Thursday 9th January, 2020
The class will have no homework or exam but we will leave some exercise; Office hours only occasionally Friday $3-4 \mathrm{pm}$ or by appointment (only if there is a geometry topology seminar SH 6713).

The topics discussed in this class will be centered around the famous volume conjecture.

References that will be used along the way:

- $\frac{1}{3}$ of class : Murakami and Yokota : Volume conjecture for knots I will not follow the second half of the book because I believe there is a more promising approach.
- $\frac{1}{3}$ of class from two books: The first is by Thurston: geometry and topology of 3 manifolds, which you can find here. I will talk about just one or two chapters. The second book is by Jessica Purcell: hyperbolic knot theory which you can find here. This explains one chapter of the previous book and is much more readable.
- The last third of the class, I will figure it out! We will likely discuss proofs of some special cases for the volume conjecture.

To introduce volume conjecture, it is useful to have a general idea of what worlds this conjecture is trying to connect. There are two worlds of low dimensional topology ($\operatorname{dim} \leq 4$). There is a quantum world and a classical world. It is of great interest to see how the two worlds are related. Normally people on each side do not talk to each other much. Classical is more or less geometry and topology (homotopy theory, homology, etc.) while quantum is more or less algebraic (Quantum Field Theory, and the stuff you hear about recently).

A very special case of the relation is in the study of knots. We have quantum invariants discovered more recently, and classical topological invariants which are historically older. The volume conj is the most pronounced relationship between these invariants. It relates the quantum invariant which is called the Jones polynomial and the classical invariant which is called the hyperbolic volume of the complement of a hyperbolic knot in S^{3}. One can generalize this invariant to the Gromov norm, which also works for non-hyperbolic knots, i.e. knots which complement in S^{3} is not a hyperbolic manifold.

The history of the volume conjecture starts at roughly 1987, by E. Witten; He wrote a paper on exactly solvable 3d gravity and on the last paragraph he mentioned that if his thinking is correct, then there should be some relation between the Gromov norm and quantum invariants on the knots.

The next important work is that of R. Kashaev, where he defined something called Kashaev invariant of knots. He then formulated a precise volume conjecture which he verified for the figure 8 knot.

This was followed by two works by Murakami. In one the Kashaev invariant depending on N was formulated, which turns out to be the colored Jones polynomial evaluated at some root of unity $q=e^{2 \pi i / N}$.

There are few knots for which this conjecture can be verified. Some have been done by numerical computation so you can check it.

If you explore the literature, you will see some superficial connection between the two subjects which might make you think it is an easy conjecture, but this is really not the case!

One difficulty of this conjecture is that while the Gromov norm is easy to calculate (a package called snap can be used to calculate it), the colored Jones polynomial can only be computed efficiently on a quantum computer. So perhaps the advent of quantum computers and the numerical simulations that will follow, could help us gain more insight.

Side discussion: It is unknown whether Jones polynomial is a complete invariant or not. In fact we do not know if it can detect even the unknot! There are invariants like Khovanov homology that can detect the unknot (proven in the previous decade).

We want to understand classically what colored Jones polynomial means; more precisely, what classical information can be obtained from the sequence of N-colored Jones polynomial of a knot. Any such classical information is a good theorem!

My plan is to explain the colored Jones polynomial in two different ways. I will give today the useless but most elementary definition. Then I will define it using Yang Baxter equation.

Definition $1 A$ knot K is a smooth embedding of the circle S^{1} into S^{3} or \mathbb{R}^{3} up to isotopy.

We will always assume a knot is oriented. There are four flavors of orientations. as a knot is in S^{3} which itself has the usual \pm orientation, and the knot itself which has also two possible arrows on it. The orientation on S^{3} determines the overcrossing or under crossing and the knot arrow helps to compute the sign of the over/undercrossing (used in computing the linking number for example).

Figure 1: Orientation
The most powerful invariant is of course the complement $S^{3} \backslash K$. This is actually a deep theorem that this is a complete invariant and determines the knot uniquely.

Like mentioned previously, classical invariants are the ones coming from homology/homotopy of the knot complement. While quantum invariants usually come from quantum physics and partition functions (this is all a rough classification so do not take it too seriously).

We define next the colored Jones polynomial of oriented links L (put an arrow on each component).

Each component of L is associated with a positive integer N. This is the color of the component. N also references the dimension of irreducible representation of $\mathfrak{s u}(2)$.

Figure 2: Colored figure eight knot
Normally I would write $L=\cup_{i} L_{i}$ with integer c_{i} attached to L_{i}. I may not be consistent with my notation throughout the quarter.

Side-discussion: There are speculations on the version of volume conjecture where the colors correspond to the irreps of $\mathfrak{s u}(n)$. It is also conjectured instead that by taking can HOMFLY polynomial (a generalization of Jones polynomial) one will get more than the volume on the classical side.

The colored Jones polynomial of colored link (L, c) is a Laurent polynomial $J(L, c ; q) \in \mathbb{Z}\left[q^{ \pm 1 / 2}\right]$ with variable $q^{ \pm 1 / 2}$ and $q \in \mathbb{C}^{*}=\mathbb{C}-\{0\}$. We will be interested the most in (K, N), giving the polynomial $J_{N}(K, q)$. Though we will repeatedly call it a polynomial, note this is not a polynomial.

To make the calculation of Jones polynomial easier, we need to introduce quantum integers for $q \in \mathbb{C}^{*}$:

$$
[n]_{q}:=\frac{q^{n / 2}-q^{-n / 2}}{q^{1 / 2}-q^{-1 / 2}}
$$

There are different conventions and once has to be careful. Sometimes the $1 / 2$ is forgotten.

If we do l'Hospital's rule and take $\rightarrow 1$, this gives us n. This corresponds physically to taking the famous Planck constant \hbar to zero as $q=e^{\alpha \hbar}$ where α is some coefficient. So $q \rightarrow 1$ corresponds to going from quantum to classical. Mathematically, once can view $[n]_{q}$ as a q-deformation of integers.

Show the following as an exercise:

$$
[n+1]+[n-1]=[2][n]
$$

Note

$$
[2]=q^{1 / 2}+q^{-1 / 2}
$$

Every expression of quantum numbers ultimately becomes a polynomial of $[2]$ and $[1]=1$, if one uses the above simple identities recursively.

Figure 3: Whitehead link

We would also like to use this relation to define $J(L, c ; q)$ recursively.
To have a complete definition we need to first define $J(L, c ; q)$ for the base case which corresponds to the coloring by [2] for all components. Of course if any component has color [1], we can safely ignore it:

$$
J\left(L, c_{1} \cup \ldots \cup c_{n} ; q\right)=J\left(L^{\prime}, c_{1}^{\prime} \cup \ldots \cup c_{n}^{\prime} ; q\right)
$$

where L^{\prime} is obtained by dropping all components colored by 1 . Physically this corresponds to the vacuum sector which amplitude is always one.

For the nontrivial base case, we define:

$$
J(L, 2 \cup \ldots \cup 2 ; q):=J(L ; q)
$$

where $J(L ; q)$ is the Jones polynomial of L, which will be defined later. Using the exercise above, we can define:

$$
J\left(L=L_{1} \cup \ldots,(N+1) \cup \ldots ; q\right)=J()-J\left(L_{1} \cup \ldots,(N-1) \cup \ldots ; q\right)
$$

where $J()$ is corresponding to $[2][N]$:

$$
J\left(L_{1}^{(2)} \cup \ldots, N \cup 2 \cup \ldots ; q\right)
$$

where $L_{1}^{(2)}$ has two components with color $N, 2$.
The term color goes back to doubling or tripling the knot. So recursively, this says the colored Jones polynomial is some linear combination of Jones polynomials of links where we have multiplied the knot N times as shown below for the whitehead link:

Essentially, one considers N parallel running copy of the knots. The way these parallel copies are drawn is by using 0 -framing push-off of the knots. The way you produce the push-off is by walking along the knot diagram,
holding out your right hand, and drawing a parallel knot. The linking number between the knot and this push-off is concentrated at the crossings of the original knot. A framing is a trivialization of the normal vector bundle, up to isotopy. Equivalently, it is a choice of normal vector field along the knot, up to isotopy. The framing is completely characterized by a single integer, the linking number between the knot and a push-off along the chosen normal vector field. There is a special framing (the 0 -framing) given by a Seifert surface of the knot: the neighborhood of the boundary of the surface gives a normal vector field, and the linking number of the push-off with the knot is zero.

Now let me define the Jones polynomial to complete the definition. Using the skein relation:

Figure 4: Skein relation
Hence, Jones polynomial of oriented links $J(L ; q) \in \mathbb{Z}\left[q^{ \pm 1 / 2}\right]$ is defined by

- $J($ unknot $; q)=[2]$. Sometimes you may have seen the convention that this is one.
- Use skein relation to recursively resolve crossings and get to unknot.

Let us calculate the Jones polynomial of figure eight:

Figure 5: Figure eight Jones polynomial
As an exercise, try to finish the above calculation by computing the Jones polynomial of the Hopf link. You can also find the Jones polynomial of the figure eight knot on its wikipedia page.

Thus taking any crossing of L, which its alternated and resolved version can make the link simpler (there is always such a crossing as long as the link is not a collection of unknots), you always get to a place where you have to calculate the Jones polynomial of a simpler knot. But how do we know it is consistent and we get the same answer no matter which crossings we choose to apply the skein relation to? This is actually a (not easy) theorem.

Many significant classes of knots have their closed formula for Jones polynomial found. Now let us discuss the other side of the Volume conjecture which has to do with the Hyperbolic volume. First

Theorem 1 (Reiley but rediscovered by Thurston) There exists a Riemannian metric on $S^{3} \backslash K$ where $K=$ the figure eight, with sectional curvature $=-1$.

Thurston's idea was to see the noncompact three manifold $S^{3} \backslash K$ as a gluing of two tetrahedrons. For a full reference on polyhedral decomposition of any knot, starting with figure eight, we refer to chapter 2 of Jessica Purcell's book in References. More details are also provided in future sections. If one knows that there is a polyhedral decomposition of the complement, it is not hard to see why figure eight gives tetrahedron decomposition, as it divides the plane into 6 regions, number of tetrahedron faces.

The volume conjecture is:
Conjecture 1 If K is hyperbolic, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\log \left|\frac{J_{N}\left(K ; e^{q}\right)}{[N]_{q}}\right|}{N}=\frac{\operatorname{Vol}\left(S^{3}-K\right)}{2 \pi} \tag{1}
\end{equation*}
$$

where $q=e^{\frac{2 \pi i}{N}}$ and $[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}$.

