)(g(x)−1−m(x)) is a holomorphic map from W1∩W2 satisfying the
requirements of Lemma 2. Therefore m1 := g1, m2 := (g(x)−1−m(x))g2(x) are
the desired matrices.

Corollary (Heftungslemma). Let X be a compact Riemannian surface, {U1, U2}
an open covering of X and h(x) a holomorphic map from U1 ∩U2 to GL(n,C).
There exist maromorphic and nonsingular matrices mi(x), i = 1, 2, on Ui such
that

m1(x) = m2(x)h(x) for x ∈ U1 ∩ U2.

One sees easily that this corollary is just another formulation of theorem 4.
Theorem 1-4 together with the remarks at the beginning of the proof of

theorem 4 yield

Theorem I. Let X be a Riemannian surface, X ′ ⊂ X a subset without ac-
cumulation points in X and µ be a homomorphism from π1(X − X ′, x0) to
GL(n,C). Then there exists a matrix B(x̃), which is meromorphic and nonsin-
gular on X̃ −X ′ and only has points of certainty on X ′. Moreover for for every
α ∈ π1(X −X ′, x0)

α ·B(x̃0) = µ(α)B(x̃0).

5 Dependency of solutions and branching points
In this section we want to examine how the matrices B(x̃) from theorem I
depend on branching points. More precisely we want to do the fallowing. Con-
sider a system {x′1, ..., x′k} ⊂ X ′ of finitely many branching points. To each x′χ,
χ = 1, ..., k we assign an open neighborhood U ′χ of x′χ in X. As far as it makes
sense U ′χ is going to be the "space of variability" of x′χ; the monodromy µ is
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5 Dependency of solutions and branching points

supposed to be "independent" of the choice of xχ ∈ U ′χ. If two branching points
coincide we have to expect certain "degenerations". Therefor we want to restrict
to the case where branching points are only allowed to vary in a way that none
of them coincide. Therefor we require U ′χ ∩ (X ′ − {x′1, ..., x′k}) to be empty.
Moreover we only consider k-tuples in U ′1 × ...× U ′k −∆, where ∆ denotes the
set of those k-tuples in U ′1 × ...× U ′k that coincide in at least two components.
For (x∗1, ..., x∗k) ∈ U ′1 × ...× U ′k −∆ define

X ′x∗1 ,...,x∗k
:= (X ′ − {x′1, ..., x′k}) ∪ {x∗1, ..., x∗k}

and choose a point x0 in X − (X ′ ∪ U ′1 ∪ ... ∪ U ′k), then there exists a natural
isomorphism ιx∗1 ,...,x∗k from π1(X−X ′x∗1 ,...,x∗k , x0) to π1(X−X ′, x0). Furthermore
we’ll abbreviate X × (U ′1 × ...×U ′k −∆) by XU and (X ′ − {x′1, ..., x′k})× (U ′1 ×
...× U ′k −∆) by X ′U, where

∆′ :=
k⋃

χ=1
{
⋃
{(x∗χ, x∗1, ..., x∗k) : (x∗1, ..., x∗k) ∈ U ′1 × ...× U ′k −∆}}.

Now we assign to each

(x∗1, ..., x∗k) ∈ U ′1 × ...× U ′k −∆

the problem (X,X ′x∗1 ,...,x∗k , ιx∗1 ,...,x∗k◦µ) and ask for nonsingular matricesB, which

are meromorphic on the universal covering space ˜XU −X ′U of XU−X ′U and have
the fallowing property:

If χ is the natural map from XU − X ′U to U ′1 × ... × U ′k − ∆, ψ the natu-
ral projection from ˜XU −X ′U to XU − X ′U and φx∗1 ,...,x∗k the natural projec-
tion from X̃ −X ′x∗1 ,...,x∗k to a suitable connected component Zx∗1 ,...,x∗k of (χ ◦
ψ)−1(x∗1, ..., x∗k) for (x∗1, ..., x∗k) ∈ U ′1× ...×U ′k−∆, then the fallowing is true for
the restrictionB|Zx∗1 ,...,x∗k : φ

∗
x∗1 ,...,x

∗
k
(B|Zx∗1 ,...,x∗k ) is a solution of (X,X ′x∗1 ,...,x∗k , ιx∗1 ,...,x∗k◦

µ) for every (x∗1, ..., x∗k) ∈ U ′1 × ...× U ′k −∆.

We’ll denote this problem by (X,X ′,U, µ). As earlier a solutionB of (X,X ′,U, µ)
is called holomorphic if the matrix B is holomorphically invertible.

