
Thursday 9th January, 2020

The class will have no homework or exam but we will leave some exercise;
Office hours only occasionally Friday 3-4pm or by appointment (only if there is
a geometry topology seminar SH 6713).

The topics discussed in this class will be centered around the famous volume
conjecture.

References that will be used along the way:

• 1
3 of class : Murakami and Yokota : Volume conjecture for knots. I will
not follow the second half of the book because I believe there is a more
promising approach.

• 1
3 of class from two books: The first is by Thurston: geometry and topology
of 3 manifolds, which you can find here. I will talk about just one or two
chapters. The second book is by Jessica Purcell: hyperbolic knot theory
which you can find here. This explains one chapter of the previous book
and is much more readable.

• The last third of the class, I will figure it out! We will likely discuss proofs
of some special cases for the volume conjecture.

To introduce volume conjecture, it is useful to have a general idea of what
worlds this conjecture is trying to connect. There are two worlds of low dimen-
sional topology (dim ≤ 4). There is a quantum world and a classical world. It
is of great interest to see how the two worlds are related. Normally people on
each side do not talk to each other much. Classical is more or less geometry
and topology (homotopy theory, homology, etc.) while quantum is more or less
algebraic (Quantum Field Theory, and the stuff you hear about recently).

A very special case of the relation is in the study of knots. We have quantum
invariants discovered more recently, and classical topological invariants which
are historically older. The volume conj is the most pronounced relationship
between these invariants. It relates the quantum invariant which is called the
Jones polynomial and the classical invariant which is called the hyperbolic vol-
ume of the complement of a hyperbolic knot in S3. One can generalize this
invariant to the Gromov norm, which also works for non-hyperbolic knots, i.e.
knots which complement in S3 is not a hyperbolic manifold.

The history of the volume conjecture starts at roughly 1987, by E. Witten;
He wrote a paper on exactly solvable 3d gravity and on the last paragraph he
mentioned that if his thinking is correct, then there should be some relation
between the Gromov norm and quantum invariants on the knots.

The next important work is that of R. Kashaev, where he defined some-
thing called Kashaev invariant of knots. He then formulated a precise volume
conjecture which he verified for the figure 8 knot.

This was followed by two works by Murakami. In one the Kashaev invari-
ant depending on N was formulated, which turns out to be the colored Jones
polynomial evaluated at some root of unity q = e2πi/N .
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There are few knots for which this conjecture can be verified. Some have
been done by numerical computation so you can check it.

If you explore the literature, you will see some superficial connection between
the two subjects which might make you think it is an easy conjecture, but this
is really not the case!

One difficulty of this conjecture is that while the Gromov norm is easy
to calculate (a package called snap can be used to calculate it), the colored
Jones polynomial can only be computed efficiently on a quantum computer. So
perhaps the advent of quantum computers and the numerical simulations that
will follow, could help us gain more insight.

Side discussion: It is unknown whether Jones polynomial is a complete in-
variant or not. In fact we do not know if it can detect even the unknot! There
are invariants like Khovanov homology that can detect the unknot (proven in
the previous decade).

We want to understand classically what colored Jones polynomial means;
more precisely, what classical information can be obtained from the sequence
of N−colored Jones polynomial of a knot. Any such classical information is a
good theorem!

My plan is to explain the colored Jones polynomial in two different ways. I
will give today the useless but most elementary definition. Then I will define it
using Yang Baxter equation.

Definition 1 A knot K is a smooth embedding of the circle S1 into S3 or R3

up to isotopy.

We will always assume a knot is oriented. There are four flavors of orienta-
tions. as a knot is in S3 which itself has the usual ± orientation, and the knot
itself which has also two possible arrows on it. The orientation on S3 determines
the overcrossing or under crossing and the knot arrow helps to compute the sign
of the over/undercrossing (used in computing the linking number for example).

Figure 1: Orientation

The most powerful invariant is of course the complement S3\K. This is
actually a deep theorem that this is a complete invariant and determines the
knot uniquely.

Like mentioned previously, classical invariants are the ones coming from ho-
mology/homotopy of the knot complement. While quantum invariants usually
come from quantum physics and partition functions (this is all a rough classifi-
cation so do not take it too seriously).
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We define next the colored Jones polynomial of oriented links L (put an
arrow on each component).

Each component of L is associated with a positive integerN . This is the color
of the component. N also references the dimension of irreducible representation
of su(2).

Figure 2: Colored figure eight knot

Normally I would write L = ∪iLi with integer ci attached to Li. I may not
be consistent with my notation throughout the quarter.

Side-discussion: There are speculations on the version of volume conjecture
where the colors correspond to the irreps of su(n). It is also conjectured instead
that by taking can HOMFLY polynomial (a generalization of Jones polynomial)
one will get more than the volume on the classical side.

The colored Jones polynomial of colored link (L, c) is a Laurent polynomial
J(L, c; q) ∈ Z[q±1/2] with variable q±1/2 and q ∈ C∗ = C − {0}. We will be
interested the most in (K,N), giving the polynomial JN (K, q). Though we will
repeatedly call it a polynomial, note this is not a polynomial.