Thersolay 280 - Jam 2020

- In prevlar section, are discussed how to obtain a mopphism

$$
\varphi: \pi_{1}\left(S^{3} \mid k\right) \Longrightarrow \operatorname{PS}(2, \mathbb{C})
$$

Recall $P S L\left(2,()\right.$ acts on $H^{3}=\{-(x, y, \tau)(t\rangle 0\}$ by using she quaternion repraxatiation, $\quad q \in H^{3} \Rightarrow q=x+i y+j t$

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in P S L(2, c) \Rightarrow \gamma(q)=(a q+b)(a q+d)^{-1}
$$

Denote $\Gamma=\operatorname{Im}(\varphi)$. Then P is discrete if Γ orbits of any $p \in H^{3}$ has a discrete Topology, ie $\left|\Gamma_{\rho} \cap C\right|<\infty$ for all compact ser $C \subseteq H^{3}$.

- For Ligure eighottent, φ is disacte \& Laishal (Her $\varphi=$ id $)$.
- To prove the above, you need an algorithm to get The fundamental domain of φ and then it will be easy to show discreteness. Sea the reference by Thuston: Three dim manifolds, Kleimion Groups and hyperbolic geometry. (Bulletin Ans)

To see what Thursion did, we will need to decompose the complemem To two ideal Tetrahedra.

- Side-discussion on what will come later: Twisted Alexander Poly
-The Alexander pAy is purely classials Take the fundaneatel group \& The knt and abelianize it, alb: $\pi_{1}\left(\delta^{3} \backslash k\right) \rightarrow \pi_{1}\left(s^{2} \mid k\right)$ $\left.\left[\pi_{1}\left(S^{3} \mid k\right), x_{1}\right] \mid k\right]$
The abcicanzation is first hanobgy which is \mathbb{Z}.
- Take The kerne of ab, which is a normal subyoup. By standerdtopolayy yea can Ind a space \tilde{x} which is covering space $S^{3} \backslash k$ and has $\pi_{1}(\tilde{x})=\operatorname{ker}(a b)$. It is called the veriviveral abclian cover.
- Anther tandarel topology foot states that \mathbb{Z} in the anne nets on \tilde{X}.

Therefore $H_{1}(\tilde{X} ; \mathbb{Z})$ is a $\mathbb{Z}[\mathbb{Z}] \simeq \mathbb{Z}\left[t^{+1}\right]$ moclute where the first \mathbb{Z} are integer and the second is the aoclianization. One titan Observes That $H_{1}(\tilde{x} ; \mathbb{Z}) \simeq \frac{\mathbb{Z}[\mathbb{Z}]}{\langle A(t)\rangle}$ where $A(t)$ is the Alexander polynomial.

- Let K be hypertonic. We have tors marphisms Assume we can lift p to SU(2, ©).
- Now thee is a Theorem That (twisted Alice pay) \rightarrow him Myperbaic Douse.

We need to find tine relatimskip Between IN \& (twisted Hex $\left(\text { orb }^{\prime}\right)_{N}$.
Perhaps finaliy some quantum Version /R matrix from (twisted Atop poly) N
is the any to go.

- We will shaw how to decompose $8^{3} \backslash k=$ figure 8 to two tetahecha.

20e shall consider : K as being on \mathbb{R}^{2} (except at The crossings) and" The two terichectra faces meeting each other on the plane an or around the crossings. The final picture for how the faces of The top retrahearra fir is the following.

512

$$
{ }^{6} D_{3}^{2} B
$$

D y^{6}

Fere, A, B, C, D are the faces of the tetrahedron and The edges are
Shown by red arrows and numbered from one to Six. Notice how Two edges are NIT on The Strands and instead connect two strands of trigons. This is a general pattern in the decomposion of kent Complement to poly hedra, cohere The edges are the overstrands and the bridge between bigons. The varices bic on she knot of course. The picture from the bottom for the bottom tetrahedron is very similar. One ain track that the identification of edges and faces is similar to the picture below, where one must match faces with the sauce pattern of edges like the examples shown.

triangle -with two outgoing black
 1

Dow we shall go Through the general argument which ale works for decomposition to poly hedra for any knit Complement.

Take each crossing under 1 over and color it wish too opposite
a neighborhood
draws $\frac{\frac{5 p}{1 p}}{\frac{1 p}{\text { under }}}$ over where P pink. We vill-uxe colors
I: yellow, g. green, b: blue. We ger this picture:

The next steps is "let bighorns be bygones". WOe shrink tine bijons (same as using a bridge in precious pictures). De get the following: $P\left(\frac{a}{4} \frac{a}{p / a}\right)_{b}$ The baton Tetrahedron is similarly brit and idonitied with the Top using the colors.

Tuesday $28^{\text {th }} \operatorname{Jan} 2020$
20 e count to prove the Volume Conjecture for the figure 8 kn nt.
Recall Volume Conjecture:

$$
\lim _{N \rightarrow \infty} \frac{\log \left|\frac{\bar{J}_{N}\left(k ; e^{9}\right)}{[N]_{9}}\right|}{N}=\frac{\operatorname{lom}_{\infty}\left(S^{3} \backslash k\right)}{2 \pi}
$$

allege $q=e^{\frac{2 \pi i}{N}}$ and $[n]_{q}=\frac{q^{n / 2}-q^{-n} 2}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}$

* In This section, we will use normalized colored Jones poly.

Therefore Volume Conjecture is: $\lim _{N \rightarrow \infty} \frac{\log \left|\delta_{N}\right|}{N}=\frac{0_{01}\left(\delta^{3} \backslash k\right)}{2 \pi}$

- We will do The last step of the proof first. We will assume (later prove) that Jones poly for figure 8 Knot K is:

$$
J_{N}(k ;-q)=\frac{1}{\{N\}} \sum_{j=0}^{N-1} \quad \frac{\{N+j\}!}{\{N-1-j\}!}
$$

cohere $\{n\}=[n]_{q}\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)=q^{n / 2}-q^{-\frac{n}{2}}$, Thus:

$$
\begin{aligned}
& \quad J_{N}(k ; q)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\left(q^{\frac{N-k}{2}}-q^{-\frac{(N-k)}{2}}\right)\left(q^{\frac{N+k}{2}}-q^{-\frac{N+k)}{2}}\right) \\
& q=e^{2 \pi i} N \\
& \Rightarrow=\sum_{j=0}^{N-1} g_{N}(j) \text { for } g_{N}(j)=\left\{\begin{array}{l}
\prod_{k=1}^{j} 4 \sin ^{2}\left(\frac{k \pi}{N}\right), j \neq 0 \\
1, j=0
\end{array}\right.
\end{aligned}
$$

We plot $4 \sin ^{2}(t \pi)$:

$$
\text { Therefore for }\left\{\begin{array}{l}
4 \sin ^{2}\left(\frac{k \pi}{N}\right)<1,<k<\frac{N}{6} \\
4 \sin ^{2}\left(\frac{k \pi}{N}\right)>1, \frac{N}{6}<k<\frac{5 N}{6} \\
4 \sin ^{2}\left(\frac{k \pi}{N}\right)<1, k>\frac{5 N}{6}
\end{array}\right.
$$

As $g_{N}(j)$ are product of $4 \operatorname{stn}^{2}\left(\frac{\mathrm{k}}{\mathrm{N}}\right)$, we deduce (hat $g_{N}(j)$ is:
(1) decreasing for $0<j<N / 6$
(2) increasing for $N \lll<\frac{5 N}{6}$
(3) decreasing for $\frac{5 N}{6}<j<N$

Hence $\max g_{N}(j)$ occurs at $j=\left[\frac{5 N}{6}\right)$. So

$$
\begin{aligned}
& g_{N}\left(\left[\frac{5 N}{6}\right\rfloor\right)<\sum_{j=0}^{N-1} g_{N}(j)<N g_{N}\left(\left[\frac{5 N}{6}\right\rfloor\right) \\
\Rightarrow & \frac{\log g_{N}\left(\left[\frac{5 N}{6}\right]\right)}{N}<\frac{\log \sum_{0}^{N-1} g_{N}(j)}{N}<\frac{\lg N}{N}+\frac{\log g_{N}\left(\left[\frac{5 N}{6}\right]\right)}{N} \\
\Rightarrow & \lim _{N \rightarrow \infty} \frac{\left.\log \mid J_{N}\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g_{N}\left(\left[\frac{N}{6}\right]\right)}{N}
\end{aligned}
$$

But $\lim _{N \rightarrow \infty} \frac{\left.\log g_{N}\left(\frac{5 N}{6}\right)\right)}{N}=\lim _{N \rightarrow \infty} \sum_{N=1}^{\frac{5 N}{5 N}} \frac{2 \log \left(2 \sin \frac{h x}{N}\right)}{N}$

$$
=\frac{2}{\pi} \int_{0}^{\frac{5 \pi}{6}} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda\left(\frac{5 \pi}{6}\right)
$$

$(A x)$ is due to Riemann sum approx, and $\Lambda(\theta)=-\int_{0}^{\theta} \log |2 \sin x| d x$
$\Delta(\theta)$ is the Tobachersly function which satisfies:

- Periodic $\Delta(\theta+\pi)=\Lambda(\theta)$
- odd $\Delta(-\theta)=-\Lambda(\theta)$
- $\Lambda(2 \theta)=2 \Delta(\theta)+2 \Lambda\left(\theta+\frac{\pi}{2}\right)$

All properties an be proved using elementary facts about $\sin (x)$

$$
\begin{aligned}
& \text { - } \sin (\theta+\pi)=-\sin (\theta) \\
& \cdot \sin (-\theta)=-\sin (\theta) \\
& . \sin 2 \theta=2 \sin \theta \cos \theta=2 \sin \theta \sin \left(\frac{\pi}{2}-\theta\right) \\
& \left.\Rightarrow \log |2 \sin (2 x)|=|\log | 2 \sin x|+\log | 2 \sin \left(x+\frac{\pi}{2}\right) \right\rvert\,
\end{aligned}
$$

$2\left(\right.$ sing The above: $\Delta\left(\frac{5 \pi}{6}\right)=\Lambda\left(\pi-\frac{\pi}{6}\right)=-\Lambda\left(\frac{\pi}{6}\right)=\frac{-\lambda(\pi / 3)}{2}+\Lambda\left(\frac{2 \pi}{3}\right)$

$$
\begin{gathered}
=-\frac{3}{2} \Lambda\left(\frac{\pi}{3}\right) \\
\Rightarrow \lim \frac{\log \left|\bar{J}_{N}\right|}{N}=\frac{3}{\pi} \Lambda(\pi / 3)=\frac{0 \Delta\left(\left(S^{3} \mid k\right)\right.}{2 \pi} \\
\text { as } \operatorname{Dol}\left(S^{3} \mid k\right)=6 \Lambda\left(\frac{\pi}{3}\right)
\end{gathered}
$$

(Recall that Rypectaic Volume of tetrahedron with angles α, β, γ is $\Lambda(\alpha)+\Lambda(\beta)+\Lambda(\gamma) ;$ Also
$S^{3}(K$ is two ideal Tetraherdons with all angles $\pi / 3)$.