Denote the natural homomorphism from π1(X−X ′, x0) to π1(XU−X ′U, (x0, x
′
1, ..., x

′
k))

by j. Obviously

j−1(0) ⊂ µ−1(0) (4)

is necessary for solubility of (X,X ′,U, µ). The easiest case is j−1 = 0, because
this means for all (x∗1, ..., x∗k) ∈ U ′1 × ...U ′k − ∆ one - and therefore every -
connected component of (ξ ◦ ψ)−1(x∗1, ..., x∗k) naturally is a universal covering
space of X − X ′x∗1 ,...,x∗k

. We have j−1(0) = 0 if U ′κ, κ = 1, ..., k, are simply
connected and pairwise disjoint: then XU−X ′U is homeomorphic to (X−X ′)×
U ′1 × ...× U ′k and j even is an isomorphism onto π1(XU −X ′U, (x0, x

′
1, ..., x

′
k)).

Now we only want to consider (X,X ′,U, µ) for the named case. Analog to
Riemann-Hilbert’s problem we’ll divide (X,X ′,U, µ) into two questions. First
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5 Dependency of solutions and branching points

we search for a non singular matrix B which is meromorphic on ˜XU −X ′U and
has the property:

B|Zx∗1 ,...,x∗k is a solution of (X −X ′x∗1 ,...,x∗k , ∅, ιx∗1 ,...,x∗k◦µ) (5)

for every (x∗1, ..., x∗k) ∈ U ′1 × ...× U ′k.

In another step we’ll turn potential points of uncertainty into points of certainty.
As one sees easily the construcion of ξµ ∈ H1(X,GL(n,C)ω) is independent

of the fact that the basis X is a Riemannian surface. Similarly we can do
this construction for complex manifolds. Thus the cozycle ξµ◦j−1 ∈ H1(XU −
X ′U, GL(n,C)ω) is defined. Since XU−X ′U is homeomorphic to (X−X ′)×U ′1×
...× U ′k we can choose ξµ◦j−1 to an open covering of XU −X ′U, whose elements
are simply connected and whose pairwise intersections are also simply connected
and connected. Therefore we can copy the proof of theorem 1. This yields

Theorem 5. Triviality of ξµ◦j−1 is necessary and sufficient for the existence of
a matrix B, which is holomorphic and holomorphically invertible on ˜XU −X ′U
and satisfies (5).

If we’ve found a matrix B that is holomorphic and holomorphically in-
vertible on XU − X ′U and satisfies (5) we try to construct the cozycle ξB ∈
H1(XU, GL(n,C)ω) in the same way we did before. Therefor we have to define
the term "point of certainty" equally to the definition in section 2, but instead
of the local uniformizer t(x) we have to choose a function which is holomorphic
in a whole neighborhood U of the considered point and whose set of zeros in
U coincides with X ′U. To construct ξB we have to start with a suitable open
neighborhood of XU: Therfor we choose an open neighborhood of XU−X ′U and
add the sets U ′κ × U ′1 × ... × U ′k, κ = 1, 2, ..., where U ′κ, κ = 1, 2, ..., are open,
connected and simply connected coordinate neighborhoods with X ′ ⊂

⋃
k U
′
k.

Now for this open covering of XU we can construct gij like in section 2, but
using a function, which is holomorphic in U ′κ × U ′1 × ... × U ′k and whose set of
zeros in U ′κ × U ′1 × ...× U ′k coincides with X ′U ∩ (U ′κ × U ′1 × ...× U ′k), instead of
the local uniformizer tκ(x). One shows easily that gij are holomorphic maps in
GL(n,C) and therefore define a cozycle ξB ∈ H1(XU, GL(n,C)ω). As prior one
proves

Theorem 6. For B defined as in theorem 5 we have:

1. If X is non compact, triviality of the cozycle ξB is necessary and sufficient
to prove the existence of a holomorphic solution of (X,X ′,U, µ).

2. If X is compact, to prove the existence of a solution of (X,X ′,U, µ) it’s
necessary and sufficient to show that the bundle (XU, ξB,Pn

2) associated
to ξB admits a complex-analytical section s(u), such that the support of
the divisors of s(u) contains none of the analytical sets X × x∗1 × ...× x∗k
for (x∗1, ..., x∗k) ∈ U ′1 × ...× U ′k.