To make the calculation of Jones polynomial easier, we need to introduce
quantum integers for q ∈ C∗:

[n]q :=
qn/2 − q−n/2

q1/2 − q−1/2

There are different conventions and once has to be careful. Sometimes the
1/2 is forgotten.

If we do l’Hospital’s rule and take → 1, this gives us n. This corresponds
physically to taking the famous Planck constant ~ to zero as q = eα~ where α
is some coefficient. So q → 1 corresponds to going from quantum to classical.
Mathematically, once can view [n]q as a q−deformation of integers.

Show the following as an exercise:

[n+ 1] + [n− 1] = [2][n]

Note
[2] = q1/2 + q−1/2

Every expression of quantum numbers ultimately becomes a polynomial of
[2] and [1] = 1, if one uses the above simple identities recursively.
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Figure 3: Whitehead link

We would also like to use this relation to define J(L, c; q) recursively.
To have a complete definition we need to first define J(L, c; q) for the base

case which corresponds to the coloring by [2] for all components. Of course if
any component has color [1], we can safely ignore it:

J(L, c1 ∪ . . . ∪ cn; q) = J(L′, c′1 ∪ . . . ∪ c′n; q)

where L′ is obtained by dropping all components colored by 1. Physically this
corresponds to the vacuum sector which amplitude is always one.

For the nontrivial base case, we define:

J(L, 2 ∪ . . . ∪ 2; q) := J(L; q)

where J(L; q) is the Jones polynomial of L, which will be defined later. Using
the exercise above, we can define:

J(L = L1 ∪ . . . , (N + 1) ∪ . . . ; q) = J()− J(L1 ∪ ..., (N − 1) ∪ . . . ; q)

where J() is corresponding to [2][N ] :

J(L
(2)
1 ∪ . . . , N ∪ 2 ∪ . . . ; q)

where L
(2)
1 has two components with color N, 2.

The term color goes back to doubling or tripling the knot. So recursively,
this says the colored Jones polynomial is some linear combination of Jones poly-
nomials of links where we have multiplied the knot N times as shown below for
the whitehead link:

Essentially, one considers N parallel running copy of the knots. The way
these parallel copies are drawn is by using 0-framing push-off of the knots.
The way you produce the push-off is by walking along the knot diagram,
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holding out your right hand, and drawing a parallel knot. The linking number
between the knot and this push-off is concentrated at the crossings of the original
knot. A framing is a trivialization of the normal vector bundle, up to isotopy.
Equivalently, it is a choice of normal vector field along the knot, up to isotopy.
The framing is completely characterized by a single integer, the linking number
between the knot and a push-off along the chosen normal vector field. There
is a special framing (the 0-framing) given by a Seifert surface of the knot: the
neighborhood of the boundary of the surface gives a normal vector field, and
the linking number of the push-off with the knot is zero.

Now let me define the Jones polynomial to complete the definition. Using
the skein relation:

Figure 4: Skein relation

Hence, Jones polynomial of oriented links J(L; q) ∈ Z[q±1/2] is defined by

• J(unknot; q) = [2]. Sometimes you may have seen the convention that this
is one.

• Use skein relation to recursively resolve crossings and get to unknot.

Let us calculate the Jones polynomial of figure eight:

Figure 5: Figure eight Jones polynomial

As an exercise, try to finish the above calculation by computing the Jones
polynomial of the Hopf link. You can also find the Jones polynomial of the
figure eight knot on its wikipedia page.

Thus taking any crossing of L, which its alternated and resolved version can
make the link simpler (there is always such a crossing as long as the link is not
a collection of unknots), you always get to a place where you have to calculate
the Jones polynomial of a simpler knot. But how do we know it is consistent
and we get the same answer no matter which crossings we choose to apply the
skein relation to? This is actually a (not easy) theorem.
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Many significant classes of knots have their closed formula for Jones polyno-
mial found. Now let us discuss the other side of the Volume conjecture which
has to do with the Hyperbolic volume. First

Theorem 1 (Reiley but rediscovered by Thurston) There exists a Riemannian
metric on S3\K where K = the figure eight, with sectional curvature = −1.

Thurston’s idea was to see the noncompact three manifold S3\K as a gluing
of two tetrahedrons. For a full reference on polyhedral decomposition of any
knot, starting with figure eight, we refer to chapter 2 of Jessica Purcell’s book
in References. More details are also provided in future sections. If one knows
that there is a polyhedral decomposition of the complement, it is not hard to
see why figure eight gives tetrahedron decomposition, as it divides the plane
into 6 regions, number of tetrahedron faces.

The volume conjecture is:

Conjecture 1 If K is hyperbolic, then

lim
N→∞

log |JN (K;eq)
[N ]q

|
N

=
Vol(S3 −K)

2π
(1)

where q = e
2πi
N and [n]q = qn−q−n

q−q−1 .
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