- Next, are prove The formula for colored Jones poly:

$$
J_{N}(K ; q)=\frac{1}{\{N \mid} \sum_{j=1}^{N-1} \frac{\{N+j\}!}{\{N-1-j\}!}
$$

Recall (R, μ, α, β) enhanced R-matrix definition.
Real for in $\min (N-1-1, j)$

$$
\begin{aligned}
& \text { (1) } R_{k+1}^{i j}=\sum_{m=0}^{\min (N-1-1, j)} \delta_{1, i+m} \delta_{k-j-m} \frac{\{2!!\{N-1-k\}!}{\{i l!\{m\}!\{N-1-j\}!}\left(q^{-1}\right)^{\frac{N-i-1}{2} \cdot \frac{N-j-1}{2}+\frac{m(i-j)}{2}+\frac{m \mid m+1)}{4}} \\
& \text { (2) }\left(R^{-1}\right)_{<l}^{i j}=\sum_{m=6}^{\min (N-1-1 i j)} \delta_{l, i-m} \delta_{k, j+m} \frac{\{k k!\{N-1-14!}{\{j!!\{m\}!\{N-1-i\}!}\left(9^{-1}\right)^{\frac{i-(N-1)}{2} \cdot \frac{j-(N-1)}{2}+\frac{m(i-j)}{2}-\frac{m(m+1)}{4}}
\end{aligned}
$$

(3) $\mu_{j}^{i}=\delta_{i, j} q^{\frac{(2 i-N+1)}{2}}$
(4) $\alpha=q^{\frac{N^{2}-1}{4}}, \beta=1$
(R, μ, α, β) is an enhanced R-matrix and
\forall knots $\quad J_{N}(k ; q)=\frac{\xi\}}{\{N\}} T_{(R, \mu, \alpha, \beta)}(k)$
cohere $T_{(\beta, \mu, \alpha, \beta)}(k)=-\alpha^{-20(k)} \beta^{-n} \operatorname{Tr}\left(P_{R 2}(\hat{b}) \mu^{\otimes n}\right)$
where $K=\hat{b}$ is braid closure of n-strand braid b and $P_{R_{2}}(\hat{b})$ is obtained by placing R or R^{-1} instead of braiding in $b\left(\sigma_{i}\right.$ or $\sigma_{i}^{-1} \pi /$ or $\left.\mathbb{N}\right)$. $20(k)$ is writhe index of K.

- Note $J_{N}($ unknot $)=1$ as $\operatorname{Tr}_{r}(\mu)=\sum_{i=2}^{N-1} q^{\frac{2 i-N+1}{2}}=\frac{\{N\}}{\{1\}}$
- Note $T_{r}=\operatorname{Tr}_{1} T_{r_{2}} \ldots T_{n}$ where $T_{r_{i}}$ is obtained by taking Closure on i-Th strand only:

$$
\left.\frac{\left.\frac{1}{2}_{1 \mid}^{b} \right\rvert\,}{|1|}\right)^{\prime}=T_{c}(b)^{\prime \prime}
$$

- Every T_{r} gets The average (trace) of the endomorphism from $V \xrightarrow{\text { on }} V^{\text {on }}$ on The i-Th tensor factor.
- For $k=$ figure eight knt, $b=\sigma_{1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}^{-1}, w(b)=0, b$ acting on 3 strands, Thus $n=3 \Rightarrow J_{N}(K ; q)=\frac{414}{\{N 2} T_{r_{1}} T_{r_{2}} T_{r_{3}}\left(P_{R}(\hat{B}) \mu^{\otimes 3}\right)$
- Consider instead $\operatorname{Tr}_{2} \operatorname{Tr}_{3}\left(P_{12}(\hat{b}) \mu^{(\$ 2}\right)$ where we have gotten rid of two tensor factors. Thus we have an endomorphism st V.
- EACI: The endomorphisms given by R and μ using braids are intertwines of representations of some quantum group (called $V_{q}\left(r_{\mathbb{c}}(2)\right)$). In particular, \underline{V} is an irreducible representation of that quantum group.
\rightarrow Amap $f, V \rightarrow W$ is an intertwine if it is compatible with the represemations on V and W, ie
$V \xrightarrow{f} W$ where ϕ_{-}is the $\phi_{V}{ }_{V} \xrightarrow{\&} \mathcal{L}_{w}$ reparation action.
- Hence $T_{r_{2}} T_{3}\left(\rho_{r}(\hat{b}) \mu^{\otimes^{2}}\right) \in$ End (v) is an inter twiner of an ir educible represemntitar. Schar's lenama Loo nepresnitation Theory applies:

This means $\left.\operatorname{Tr}_{2} \operatorname{Tr}_{3}\left(f_{\pi} \hat{1}\right) \mu^{Q^{22}}\right)=S \times I d V$ for some $S \in \mathbb{C}$.
Therefore $J_{N}(k, q)=\frac{\{14}{\{N\}} \operatorname{Tr}_{1}(S x, \mu)=\frac{\{14}{\{N\}} S \operatorname{Tr}(\mu)$

$$
=S
$$

- So we only need to compute S which is any diagonal element of the matrix $T_{r_{2}} T_{3}\left(p_{R}(\hat{b}), \mu^{\otimes 2}\right)$ like the following for any index $0 \leqslant a \leqslant N-1$:

- It turns onus That computing the above is still ut easy. Instead, we coaud like To take Trace on fist \& third factor instead of secund \& third.

This means The following picture,

- But due to braiding preset at top and bottom (it and if) This becomes still hard to compute.
- WOe would like to close the first strand from she lett toinht, This means:
 It turns out that this is ND equal to The previous picture. The reason is that to take
closure from left to right, one reeds to put μ^{-1} instead of

11. The reason behind this is outside scope of this section but as an exercise you can check That:

Therefore, ace need to compute the
following, where to make compuraious easier we choose index $a=0$.

$$
\sum_{i, j, k, 2, m, m, p} \mathbb{R}_{k=2}^{i 0}\left(R^{-1}\right)_{m n}^{j_{j}} R_{i p}^{k_{m}}\left(R^{-1}\right)_{0 j}^{p_{n}}\left(\mu^{-1}\right)_{i}^{i} \mu_{j}^{j}
$$

Recall The equations (1) \& (z) for $R \& R^{-1}$:

For the terms above to be nonzero, woe have the fox owing $(t),(-t)$ rules $R R^{-1}$

Dow apply (t) on ${ }_{k i<l} \quad \begin{aligned} & i+0=k+L\end{aligned} \quad \Rightarrow \geqslant i, k \leqslant 0 \quad l=0$

So we get

$$
\sum_{i \leqslant i \leqslant N=1} R_{o i}^{i 0}\left(R^{-1}\right)_{i+j 0}^{i j} R_{i j}^{0 i-j}\left(R^{-1}\right)_{0 j}^{j o}\left(\mu^{-1}\right)_{i}^{i} \mu_{j}^{j}
$$

$0 \leqslant j \leqslant N-1$

$$
\begin{aligned}
& \text { Put } k=i j \nRightarrow \sum_{k=0}^{N-1} \frac{\{N+4!}{\{N-1-k \mid!} q^{\frac{k^{2}}{4}+\frac{N k}{2}+\frac{k}{4}} x \\
& \left(\sum_{i=0}^{k}(-1)^{i} \frac{\langle k 4!}{\{i 4!\{k-i 4!} q^{\frac{(-2 N-k-1) i}{2}}\right)
\end{aligned}
$$

For the inner sum, we shall use the following fact.

- Detire $T(k, l)=\sum_{i=0}^{k}(-1)^{i} q^{2 i / 2}\left[\begin{array}{l}k \\ i\end{array}\right]_{q}$ cohere $\left[\begin{array}{c}k \\ i\end{array}\right]_{q}=\frac{\{k\}!}{\{i\}!\{k-i \psi!}$

Then $T(k, l)=\prod_{j=1}^{k}\left(1-q^{(1+k+1)-g}\right)$
*Propf. exercise Use Pasca's idensity $\left[\begin{array}{c}k \\ i\end{array}\right]_{q}=q^{-\frac{k i i}{2}}\left[\begin{array}{c}k-1 \\ i-1\end{array}\right]_{q}+q^{1 /[}\left[\begin{array}{c}k-1 \\ i\end{array}\right]_{q}$
to get recersive relation $T(k, L)=\left(1-q^{\frac{1+k+1}{2}-k}\right) T(k-1,1+1)$
Plugging $l=-2 N-k-1$ in above we yet by direet colcataions

$$
T(k, l)=\frac{\langle N+k n!}{\{N k!} q^{-\frac{k^{2}}{4}-\frac{N k}{2}-\frac{k}{4}}
$$

This implues

$$
\begin{aligned}
J_{N}(k ; q) & =\sum_{k=0}^{N-1} \frac{\{N-12!}{\{N-1-k y!} q^{\frac{k^{2}+N k}{4}+\frac{k}{4}} T(k,-2 N-k-1) \\
& =\sum_{k=0}^{N-1} \frac{\{N-1\}!}{\{N-1-k\}!} \frac{\{N+k\}!}{\{N\}!} \\
& =\frac{1}{\{N\}} \sum_{k=0}^{N-1} \frac{\{N+k!!}{\{N-1-k\}!} \text { 目 }
\end{aligned}
$$

Tuesday 4 Th February $20 z 0$

- Woe can define twisted Alex pay $\Delta_{k}^{s}(t) \in \mathbb{C}\left[t^{ \pm 1}\right]$ s.t
$\forall \xi \in \mathbb{C},|\xi|=1$, we have (arxiv 1912.12946)
Theorem. $\lim _{N \rightarrow \infty} \frac{\log \left|\Delta_{N}^{\xi}(\xi)\right|}{N^{2}}=\frac{1}{4 \pi} \operatorname{vol}\left(S^{3} \mid k\right)$
- We fill stady the definition of tested flex. ply not the pref of the above.
- ICon is to shaw that colored Jones poly and twisted flex poly are relaxed.

But ante the latter is classical. So either we make the latter more quantum or the firmer ques quantum.
-There is an-inteirgretivion by stephen Bigelow of Jones pray (not corroded) in terms using
of "semi="classical constructions (intersection friras \& continuation space, ...).
First, ar start with jut Alexander polynomial. There are many coss to define this poly nominal.
. Let $K \subset S^{3}$, then the Alexander poly is $\Delta_{K}(t) \in \mathbb{Z}\left[{ }^{t+}\right]$ up T_{0} any -power $t^{n}(n \in \mathbb{Z})$. There is also the Alexameler-Concsing poly
$\Delta_{k}(2)$ rohich after change of variable $z=t^{\frac{1}{2}}-t^{-\frac{1}{2}}$ gives $\Delta_{k}(t)$.
The easiet deftition is using The Skein-relation:

- $\Delta_{k}(z)=1$ if $k=$ unknot.
- $\Delta_{k}(\nabla / \lambda)-\Delta_{k}\left(\pi^{\lambda}\right)=z \Delta_{k}\left(\lambda^{\wedge}\right)$

Example Thefoil knot We daim $\Delta_{x}(z)=1+z^{2}=\left(1+\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)^{2}\right.$

$$
\begin{gathered}
=t^{-1} 1+t \\
=1-t+t^{2}
\end{gathered}
$$

suptoany power $t^{n "}$
Prosf:

$$
\Rightarrow \Delta_{\text {Trefil }}(z) \neq 1+z \Delta_{\text {linat }}(z)
$$

And for the ropt link:

Theretore $\Delta_{\substack{\text { Mpp } \\ \text { Run }}}(z)=z \Rightarrow \Delta_{\text {Tuatii }}(z)=1+z^{2}$
$\Theta_{\text {xercise }} 8_{\text {haw }} \Delta_{\text {figure eghr }}(z)=1-z^{2}$.
\rightarrow Bur phat is The Topological meaning of Alexander paly!
Recall that for $E_{k}=S^{3} \backslash k$ the $k_{n \pi}$ complement, $H_{*}\left(E_{k}, \mathbb{Z}\right) \cong$ (the know exterior)
$H_{*}\left(S^{\prime}, \mathbb{Z}\right)$ and $\pi_{n}\left(E_{k,-*}\right)=0$ if $n \neq 1$. This means E_{k} is a $f\left(\pi_{1}\left(E_{k}\right), 1\right) \quad$ Eilenberg=MeLane space.