Thereby the support of the divisors of s(u) denotes the sets of all ū ∈ XU with
φ−1
i,u(s(u)) /∈ GL(n,C).
Moreover one confirms easily that also here the corollary to theorem 2 re-

mains true if only X is non compact.
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5 Dependency of solutions and branching points

Regarding theorem 5 and 6 the fallowing is of certain interest

Theorem 7. Let X be a non compact Riemannian surface and G a complex
Lie group, then H1(XU, Gω) contains only the trivial element. If Y is any
Riemannian surface and Y ′ a subset of Y without accumulation points on Y ,
then H1(YU − Y ′U, Gω) only consists of the trivial element.

Proof. In the given cases XU respectively YU−Y ′U is homeomorphic to a product
of a non compact Riemannian surface and U ′1 × ... × U ′k. Since the integral
homology groups of the factors are torsionfree, this is also true for XU and Y ′U−
Y ′U due to a well known theorem. Therefore the integral homology groups can
be completely characterized by their Betti numbers. The Künnetsche Formel
yields

Hq(XU) = Hq(YU − Y ′U) = 0 for q > 1.

Thus we can transfer the proof of theorem 3. Note that also the second proof
of theorem 3 yields our goal if we assume G to be the Lie group GL(n,C).

By theorem 7 it’s already proved that the problem (X,X ′,U, µ) can always
be solved holomorphically for a non compact Riemannian surfaceX. This means
in microcosm we can assume the dependency of solutions of Riemann-Hilbert’s
problem and branching points to be holomorphic.

Finally we also need:

Theorem 8. Let X be a compact Riemannian surface and U ′1, ..., U ′k connected,
simply connected and pairwise disjoint subdomains of X. If ξ ∈ H1(X×U ′1×...×
U ′k, GL(n,C)ω), then the fiber bundle (X×U ′1×...×U ′k, ξ,Pn) associated to ξ has
a complex analytical section s such that the support of the divisors of s contains
none of the analytical sets X × {x1} × ...× {xk} for (x1, ..., xk) ∈ U ′1 × ...×U ′k.

Proof. If X has genus 0, we can apply the idea we used in the proof B) of
theorem 4. We leave the details to the reader. In the general case we can do
the fallowing (compare S. Nakano [16]). Abbreviate U ′1 × ...× U ′k by U , then ξ
defines a complex analytical vector space bundle (X × U, ξ,Cn). Let x∗ ∈ X.
B := {x∗}×U is an irreducible, purely k-dimensional analytic set in X×U . The
divisor belonging to B naturally defines an element β ∈ H1(X ×U,GL(1,C)ω).
We get an exact sequence of sheafs

0→ Ω(X × U, β−1 ⊗ ξ,Cn) ι→Ω(X × U, ξ,C)
ρ→ Ω({x∗} × U, ξ|{x∗} × U,C

n)→ 0,

for the injection map ι, the restriction map ρ and the restriction ξ|{x∗} × U of
ξ to {x∗} × U . Thus also

H0(Ω(X × U, ξ,Cn)) ι→H0(Ω({x∗} × U, ξ|{x∗} × U,C
n))

→ H1(Ω(X × U, β−1 ⊗ ξ,Cn))

is exact. Chosen ξ such that H1(Ω(X × U, β−1 ⊗ ξ,Cn)) = 0 the map ι is
an epimorphism. By theorem 7 respectively H. Grauert [5] the fiber bundle
({x∗}×U, ξ|{x∗}×U,Cn) is complex analytically trivial. Let J(U) be the integral
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6 Dependency of solutions and the monodromy µ

domain of holomorphic functions in U then H0(Ω({x∗}×U, ξ|{x∗}×U,Cn)) nat-
urally has the structure of an J(U)-module. Moreover the elements (δj1, ..., δjn),
j = 1, ..., n, form a J(U)-basis of H0(Ω({x∗} × U, ξ|{x∗} × U,Cn)). Therefore
there exist n elements in H0(Ω(X × U, ξ,Cn)) whose ranks are equal to n for
(u1, ..., uk) ∈ U .

A few calculations yield

H1(Ω(X × U, β−1 ⊗ φ∗(η)× ξ,Cn)) = 0,

where φ denotes the natural projection from X × U to U and η is the cocycle
we already used in section 4. The rest of the proof is similar to the proof in
section 4.

With that we finally get

Theorem II. Let U ′1, ..., U ′k ⊂ X be pairwise disjoint, connected and simply con-
nected open neighborhoods of x′1, ..., x′k for {x′1, ..., x′k} ⊂ X ′, then (X,X ′,U, µ)
is always solvable. If X is non compact there exist holomorphic solutions of
(X,X ′,U, µ).