Take the abelianization map $\mathscr{P}: \pi_{1}\left(s^{3} \backslash k\right) \Longrightarrow \frac{\pi_{0}}{\left[\pi_{0} \pi_{0}\right]}=H_{1}$
but $H_{1} \cong \mathbb{Z}$ with generator being the meridian of the knit.
Taking The following short exact sequence

$$
1 \longrightarrow \operatorname{ker} \varphi \longrightarrow \pi_{1}\left(s^{3} \mid k\right) \longrightarrow \overline{\mathbb{Z}} \longmapsto 1
$$

Then by -standard topology, This comes ponds to
a covering space $\longmapsto E_{k}$ such that $\mathbb{Z}_{\mathbb{Z}}$ is the

$$
\begin{aligned}
& \tilde{E}_{k}^{a b}: E_{k} \\
& \text { cosh } \pi_{1}\left(\tilde{E}_{k, i},{ }_{k}\right)=\text { kerr }
\end{aligned}
$$

Detritions and standard topology facts:
Let x be ar flite cow complex and $y: \pi_{1}(x) \rightarrow G$ on ts

Then $1 \rightarrow \operatorname{kerg} \rightarrow \pi_{1}(x) \rightarrow G \rightarrow 1$
and we an construct a space \tilde{X} such that \tilde{X} is covering Spence of X with $\pi_{1}(\tilde{x})=$ kery and all homeomorphisms Y commute coth The covering map P is G.

$$
\begin{gathered}
(\text { e.g. } \mathbb{R} \text { for } \varphi: \mathbb{Z} \rightarrow \mathbb{Z} \text { identity }) \\
s^{\prime}=\mathbb{R} / \mathbb{Z}
\end{gathered}
$$

All such h's above :... give a
group which coincides with G. These are called the deck Transfomuitions.
In lat $p^{-1}(x) \cong C$ as a set $\forall x \in X$. Thus we can say that:
pick aboupoint,,$\tilde{X}=\left\{(y,[\alpha]) \mid y \in X\right.$ and α is ap path from x_{0} to y $x_{0} \in X$ and $\alpha \sim \beta$ is $\beta^{-1} \alpha \in$ er \mathcal{A}, in other words α, β are in the same coset of $\frac{\pi_{1}(x)}{\text { Kenny }}$ which is ispromphic to G as φ is which is ispomaphic to G as Y is surjective, 4
Really, $P^{-1} \frac{\text { gives decks }}{1}$ and G elements permute these decks. as pis a local homes \rightarrow G1 many decks

Apply the adore theorem to $\mathscr{I}_{:} \pi_{i}\left(S^{3} \backslash K\right) \longrightarrow \mathbb{Z}$, then we get Er

$$
\tilde{E}_{k}^{a b}(\text { universal aphelian cover }) \text { cosh } \pi_{1}\left(\hat{E}_{k}^{\infty}\right) \cong \operatorname{Kery} \cong\left[\pi_{1}, \pi_{1}\right]
$$

 With deck Toustormaions being H1 $\left(E_{x}, \mathcal{I}\right)$ tsomoplicica $\pi_{1}\left(E_{k}\right)$
kure

- Dense $J=\mathbb{Z}$ as a group, let $\Lambda=\mathbb{Z}[J]$ be a gramps ring eohich is iSomorphic to $\mathbb{Z}\left[t^{ \pm 1}\right]$.
- Take a deck transfromation $\tau_{\text {: }} \tilde{E}_{k}^{a b} D$ then $\tau_{*}: H_{1}\left(E_{k ;}^{a b} \mathbb{Z}\right) S$

Therefore $H_{1}\left(\tilde{E}_{k,}^{\omega}, \mathbb{Z}\right)$ is a $\mathbb{Z}[J]$-module where J are all deck transformations of $\tilde{E}_{k}^{a b} \cong \mathbb{Z}$. We have the following Theorems
Ohm: $H_{1}\left(\tilde{E}_{k}^{a b}, \mathbb{Z}\right)$ as a Δ-module $\cong \Lambda^{\prime} /$ where $\left.\left\langle\Delta_{k} \mid t\right\rangle\right\rangle$ is the ideal generated by $\Delta_{k}(t)$.

- Notice the analogue: $\mathbb{Z}^{n} \stackrel{A}{\longmapsto} \mathbb{Z}^{n} \quad A=n \times n \operatorname{madin} x$

$$
\operatorname{e.g} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \quad \operatorname{det} A \neq 0
$$

Then we get sone atclian subgroup $G_{A}=\frac{\mathbb{Z}^{n}}{\operatorname{In} A}$ which by standard group
theory is isomorphic to $\bigoplus_{i=1}^{n} \mathbb{\mathbb { U }} / d_{i \mathbb{Z}}$ cohere order of $G_{A}=|\operatorname{det} A|=\prod_{i=1}^{n} d_{i}$ -
Of course, in our case, $\Lambda=\mathbb{Z}[J]$ is nT a PID but a UFD (unlike \mathbb{Z}).
butt for our particular case, the analogue does had.

- Next section, we will discus fox calaun, which will allow us to compute $\Delta_{k}(t)$ 。
- How do are see \tilde{E}_{k} ? ?

First construct a Seifert surface of K, an-orentable surface S inside

$$
E_{k} \text { with } \partial S=a \text { copy of } K \text { in } \partial E_{k} \text {. }
$$

How to see the Seituro Surface?

First smooth every crossing $X=$) (. Dele get a collection of circles, Called Seifert circles- Now bet each band a disk and attach a band at each Arsing. Above, we have dore it for one crossing.

Note that just taking the disk the kurt bounds, could give you an unorietable surface (in this ass, The mobius banal). This algorithm Guarantees onientable.

- Now take the seiser surface and a tubular nobs fir, Then glue
the upper copies to $\frac{\text { lower copies. This gives yon } E_{x}}{E_{x}}$ and because of orientability you can do that unambiguously.
The deck Tansformions are taking amy copy To anther.

Thussdy $6^{\text {th }}$ Sebring 2020

- De asant to study knots $K<S^{3}$ and their fundamental group
 with finite presentation
- In general, a group $/$ has Presentation $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ There r_{i} are relaters egg. $G_{n}=\langle x, y \mid-\underbrace{y x=y x y}, \underbrace{n+1}=y^{n}\rangle$ is the Trivial group.

These are relations Fetors: $x g x(y \times y)^{-1}, x^{n+1} y^{-n}$

- The way ae construct G is by taking the frae group $F\left(x_{1}, \ldots x_{n}\right)$ and quatientit by the normal siogroup geneanted by $u_{1}, \ldots, r_{m} ; F\left(x_{1}, \rightarrow x_{n}\right)$ $\left.\widehat{N(n,}, p_{m}\right)$
- Prot for $G_{n}=$ tívial:

$$
-x y x=y x y \underset{\omega=x y}{\Longrightarrow} \omega x \omega^{-1}=y \text { and } x=\omega^{-1} y \omega \Rightarrow x^{n}=\omega^{-1} y^{n} \omega(\neq)
$$

but y^{n} commutes int $\omega_{0} y^{n} \omega=y^{n} x y=x^{n+1} x y=x x^{n+1} y=$

$$
x y^{n} y=x y y^{n}=\operatorname{cog}_{n}^{n}
$$

Therefore $(x) \Rightarrow y^{n}=x^{n}$ bus $y^{n}=x^{n+1} \Longrightarrow x^{n}=x^{n+1} \Rightarrow x=1$
and so $x=y=1 \Rightarrow G_{n}$ is Trivial.

- In genera, There are is algorithms to decide G is Tivivial or nat.

Now given $\left.G=\left\langle x_{1} \ldots x_{n}\right\rangle \cap \ldots r_{m}\right\rangle$, construct the group rings $\mathbb{Z}[0]$ defined as: $\left\{x \mid x=\sum_{i} n_{g} g, n_{g} \in \mathbb{Z}, g \in G\right\}$ the finite finite sum
formal sums of elements in G, with addition $x+y=\sum(n g+m g) g$ and mulifipliation $x y=\sum_{T}\left(\sum_{g h=t} n_{g} m_{h}\right) t$.
There is a map (a ring -map) called augmentation

$$
\alpha: \mathbb{Z} G \rightarrow \mathbb{Z}: \alpha((\operatorname{lng} g)=\operatorname{Lng}
$$

There is also the map $F\left(x_{1}, \ldots, x_{n}\right) \xrightarrow{\gamma} G=\left\langle x_{1}, \ldots x_{n} \mid r_{1}, \ldots, v_{m}\right\rangle$

$$
\gamma\left(x_{i}\right)=x_{i}
$$

which defines a map also called $\gamma: \mathbb{Z} F\left(x_{1}, \cdots, x_{n}\right) \rightarrow \mathbb{Z} G$

- 20e want to define the Alexander-polynmial as analog of the order of a finite abelian group A;:
(Peal discussion in previous section)

$$
\begin{gathered}
\mathbb{Z}^{n} \xrightarrow{A_{m}} \mathbb{Z}^{n} \longrightarrow A \\
A \cong \mathbb{Z}_{A_{m}^{n}\left(\mathbb{Z}^{n}\right)} \cong \underset{\mid=1}{\oplus} \mathbb{Z} \text { di Z } \quad\left|\operatorname{det} A_{m}\right|=\text { oder .f } A=d_{1} \ldots \text { os }
\end{gathered}
$$

e.g. $\mathbb{Z}^{2} \xrightarrow{\binom{21}{12}} \mathbb{Z}^{2} \rightarrow \mathbb{Z}_{3} \quad\left(A_{m}\right.$ is symmetric \& even $a_{i}{ }^{2}=0$). and $\left|\operatorname{det} A_{3}\right|=\left|\left.\right|_{3}\right|=3$
$H_{1}\left(\tilde{E}_{k}^{a b}, \mathbb{Z}\right)$ as a Λ-module
$\uparrow_{\text {universal abelian cover of } E_{k}}$
 shifting by a unit.
In general take a kent on the boundary torus of the tubular neighborhood, Then Take its Seitert Surface and do The Same Thing we did for unknot.
fixity presented
. There is a theorem That for any Λ-module, you cam find a presentation $\Lambda^{n} \xrightarrow{A_{k}} \Lambda^{n} \longrightarrow H_{1}\left(\tilde{E}_{k}^{\infty}, \mathbb{Z}\right)$ then $\triangle_{k}(t)=\operatorname{det} A_{k}$ up to $t^{ \pm m}$

- Ak is given by $\frac{F_{0 x}}{\delta}$ calculus,
- Retire Fox derivative $D: \mathbb{Z} F_{n} \longrightarrow \mathbb{Z} F_{n}$ bear ring-morphism sue that $D(u v)=D u \alpha(v)+u D(v)$

1) Trivial example $D=0$.
2) Let us take $g, h \in F_{n}$:

$$
\begin{aligned}
D(g h) & =D g \alpha(h)^{\prime}+g D(h) \\
\Rightarrow D(g h) & =D g+g D(h)
\end{aligned}
$$

- This comes from group Cohmobyy Let $H^{\prime}(G, M)$, for MaG -module, 1-cochain
and $\varphi \in C^{\prime}(G, \mu)$ and its_obounlary $\delta \varphi \in C^{2}(G M)$ is defined
by $S p(g, h)=g \varphi(h)-p(g h)+\varphi(g)$
Assume $\delta \rho=0 \Rightarrow \varphi(g h)=g \varphi(h)+\varphi(g)$
So a fox derivative is the extension of a 1 -acyde to the $g_{\text {roup }}$ ring $\mathbb{Z} F_{n}$

3) $D-g=g-1$ is a Fox derivative as

$$
D(g h)=D g+g D(h) \leftrightarrow g h-1=g-1+g(h-1)
$$

- Going back to Alex poly. we use Coivinger presentation

$$
\begin{array}{r}
\text { for } \pi_{1}\left(S^{3} \mid k, *\right)=\left\langle x_{1}, \rightarrow x_{n} \mid r_{1},-1 x_{n}\right\rangle \text { (notice number } \\
\pi_{r i=1}
\end{array}
$$

of sin. relaters = number of generators)

Recall how we obtained π_{1}.

for each overotramel, get a generator, and for each crossing a relation.

And for all loops ave get trivial element that is $\Pi r_{i}=1$
In case of Tretoil,

$$
\begin{aligned}
& \langle x, y \mid x y x=y x y\rangle \\
& x y x y^{-1} x^{-1} y^{-1} \leftarrow \text { relater }
\end{aligned}
$$

Now for Teetril, $F_{2} \longrightarrow \Pi_{\text {retail }} \xrightarrow[\text { abbelimization }]{a b} \mathbb{Z}$ The map $a b$ computes the linking $\quad Q^{\downarrow} G G /[G, G]$ number \& the representative in $\Pi_{\text {refill with }}$ The Tratiil knt. Abclianization for trefoil implies $\left\{\begin{array}{l}x y=y x<a b c l i a n i z e \\ x y x=y \times y\end{array} \Rightarrow x=y\right.$ 50 that is why we get \mathbb{Z}

Extend the maps to group rings

$$
\mathbb{Z}\left[F_{2}\right] \xrightarrow{\gamma} \mathbb{Z} \pi_{\text {refill }} \stackrel{a}{\longrightarrow} \mathbb{Z}[\mathbb{Z}]
$$

Ow define the Alexander motix $A_{k}=\left(a_{i j}\right)$

$$
a_{i j}=\left(a_{0} \gamma\right) \frac{\partial n}{\partial x_{j}} \in \mathbb{Z}\left[t^{ \pm}\right]=\Lambda
$$

where $\frac{\partial}{\partial x_{i}}\left(x_{j}\right):=\delta_{i j}$ and $\frac{\partial}{\partial x_{i}}=\mathbb{Z} F_{n} \rightarrow \mathbb{Z} F_{n}$ is a Fox derivative.

The determinant of A_{k} will be zero be caus we deleted one relater (δ_{s} it is NJTasquare motix). Propping one column would make it Square and we get the Alexander poly.

- For example for Trefoil: $A_{k}=\left(\frac{\partial r}{\partial x} \frac{\partial r}{\partial y}\right), \Delta_{k}=t-1+t^{-1}$ where $r=x y x y^{-1} x^{-1} y^{-1}$. We will compere $\frac{\partial r}{\partial x}$.
- Properties of Fox calculus:
(1) $D\left(r_{1} r_{2}^{-1}\right)=D r_{1}-r_{2}^{-1} D r_{2}$ for $r_{1}, r_{2} \in F_{n}$
proof: $D_{r_{1}}+r_{1} D_{r_{2}}^{-1}$ and $D\left(r_{2} r_{2}^{-1}\right)=0 \Rightarrow D_{r_{2}}+r_{2} D_{r_{2}^{-1}}^{-1}=0$

$$
\Rightarrow D_{r_{2}}^{-1}=-r_{2}^{-1} D_{r_{2}}
$$

whichimplics $\stackrel{\leftrightarrow}{\leftrightarrows} D_{r_{1}}-r_{1} r_{2}^{-1} D_{r_{2}}$
But if wetake a relater defined as $r=r_{1} r_{2}^{-1}$ then Since $r=1$ in the group, $D r=D r_{1}-D r_{2}$.
(2) $\frac{\partial}{\partial x} x^{2}=\frac{\partial}{\partial x} \cdot 1+x \cdot 1=1+x$
(3) $\frac{\partial}{\partial x}\left(w_{1}(x) \cdot w_{2}(y)\right)=\frac{\partial}{\partial x} w_{1}(x) \cdot 1+0$
where w. (x), wiz (y)
$\frac{\partial}{\partial x}\left(w_{1}(x) \cdot w_{2}(y)\right)=0+w_{2}(y) \frac{\partial}{\partial x} w_{1}(x)$ are woods in $x_{1} y$.

Now let us take: $\frac{\partial}{\partial x}\left(r_{1} r_{2}^{-1}\right)=\frac{\partial}{\partial x} r_{1}-\partial / \partial x_{2}$

$$
\begin{aligned}
\eta_{1}=x y x, r_{2}=y x y & \partial x \\
& =\frac{\partial}{\partial x}(x y) 1+x y-1-\partial(y x) \cdot 1-0 \\
& =1+0+x y-y
\end{aligned}
$$

which after abelianization $\underset{\substack{x \rightarrow t \\ y \rightarrow t}}{a} 1+t^{2}-t=\underbrace{t\left(t-1+t^{-1}\right)}$
Alex. pay upas ${ }^{+1}$
And this is get A_{k} when we drop Second column,

$$
A_{k}=\left(\begin{array}{ll}
\partial r & \partial r \\
\partial x & \frac{\partial y}{}
\end{array}\right)
$$

? On cam check That $\frac{\partial r}{\partial y}$ also gives The Some thing up To

$$
\frac{\partial n r_{2}^{-1}}{\partial y}=-(1+y-x-x)=-\left(1+t^{2}-t\right)
$$

a sign (which depenals on which column ce take out in general).
-

$$
\begin{aligned}
& \\
& \Rightarrow \mathbb{Z} \pi_{k} \xrightarrow{\rho a} M_{n}\left(\mathbb{C}\left[t^{ \pm 1}\right]\right)
\end{aligned}
$$

This is what you do for twisted, where the same construction (taking determinamffapplies but every $t^{ \pm 1}$ is boon up to a matrix.

Tuesday $n^{\text {th }}$ Femany 2020

- Alexander poy f knts. Reall notations $\left.k \subset S^{3}, E_{k}=S^{3}\right) k$ knt axplement $\Pi_{k}=\pi_{1}\left(S^{3} \backslash K_{1} *\right)$, abeliomization $\Pi_{k} \xrightarrow{a} \mathbb{Z}$

$$
\begin{aligned}
& \text { e.g. } \left.\quad T_{\text {retail }}=\langle x y \mid x y x=y x y\rangle=\frac{x=y=t}{} \quad \right\rvert\, a, z^{2}, b=\tau^{3} \text { or } t=a^{-1} b \\
& \text { (abcrinivation } x=y \text {) (abclinnization } a b=b a)
\end{aligned}
$$

- Quada's versian Let G be a gop cirt presentation $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{n-1}\right\rangle$ This sisalled a deticicncy $1=$ presentation dive to $n=1$ retators \& n generators.

$$
\mathbb{Z} \cong G /[0, G]
$$

- Fox Caloulus E_{n}. foue grp with n gen. $x_{1}, \ldots x_{n}$

$$
\text { st } \forall x, y \in F_{n} \quad D(x y)=D x+x \cdot D y
$$

e.g $\frac{\partial}{\partial x_{j}}$ is a fox deriv where $\partial / \partial x_{j}\left(x_{i}\right)=\delta_{j}$

- Let G be a gep with a presemation $G=\left\langle x_{1}, \ldots, x_{n} \mid n_{1}, \ldots, n_{1-1}\right\rangle$

$$
G=F_{n} \sum_{\text {Normal subger gan by } \left.r_{11} \rightarrow F_{m} \quad \mathbb{Z}=G / \text { (the same old }-\underline{a}\right)}
$$

Then $\mathbb{Z} F_{n} r, \mathbb{Z} G \xrightarrow{\alpha} \mathbb{Z}[\mathbb{Z}]=\Delta=\mathbb{Z}\left[t^{ \pm}\right] \quad[G G]$

Net. of Alex poly of a finitely presented gap G with abelianizaion Il
Alexander matrix $=\left(\alpha \cdot \gamma\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\right)$ of size $(n-1) \times n$
Delete a column to get $(n-1) \times(n-1)$ matrix $A_{G}^{(l)}$ The lethe column
Then

$$
\Delta_{G}(t)=\left[\frac{\operatorname{det} A_{G}^{(l)}}{\alpha\left(x_{l}\right)-1}\right](1-t)
$$

- It does NOT depend on the presentation (highly urontivial). Let us heck this: $I_{\text {retain }}=\left\langle x, y \mid x y x-y^{-1} x^{-1} y^{-1}\right\rangle=\left\langle a, b \mid a^{3} b^{-2}\right\rangle$
- Recall lemma: If you have relator $r=r_{1} r_{2}^{-1}$ then $D\left(c_{1} r_{2}^{-1}\right)=D_{r_{1}}-D_{r_{2}}$ for any fox derivative in $\mathbb{Z} G$. Proof: last section.

Application: $0 \frac{\partial}{\partial x}(x y x-y x y)=1+x \frac{\partial}{\partial x}(y x)-y \frac{\partial}{\partial x}(x y)$

$$
=1+x y-y(1+x \cdot 0)=1+x y-y \xrightarrow{\alpha} 1-t+t^{2}=-\frac{1-T+t^{2}}{t-}(1-t)
$$

- $\frac{\partial}{\partial a}\left(a^{3}-b^{2}\right)=1+a+a^{2}\binom{$ general sole }{$\frac{\partial}{\partial x^{n}}=1+x+\cdots+x^{n-1}}$
$\xrightarrow{\infty} \frac{1+t^{2}+t^{4}}{t^{3}-1}(1-t)$ (which is equal to $-\frac{1-t+t^{2}}{t-1}(t-1)$ up to- some power of t)
NNe want to show independence of Alex -ply. with respect to Presentation.