This proves that the solutions of Riemann-Hilbert’s problem depend analyt-
ically on the branching points.

6 Dependency of solutions and the monodromy
µ

The methods from the last chapter also allow to examine dependency of solutions
of Riemann-Hilbert’s problem and monodromy. While talking about depen-
dency of monodromy one considers the fallowing. Fix X and X ′. µ is uniquely
determined by its values on a canonical generating set of π1(X −X ′, x0). Now
change the values of µ on finitely many elements of the chosen canonical gener-
ating set and ask how the given solution of Riemann-Hilbert’s problem changes.
We now generalize and specify the question. Let α1, ...αk, ... be the elements of
the canonical generating set of π1(X − X ′, x0) and U1, ..., Uk open subsets of
GL(n,C), where GL(n,C) has the natural complex structure. We want µ(ακ)
to vary in Uκ, κ = 1, ..., k. Therefor we assume that α1, ..., αk don’t form a
complete canonical generating set of π1(X −X ′, x0). If the generating set con-
tains infinitely many elements, we assume µ(αk+1), ... to be given; otherwise we
choose k in a way that α1, ..., αk+1 is the generating set. In the first case it’s ob-
vious that there exists a homomorphism from π1(X−X ′, x0) to GL(n,C), which
takes on the value µ(ακ) on ακ, for every choice of µ(ακ) ∈ Uκ, κ = 1, ..., k. In
the second case such a homomorphism exists at least if αk+1X −X ′ splits and
µ(αk+1) is chosen suitably, what we want to assume additionally. Denote this
homomorphism by µα1,...,αk .

We now define Y := (X−X ′)×U1× ...×Uk and ask for a matrix B, which is
meromorphic and non singular on the universal covering space Ỹ of Y and has
the fallowing property: Let χ be the natural map from Y to U1× ...×Uk, ψ the
natural projection of Ỹ to Y and φα1,...,αk the natural projection from X̃ −X ′
to a suitable connected component Zµ(α1),...,µ(αk) of (χ ◦ ψ)−1(µ(α1), ..., µ(αk))
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6 Dependency of solutions and the monodromy µ

for µ(αk) ∈ Uκ, κ = 1, ..., k. Then

φ∗α1,...,αk
(B|Zµ(α1),...,µ(αk))

is a solution of (X,X ′, µα1,...,αk) for every (µ(α1), ..., µ(αk)) ∈ U1 × ...× Uk.
We’ll denote this problems of existence by (X,X ′, µ,U). As prior we call a

solution holomorphic if B is holomorphic and holomorphically invertible.

Theorem IIIa. If the canonical generating set of π1(X−X ′) contains infinitely
many elements or αk+1X − X ′ splits,(X,X ′, µ,U) is always solvable if only
U1, ..., Uk are simply connected homology domains contained in GL(n,C) with
homology type of the cell. If X is non compact, there exist holomorphic solutions
of (X,X ′, µ,U).

The details needed to prove theorem IIIa are similar to those needed for
the proof of theorem II and are left to the reader. Note that for this proof the
cocycles ξµ respectively ξB are defined in the same way as in 2. If {Vi}i∈I is one
of the coverings used to construct ξµ respectively ξB, choose {Vi×U1×...×Uk}i∈I
to be the covering of (X−X ′)×U1×...×Uk respectively X×U1×...×Uk needed
for the definition. We can choose the matrices logµ(

〈
KjDjK

−1
j

〉
) appearing in

the definition of ξB to be holomorphic in U1× ...×Uk, because each Uκ is simply
connected.

The two fallowing cases remain:

1. α1, ..., αk form a canonical generating set of π1(X −X ′, x0)

2. α1, ..., αk+1 form a canonical generating set of π1(X − X ′, x0) and αk+1
splits, but X −X ′ does not.

It’s clear that in both cases not every choose of µ(α1), ..., µ(αk) ∈ GL(n,C)
yields a homomorphism µα1,...αk from π1(X − X ′, x0) to GL(n,C) that takes
on the given values for ακ, κ = 1, ..., k. Riemann’s relation is necessary and
sufficient for the existence of those homomorphisms:

Let α1, ..., αη be exactly those elements of the canonical generating set that
split in X −X ′. Then for the first case

h∏
κ=1

µ(ακ)
k−h

2∏
γ=1

(µ(αh+2γ−1)µ(αh+2γ)µ−1(αh+2γ−1)µ−1(αh+2γ)) = 1 (6)

is the Riemann relation if αh+2γ−1 and αh+2γ are so called "Rückkehrschnittpaare"
for each γ = 1, ..., k−h2 . The second case works analogously.