Tictareth... If $\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{n}\right\rangle$ and $\left\langle y_{1}, \ldots y_{s} \mid R_{1,1}, R_{0}\right\rangle$
are presentation of the save group. Then they are related by The following moves. ("you can always rename")
(1) Change a relater $r_{i} \longrightarrow r_{i}^{-1}$
(2) Change r_{i} to $r_{i}, r_{i} r_{j}$ for any $i \neq j$

$$
\left(\text { add } r r_{j} \not \forall j \neq i\right)
$$

(3) add $w r_{i} w^{-1}$ - for any $w \in F_{n}$
(4) add a new generator x and a new relater X.

- Andrew -Curtis Conjecture (Supposed to be corona:)
$*$ Given any balanced presentation of the Trivial group number of relators $=$ number of generators
Then it can be reduced to the Trivial representation

$$
\left\langle x_{1}, \ldots, x_{n} \mid x_{1}, \ldots, x_{n}\right\rangle
$$

using (1) (3) (4) and (2)
it's (2) modified where you delete

$$
\text { erg. }\langle x y| x y x=y-x y
$$

$$
x^{n+1}=y^{n}>
$$

- For $n \geqslant 4$ get itisunknown, and believed to be corong.
- There are examples cohere as a lower bound There needs to be at lest $2^{2} 2^{2} y \log _{2} n$ many mover.
- Using Tietze's Tho, we can show The Alex. poly is inclep. of presentation as Δ_{Q} is invariant under those moved.
- Twisted Alex. paly. Dada's version:

Let $G=\left\langle x_{1}, \ldots, x_{n} \mid r_{1}, \ldots, r_{n-1}\right\rangle \xrightarrow{\alpha} \not \mathbb{Z}$ and $\varphi, G \longrightarrow G L(N, O)$

Thistime cletine $\mathbb{Z} F_{n} \xrightarrow{\gamma} \mathbb{Z} G \xrightarrow{\alpha} M_{N}\left(\mathbb{Z}\left[t^{\mathbb{Q}}\right]\right)=M_{N}(\Lambda)$ and take $A_{0, y}=\left[(\alpha \otimes \varphi) \gamma \frac{\partial r i}{\partial x_{j}}\right]$ as the twisted Alexander matrix
Example: $(x \propto y)(1+x y-y) \underset{\substack{x \rightarrow t \\ y \rightarrow 1}}{=} 1+t^{2} y(x y)-t y(y)$
Then twisted Alex. pay is obtained by detecting l-th column and taking: $\quad \Delta_{G, y}(t)=\frac{\operatorname{det}\left(A_{G, y}^{(l)}\right)}{\operatorname{det}\left((\alpha \infty y)\left(x_{\rho}\right)-1\right)}(1-t)$
Example.

- Compute twined Alex. poly of figure $8: \square_{k}=\left\langle x, y \mid w_{x}=y w\right\rangle$ $W=x y^{-1} x^{-1} y=\left[x, y^{-1}\right]$
where we choose $\mathscr{y}: x \rightarrow\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ (which is the rep. coming where $0=e^{2 \pi i / 3}$. $\quad y \rightarrow\left(\begin{array}{cc}1 & 0 \\ -\infty & 1\end{array}\right)$ from the hyperblicic stiucture)

Ream \mathcal{J} is faithful and discrete and $\Gamma=\mathscr{Y}\left(\Pi_{k}\right)$ Satisfies $H^{3} / \Gamma \cong S^{3}>\infty$.

Need to compare: $\quad \frac{\partial}{\partial x}(w x-y w)=1-x y^{-1} x^{-1}+w-y+y x y^{-1} x^{-1} 5$

$$
\xrightarrow[\substack{x \rightarrow t \\ y \rightarrow t}]{(x \propto f) \gamma} I-t^{-1} \varphi\left(x y^{-1} x^{-1}\right)+f(w)-t \varphi(y)+f\left(g x y^{-1} x^{-1}\right)
$$

Taking its determinant gives $\frac{t^{-2}-6 t^{-1}+10-6 t+t^{2}}{\operatorname{det}((\alpha \circ 9)(y)-1)=(t-1)^{2}}$ and multiplicel $(1-t)$ which \& hard be normalizer by $\operatorname{det}((\alpha \circ y)(y)-1)=(t-1)^{2}$

$$
\text { giving } \stackrel{?}{ \pm} t^{-2}\left(t^{2}-4-t+1\right)
$$

. Wien any hyperbolic knt $k \subset S^{3}$ with the corresponding

$$
I: \underbrace{\pi_{1}\left(S^{3} \backslash K\right) \xrightarrow{\text { Si }(2, \mathbb{C})} \xrightarrow{S_{y m}{ }^{2}(2, C)} \operatorname{SL}(N, \mathbb{C})}_{\varphi_{N}}
$$

Then take the twisted flex poly. $\Delta_{K, \varphi_{N}}$

- The Theorem is: $\forall \xi \in S^{\prime}$:

$$
\lim _{N \rightarrow \infty} \frac{\log \left|\Delta_{k, y_{N}}(\xi)\right|}{N^{2}}=\frac{1}{4 \pi} N O\left(\xi^{3} \mid k\right)
$$

How the $\left\{\begin{array}{l}\text { Jones colored } J_{N}(k ; q) \text { are related? } \\ \text { \#twisted Hex. } \Delta_{e}, \rho_{N}\end{array}\right.$
(1) Both are zeta functions, an Share zeta function.
(2) They are both intersection pairing

Thursday February $13^{\text {th }} 2020$
1 (No Class Next Tuesday 18π

- Recall the two families of invariants for knit $K \subset S^{3}$
* Cored Jones $\left.\square_{N}(k ; q)\right\}_{N=2}^{\infty}$
* Twisted Alex. poly. Y $\Pi_{1}\left(S^{3} k, *\right) \rightarrow S_{L}(2,0)$ giving $\left\{\Delta_{k, \varphi}(t)\right\}$
Dolume conjecture is likely coming from some relation between the two, perhaps for a particular ceprasemation φ.
* If you cont To study repr. φ, you can restrict to real/complex parts of $S L(2, c)$, ic $S L(2, \mathbb{R}) / S U(2)$. This makes Things easier.
- If k is hyperbolic, then we know there is a canonical (holonnmy) map $\varphi: \pi_{1}\left(S^{3} \forall k, *\right) \rightarrow \operatorname{PSL}(2, C)$ which jas lifted to SL $(2, C)$. Composed wish Symmetrization map we jota map to SL(N,C)

$$
\varphi_{N}: \pi_{1}\left(S^{3} \backslash k, *\right) \longrightarrow \operatorname{sc}(N, \mathbb{C}) \quad \begin{aligned}
& \text { how many lifting } \\
& \text { hon mn g spin structure }
\end{aligned}
$$

$\frac{\text { Volume conjecture is }}{\lim _{N \rightarrow \infty} \frac{\log \left|J_{N}^{\prime}\left(k, e^{2 \pi / N}\right)\right|}{N}=2 \lim _{N \rightarrow \infty} \frac{\log \mid \Delta_{k, \varphi_{N}(\xi)}}{N^{2}}}$
Midterm: (Try to) prove for figure 8.
Yea: Try to prove for all 2-bciclge Knots:
a 2-bridge knot is of the form

$$
\frac{a}{b} a^{\square} \text { for } b \in B_{3} \text {. }
$$

It has the fundanemial group $\left\langle x, y \mid w_{x}=y w\right\rangle$ which is same as That of Ligure 8.
(1) Holonomy representation: Suppose M is a hyperbolic complete manifold.

holonomy means
Take a path and collect those elements But when you comeback to x_{0} You may not get back to the same element. This means, is This element is dependent silty on The homat-py class of the loop, you get a represcutaion $\varphi: \pi \rightarrow P B(2, C)$
(3) Developing map: D, $M \longrightarrow H^{3}$

Recall:
$D(x,[l])$ dependents on x and chart we pick around it only up to a composition by an element of PSC $(2,5)$. and on x_{0} and the chart ar x_{0} up To an element ot $P S L(3,6)$
$D(x)$ is ont dependent on [P] Facts from hyperbolic geometry:
Have representation $\rho: \pi_{1} \mu^{3} \longrightarrow \operatorname{PSL}(2, \mathbb{C})$ and $\mu^{3} \cong \mathrm{H} 1^{3}$ where $\Gamma=\varphi\left(\pi, M^{3}\right)$ is disente \& fainceul.
φ is projective repoescation and The solar $c(g, h)$ in $\begin{aligned} & \text { ware associativity } \\ & \text { rule to seethes }\end{aligned} \quad \varphi(g h)=c(3, n) \rho(g) \varphi(n)$ is a tro-sxyde. But $H^{2}(P \delta L(2, \mathbb{Q}))=0$ so p can always be lifted to $S(2, \mathbb{C})$. The ditterent lifting correspond to the different spin structures.

- Recall for figure 8: $\langle x, y \mid w x=y w\rangle w=\left[x, y^{-1}\right]$
holonomy $\varphi_{2}: x \rightarrow\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), y \rightarrow\left(\begin{array}{cc}1 & 0 \\ -w & 1\end{array}\right)$

$$
\varphi_{N}: \overparen{T}_{K} \rightarrow S_{L}(2, C) \xrightarrow{?} S_{L}(N, \mathbb{C})
$$

- By repp. Theory, $S(2, \mathbb{C})$ has a So-colled fundamental (defining)
representation : $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \cdot\binom{x}{y}=$ matrix representation on a^{2}.
Let $V:=\mathbb{C}^{2}$ above. Then we can define representation on $v^{\otimes m}$ by $g\left(v_{1} \otimes \not \otimes v_{m}\right) \Rightarrow g v_{1} \otimes \ldots \otimes g v_{m}$.
- Now This representation is NOT irreducible. For example:

$$
\begin{aligned}
V \otimes V \cong & \underset{1}{1} \oplus \mathbb{C}^{3} \quad \text { "Triplet" representation } \\
& { }^{\text {sigher }}
\end{aligned}
$$

- De can prove by induction that $V^{\otimes m}$ decomposition has always Some irreducible representation of dimension $m+1$ called V_{m+1}.
- By using the fact that permutations commute with The represemation we can show V_{N} has a basis $\left\langle x^{N-1}, x^{N-2} y, \cdots, y^{N-1}\right\rangle$ for colich the represuliation P_{N} is:

As an example $N=3$, for figure $8: \quad \varphi_{2}: a \rightarrow\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$

$$
b \rightarrow\left(\begin{array}{cc}
1 & 0 \\
-\infty & i
\end{array}\right)
$$

Then to get $\varphi_{3} f_{\text {irs compute }} \varphi(a)^{-1}\binom{x}{y}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)\binom{x}{y}$
Then plug in first coordinate into

$$
=\binom{x-y}{y}
$$

and second into $y:\left\langle x^{2}, x^{1} y^{1}, y^{2}\right\rangle \xrightarrow{\varphi_{3}}\left\langle(x-y)^{2},(x-y) y, y^{2}\right\rangle$ cohich means $\varphi_{3}(a)=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -1 & 0\end{array}\right)$.