Since the second case can be subsumed to the first one we’ll only examine
the first one. The question that for certain U1, ..., Uk was already answered by
theorem IIIa will be formulated in the fallowing way:

Let U be a complex space (it’ll replace U1 × ... × Uk in theorem IIIa) and
µ(α1), ..., µ(αk) holomorphic maps from U to GL(n,C), which satisfy Riemann’s
relation (6) and therefore yield a (uniquely determined) homomorphism µu from
π1(X −X ′, x0) to GL(n,C). If there a exists a meromorphic and non singular
matrix B on the universal covering space Ỹ of Y := (X−X ′)×U , which - with
denotation as above - has the fallowing property:

φ∗u(B|Zu
) is a solution of (X,X ′, µu) for every u ∈ U . (7)

As above, abbreviating the question of existence by (X,X ′, µ, U) we get
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7 An application to compact Riemannian surfaces

Theorem IIIb. Let α1, ..., αk be a canonical generating set of π1(X −X ′, x0).
Moreover let U be a holomorphically complete space of homology type of the cell
and µ(α1), ..., µ(αk) be holomorphic maps from U to GL(n,C), which satisfy
Riemann’s relation for every p∈ U . Assume suitable branches of logµ(α1), ..., logµ(αh)
to be unique on U . Then there always exist solutions of (X,X ′, µ, U). If X is
non compact, there even exist holomorphic solutions of (X,X ′, µ, U).

7 An application to compact Riemannian sur-
faces

Let X be an unlimited covering spce of P1 with n petals. Denote the natural
projection of X to P1 by λ and the set of projections of branchingpoints of X
in P1 by V = {v(0)

1 , ..., v
(0)
k }. If p0 ∈ P1 − V and {x(0)

1 , ..., x
(0)
n } = λ−1(p0),

every α ∈ π1(P1 − V, p0) yields a permutation π(α) of λ−1(p0) and therefore
a permutation matrix µ(α): α can be pushed up in each point of λ−1(p0); the
path pushed up to x(0)

ν ends in x(0)
π(ν) and we have to set µ(α) = (αρσ)15ρ,σ5n,

for αρσ := δπ(ρ),σ.α→ µ(α) is a representation of π1(P1−V, p0) of degree n; by a
theorem in topology it characterizes X up to trace point faithful automorphisms
(i.e. up to renumbering of petals). The elements of a column of a soultion B
of (P1, V, µ) can be thought of as the branches of a meromorphic function on
X: The components of such a column interchange in a way determined by the
branching of X over P1 while circulating a branching point. Moreover they act
certainly in this points, which means they at most have one pole as singularity in
the local uniformizer. Taking all the functions y1, ..., yn defined by the columns
of B we get a basis of K(X) over K(P1).

Now let Uκ, κ = 1, ..., k, be the connected, simply connected and pairwise
disjoint open neigborhoods of xκ. If (v1, ..., vκ) ∈ U1× ...×Uk, we get a natural
isomorphism φv1,...,vk from π1(P1−{v1, ..., vk}, p0) to π1(P1−{v(0)

1 , ..., v
(0)
k }, p0).

By a classical result to the representation µ ◦ φv1,...,vk belongs a unlimited cov-
ering space X

v
(0)
1 ,...,v

(0)
k

of P1 with n petals, which yields to this representation
by the way described above. We get Xv1,...,vk out of X

v
(0)
1 ,...,v

(0)
k

by "relocating"
the branching points. Theorem II yields yν , ν = 1, ..., n depend analytically
on vκ, κ = 1, ..., k, and form a basis of K(Xv1,...,vk) over K(1) for every fixed
(v1, ..., vk) ∈ U1 × ...× Uk. The set

T := {Xv1,...,vk : (v1, ..., vk) ∈ U1 × ...× Uk}

naturallay has a complex structure and therefore can be considered as an "ana-
lytical family of Riemannian surfaces" with "paramater manifolf" U1 × ... × Uk
in the sense of O. Teichmüller [25]. It shows that the functions y1, ..., yn are
meromorphic on T .

Theorem 9. There exist n meromorphic functions on T that form a basis of
K(Xv1,...,vk) over K(P1) for each fixed (v1, ..., vk) ∈ U1 × ...× Uk.
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