Simitary for b we hame $\quad \varphi^{-1}(b)\binom{x}{y}=\binom{x}{\omega x+y}$
Thus $\left\langle x^{2}, x y, y^{2}\right\rangle \xrightarrow{\varphi_{3}}\left\langle x^{2}, x(\omega x+y),(\omega x+y)^{2}\right\rangle$
Therefore $\varphi_{3}(b)=\left(\begin{array}{ccc}1 & \omega & \omega^{2} \\ 0 & 1 & 2 \omega \\ 0 & 0 & 1\end{array}\right)$
We can Then compute (using previous scetion materials):

$$
\Delta_{\infty}, \varphi_{3}=-t^{-3}(t-1)
$$

Similarly $\Delta_{\infty, \varphi_{4}}=t^{-4}\left(t^{2}-4 t+1\right)^{2}$ and more interesting is:

$$
\Delta_{\infty}, \varphi_{5}=-t^{-3}(t-1)\left(t^{4}-9 t^{3}+44 t^{2}-a t+1\right)
$$

in volume conjecture if $t=1$ we get all zero which log is $-\infty$! So need to do normalization for N odd,

For figure 8 The sequence converges like this:

$$
\begin{aligned}
& \begin{array}{l}
4 \pi \log \left|\Delta_{\infty}, \varphi_{N}(1)\right| \\
\hline N^{2}
\end{array} \quad N \left\lvert\, \begin{array}{l|l|l|l}
& 4 & 12 & 24 \\
v_{\text {value }} & 0.54 \ldots & 1.86 & 1.98 \ldots \\
\hline
\end{array}\right. \\
& \text { The Dolume is 2.006 } \\
& \hline
\end{aligned}
$$

- One of the difticatties in matching up the cared Jones sequence and the twisted flex. is the specitic choice of value $q-e^{2 \pi i} / 2$
for the colored Jones and the generic choice of $\xi,|\xi|=1$ on The other side.
- 20 c believe There is a version where oblored Jones is evaluated at generic Dales. Some "philosophical" reasons.

JN is a top. invariant. A Turaer-vino inv where one Tiinglō̈es The manifold and puts labels on edges, faces, restices and take
The "state-sum". This is a top. inv chen labels come from a modular Tensor category" also called a partition function $Z(9)$ (due To statesum Formulation)
Now us ask if for $q \in \mathbb{C}$ we are getting a top. inv "Then locking at the normal direction of This,

we believe washout get
The volume?

Thurady Frebruarg $20^{\text {at }} 2020$
Drohee does the V.C. comefiom? (2+1)-Gravity with negitive cossoulbzial Oitten'spyers 1. Exacty... constant
(2 Revisinal)
8. Analytic cantinution of $C S$ theng
X^{3} manifad spacctime, eg X^{3} dised orieñed
Ensein Hfiber action (EH):

Ensatin equation

$$
R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}+\Lambda g_{\alpha \beta}=0 \quad\left(T_{\alpha \beta}\right)
$$

There is a spin oomereti ω and $\begin{gathered}\text { dreiben } \\ \text { (vaibei) }\end{gathered}$
Fact: If you howe a 3 maidod cibsed oriensed then $T X^{3} \cong X^{3} \times \mathbb{R}^{3} b \bar{u}$ Cannt be trividized canonically, so there is a framing' (dneiban) a dhoice of the Triviatation e: $T x^{3} \xlongequal{x} x^{3} \times \mathbb{R}^{3}$

S instead \& g can use (w, e) Then $I\left(x^{3}, g\right)$ becames

$$
\underset{S O(2,2) \text { gange fiedl }}{ }
$$

$-k_{L} \operatorname{CS}\left(A_{-}\right)$
(two copies of CStheog)
But $S o(2,2) \xlongequal{\text { liedg }}$ So $(2,1) \times$ So $(2,1)$ This wos all in Vorentivian $S O(4) \cong \operatorname{Su}(2) \times S U(2) \quad$ Signature, be should go
into the Euclidean sifnoture by big a crick station.
This makes SU(2,1$) \rightarrow$ SU(2) and we end up in Classical (Stheno.
Bitten said if all These moke suse we Should get a version of V.C. out of this (as, the integration I we get the volume.)

- What ;s the V.C. for closed manifolds?

$$
\begin{aligned}
& \text { Su(2) TCS TQETSC-Reshetikhin-Tareer } \\
& \frac{\log \left|Z_{k}\left(X^{3}\right)\right|}{N \rightarrow \infty} N \sigma 1\left(X^{3}\right) \quad \begin{array}{l}
\text { (doubled) } \text { Twanev-Viro }
\end{array} \\
& \text { for } N=k+2 \text { Naive generalization To } 3 \text { mind } \\
& \text { where } k \text { is the level }
\end{aligned}
$$

If Z_{k} comes from $\delta u(2)_{k}$-CS TQFTs Then it is known That $\left|Z_{k}\left(x^{3}\right)\right| \leqslant Q \in D^{2 \operatorname{gems}\left(x^{3}\right)}$ where $D^{2} \varepsilon$ Edit the total quant dim. of α is a constant The TRFT.
(Rat: look at book of Turner: "Quant. Imaniouns of Bmnfids)
Sketch of proof for the bound:

This is banded by D^{29}
(B_{a} Then $\frac{\lg \left(\frac{Z_{k}\left(X^{3}\right)}{N}\right.}{N} \leqslant \frac{\log \left(x D^{2 g}\right)}{N}$ but $D^{2} \sim N^{3 / 2}$ and so $N \rightarrow \infty$ This Sound of To zero!

So Thee needs to be a new version \&f V.C. (by Q chen and TYang)

For unitary theories'. And the idea (with story numencal evidence) is to square the q comesponding $t o s u(2)_{k}$ so naking the Theory non-unitary. Essentially since The Hamiltonian is Not heranition Therefore Whentakky Tr e Wei can have a nate of growth that is Proportional to N.
(2) De second possibility is:
(round not the fibers bar just the base So we get OS theory for non compact (unlike Soi(2)) be groups.
(it is in the paper Analytic continuation).
Hyping back to V.C. for hyperbolic kans

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{\log \left|V_{N}\left(k, e^{2 \pi / 3} N\right)\right|}{N}=\frac{1}{2 \pi} \operatorname{Na}\left(B^{j} \mid k\right) \\
V_{N}=\frac{I_{N}}{[N+1]} \text { so that } V_{N}(\text { unknot })=1
\end{gathered}
$$

Now for $\sin (2)$ I2F at $q=c^{2 \pi / \pi}$ coors are $1,2, \ldots, k_{1}=N-1$ so There is no V_{N} so V.C. above does not have a $\frac{s u(2)}{12 F)}$ interpielasio

- But it is likely to have a TQF integpretation on SL $(2, \mathbb{C})$ or $S L(2, R)$ 80 ar need to do TRF on non compar Theories.
- For $V_{N}(k, q)$ as bongos $q \in \mathbb{C}^{\Delta f}=C \backslash\left\{1 \quad \forall_{N}\right.$ is ued-dctined. $\operatorname{For} N=2$ this gives Jones poly. Is there a generecization of Jones poly to 3 -mold?
(hiten found gener-ization anly for 7 soinets of unity, $q=e^{ \pm \frac{2 \pi i}{r}}$
After many jears, we can do almost any root of unity. We claim That the Qostraction to Re generuization is The Dobume,
of Jones poly to an amalyric fen for 3 mides
QQhy are ue talking moon this?
To relate the Jones codored poly to twosted Alex. posy ase coant to look at analytic expansion (Jaylor series) of J_{N} cud $\Delta_{k}(t)$ and the series better be similar to each stherif N.C. is True.
- Ulelvin-Morton Conj.

Nheen pmos?!

1) Bar-Nortan, Garsufalidis.
\rightarrow Miluor inflinte cegcle coneing
2) $\operatorname{Lin}-W$
(Zeta furction, Lyndon cumds) which is conting
(3) L. Rozansky Expansion" boson formon corresponndence

His a "Onyysidst" proat"

Fived pañs of Ined paiks
some ofiffeomonphism

We will discuss (3).

- In coloreal fones 9 should be interpereted as $X \times I \square$ $(x, 0) \sim(f(x), 1)$
e^{h}. The reason is

$$
\begin{aligned}
V_{N}(k, a) & =\int D A e^{i k C(A)} \text { (some ppepator) } \\
h=\frac{1}{k} & =\text { called } \\
& \text { 2anh } h^{n} \text { Then an are } Y_{\text {vassiliev }}
\end{aligned}
$$

iwninants. In other cords expanding $V_{N}\left(k, e^{n}\right)=\sum_{n=0}^{\infty} a_{n} h^{n}$ (5) gives imaniants a_{n}.
Thy (XS I_{n}): a_{n} are trite type invariants.
ie $\forall_{n}, \exists m$ st. for any singular Link with m singularities $a_{n}(L)=0$ as defined below:

A usn L with m crossing that are transversal intersections
like this $X X . X$.
Nc define $a_{n}(L)=\sum_{\epsilon_{1}-\epsilon_{m}} \epsilon_{1} \ldots e_{m} a_{n}\left(L_{E_{1}} \ldots g_{n}\right)$
where $\epsilon_{i} \in\{ \pm 1\}$ determine how wee restive the crossing above. $+1: 5 / /$ or $-1: \AA$ In other words

$$
X=Y-X \quad \text { Oo This is Cire e derivative and }
$$

being \&f finite type of order $\leqslant m$ means' taking deriverive in times" gives zero.

- Conjecture Given a finite tope inverinent V of order m, then $\exists a$ Universal constant C st $|V(k)| \leqslant C(\# \text { Crasis of } k)^{m}$
Proved by Bar Norton "poly invariants A poly?

So implication is That an Shandy grow palynomialy.
This means V_{N} is almost like a modular form. AT the some time it is a Reata function. So maybe iris a Mellin Transformation

- Let us change notation $N \rightarrow d$. Votecan clupeids on \underline{d}.

Consider approx. of $e^{h} \sim 1+h$. Calculate

$$
V_{d}(k, 1+h)=\sum_{n=0}^{\infty} V_{n, d}(k) h^{n}
$$

To finite type invanamoss

- Melvin marion notices that Un, (k) is a polynomial function of d chick can be carititen as $v_{n, d}(k)=\sum_{0 \leq m \leqslant n} D_{m, n} d^{2 m}$ The ass notices $D_{m, n}=0$ if $m>\frac{n}{2}$
 Now Take $\sum_{m=0}^{\infty} D_{m, z_{m}} a^{2 m}$ formal series with a formal var. This is equal to $\frac{1}{\Delta\left(x, e^{\pi / a}-e^{-\pi i a}\right)}$ (This is also a zetafanction)

But what if ore sum the lines $m=2 n+s$ for any $s \leqslant-$?
The tirstline it gives $\frac{P_{2}\left(z^{2}\right)}{\Delta^{3}} \quad z=e^{\text {nl a }}-e^{-n / a}$

Physical interpretation: bason-fermion ark 'inverse of each other:
Earn- colored Jones and Alex pry- free fermions (by Satan Kcuittmen)
So That is why Alex poly appens in denominator.

Tuesdey Februyg 25x 2020
Poper recomenchlation: \mathcal{P} Mazan: knots, pines, and P_{0}
his "propegamda": hypk nots $K<s^{3} \quad \leftrightarrow$ primes $\# p \mathbb{Z} \subset \mathbb{Z}$

$$
\operatorname{vol}\left(\delta^{3} \backslash k\right) \hookrightarrow \log p
$$

(1) Mavermuifold: compact $M^{4} \xlongequal[\text { antarinle }]{\approx}$ but it is not D^{4}.
(3) He ds- proved nontavial knats have no inverse by 'Swindlé argumeut

$$
A \not A B=\text { unkū } \Rightarrow A \text { unkwor }
$$

$$
A|B| A|B| A|\ldots c|=u n k \text { int }
$$

you have a"singulonity" here oblich you can resolve.
(3) Twister Aliex palynomial, Gobred Jones,

Ricmemm zetm, (Deilzeta zeta function

- Deil \Rightarrow Arin - Marar zeta function
diffeo $f M^{n} \longrightarrow M^{n}$ then detine $\xi_{f}(2)=\exp \left(\sum_{n=0}^{\infty} \frac{2^{n}}{n}\left(\right.\right.$ (ftixedpisot $\left.\left.f^{n}\right)\right)$
(1) ξ_{f} is a rational finction

CGamentine
(2) Funcional equation something like " $\xi(s)=\Gamma(s) \xi(1-s)^{4}$ is a Pinare duclity, proven by Gorthendicick
(3) Produt equaion $\Sigma \frac{1}{L^{5}}=\pi$ priss $\left(1-p^{-5}\right)$ prover by Deligne

Klinor: proved ahy $\xi_{f}=\frac{1}{\Delta(K, t)}$
Melion-Masoon Cony: "cobred Jonses zeta fanction"
Melvin-Motor-R Fansey expansion:
D. Zुyier: Quear Moluler Fomen

Recall given $K \subset S^{3} \quad J_{d}(k ; q): J_{d}($ unknot $)=[d]$

$$
\begin{aligned}
& \quad V_{d}=\frac{J_{d}}{[d]}, V_{d}(\text { unkont })=1 \\
& V_{d}(K, q=1+h)=\sum_{n \geqslant 0}^{n}\left(\sum_{0 \leq m \leqslant 2 n} D_{m, n} d^{m}\right) h^{n}
\end{aligned}
$$

(everything in here is in formal calculus).

$$
\begin{aligned}
& =\sum_{n \geqslant 0} \sum_{0 \leqslant 2 m^{\prime} \leqslant 2 n} D_{m^{\prime}, n} d^{2 m^{\prime}} h^{n} \\
& =\sum_{n \geqslant 0}^{1} \sum_{0 \leqslant m^{\prime} \leqslant n} D_{m^{\prime} n} d^{2 m^{\prime}} h^{n} \\
& * \text { Tum of } \mu_{i} \mu \quad D_{m_{1 n}^{\prime}}=0 \forall m^{\prime}>\frac{n}{2} \not \approx \\
& =\sum_{n=0}^{\infty} \sum_{0 \leq m^{\prime} \leq \leqslant \frac{\pi}{2}} D_{m^{\prime} / n} d^{2 m^{\prime}} h^{n} \quad\left(n^{\prime}=n-2 m^{\prime}\right) \\
& =\sum_{n^{\prime}=0}^{\infty}\left(\begin{array}{l}
\frac{\left.\sum_{m=0} D_{m^{\prime}, 2 n^{\prime}+n^{\prime}}(d h)^{2 m^{\prime}}\right) h^{n^{\prime}}}{V_{n}(k, z) \quad z=9^{-1 / 2}-9^{-\frac{d}{2}}} \\
\frac{P_{n}\left(z^{2}\right)}{\Delta^{2 n^{\prime} 1}(z)}, z=+^{1 / 2}-t^{-\frac{1}{2}}
\end{array}\right.
\end{aligned}
$$

Examples:
EXamples: $-\frac{\text { Qtrefoi lent }}{} V_{d}(q)=1+1^{d-1} \sum_{m=1}^{d-1} q^{m d}\left(1-q^{d-1}\right) \ldots\left(1-q^{d-m}\right)$

$$
\Delta=1+z^{2}, \quad v_{1}=2 z^{2}+z^{+}, v_{2}=1-3 z^{2}+z^{4}
$$

(2) figure 8 :

$$
\begin{aligned}
& V_{d}=1+\sum_{m=1}^{d y} \prod_{j=1}^{m}\left(q^{d}+q^{-d}-q^{j}-q^{-j}\right) \\
& \Delta=1-z^{2}, \quad P_{z}=-1-z^{2}, \quad P_{4}=4+2 z^{2}+14 z^{4}+2 z^{6}
\end{aligned}
$$

De col show satire of the prof in the next few lectures.
$V_{d}(K, 1+h)$? Definedusing R-matrix.
UqP(3(1) \exists an ir rep of each $\operatorname{dim}_{\text {a }} V_{d}\left\{f_{0}, f_{d-1}\right\}$

- Lie algobra of $S(2, \mathbb{C})$ generxted by X, Y, H.
- quantum groups: Hipf algebras $H A: U_{a l} O(200)$

$$
X=\left(\begin{array}{ll}
\cdots & 1 \\
\cdots
\end{array}\right), Y=\left(\begin{array}{ll}
1 \\
1 & 1
\end{array}\right)^{(3)}
$$

ancebping

- Juniteral R-murix $R \in H A \otimes H A$ (q-detorned)

$$
\begin{aligned}
& H=\left(\begin{array}{ll}
1 & 1 \\
-1
\end{array}\right) \\
& {[H, X]=2 X,[H, Y]=2 Y}
\end{aligned}
$$

$\xrightarrow{\text { gives }}(R, \mu)$ enhanced \rightarrow link invariant $[X, Y]=H$
$J_{d}(k, q)=\operatorname{limk}$ invoriant from R-mutrix of $U_{q} S l(2, C)^{\prime}=$

What about $V d$? $\left.\frac{1 \cdots}{b} \\right)$ leaving first stanal opan by Schur's lemme gives

$$
\text { a scotar }=V_{d}(k, q)
$$

- The boson-farion intepretation: we have a rep on $\mathbb{C}\left[f_{0},, f_{d-1}\right]=V_{d}$

$$
\begin{aligned}
& X f_{m}=[m] f_{m-1} \quad[n]=\frac{q^{\frac{n}{2}}-a^{-\frac{1}{2}}}{a^{1 / 2}-q^{-\frac{1}{2}}} \\
& Y f_{m}=[d-1-m] f_{m+1} \\
& H f_{m}=(d-1-2 m) f_{m}
\end{aligned}
$$

a basis for $\forall_{d}^{\otimes N}$ is $\left\{f_{m,} \otimes \ldots \otimes f_{m N}\right\}$ which can be mapped to monomials $\mathbb{C}\left[z^{m_{1}} \cdots z_{N}^{m_{N}}\right]$. Now. $\Delta^{N-1}\left(\frac{1}{2}[N(d-1)-H]\right)$ actson $V_{d}{ }^{N}$ chere Δ is The camultipliation for De flapt algobra $U_{q} s((2, \mathbb{C})$.

- A quick revicu on HA: (1) μ, λ mutipliation suristying
(3) $\Delta: Y, Y=Y$. Junit ! s.t. $\lambda=1$

Siartipade
(3) $X=$
example: $\mathbb{C}[G]$ like roking imesese'
(4) the graup atgebra is a MA.
...and sone ther compaivility equations.

Eigenspace decomp of $V_{d}^{\otimes N}$ using $\frac{1}{2}[N(d-1)+H]=C$:

$$
\begin{aligned}
& C\left(f_{m}, \ldots \otimes f_{m N}\right)=(\underbrace{\sum_{i=1}^{N} m_{i}}_{\Gamma})\left(f_{m}, \otimes \ldots \otimes f_{m, N}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { since } \sum m_{i}=1 \rightarrow \exists!j: m_{j}=1 \text { and all others }=0 \text {. }
\end{aligned}
$$

Rezansky's deformation of P-matrix:

$$
\begin{aligned}
\stackrel{V}{R} & {\left[a_{;}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{12}\right]\left(f_{m_{1}}\left(f_{m_{2}}\right)\right.} \\
& =\sum_{n \geqslant 0}\left(\prod_{m_{1}-n+1 \leq l \leq m_{1}}\right)\left(e^{\varepsilon_{12}}\right)^{n}\left(e^{\varepsilon_{1} q_{1}}\left(e^{\varepsilon_{2}} q^{-d}\right)^{m_{2}} f_{m_{2+1}} f_{m_{1}-n}\right.
\end{aligned}
$$

a perturbation of R-metrix using a (spectral parameter) and small numbers's $\varepsilon_{i}, \varepsilon_{n}, i_{n}$
Taking derivative at zero recovers the R-matix.
Tenias emmen: \exists polynomials $T_{j, k}^{[k, 1]}, T_{j, k}^{[R, 2]}$ st.

$$
\begin{aligned}
& \left(1+\sum_{j \geqslant 1} h^{j} T_{j}^{[r, 2]}\left(\partial \varepsilon_{1}, \partial \varepsilon_{12}\right)\right)\left(1+\sum_{j, 1}^{j} h^{j} \frac{\left.\prod_{i 1(j) j}^{(1) \varepsilon_{2}-l}\right)}{j!}\right) \\
& \operatorname{RR}\left[a, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{12}\right] \left\lvert\, \begin{array}{l}
a=1-q^{-d} \\
\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{12}=6
\end{array}\right. \text { gives the }
\end{aligned}
$$

Define:
$R_{\text {matrix }}$.

- $V_{d, \infty}^{\otimes N} \longleftarrow f_{0}, f_{1}, \ldots, f_{d-1}, f_{d}, \ldots$. Where you add the $f_{j}, \dot{j}>d-1$
- $V_{N}^{(1)} \cong \mathbb{C}\left[z_{1},-, z_{N}\right], \forall i$ consider $\mathbb{C}^{2} \cong \mathbb{C}\left[z_{i}, z_{i+1}\right]$ and take the Restriction of \tilde{R} to this \mathbb{C}^{2}, called $\widetilde{R}=\left(\begin{array}{cc}e^{\varepsilon_{1} \varepsilon_{2}} a & e^{z_{2}} a^{-d} \\ e^{\varepsilon_{1}} & 0\end{array}\right)$

If you set $q^{-d}=t, a=1-q \xrightarrow{\varepsilon_{1}=\varepsilon_{0}=}\left(\begin{array}{cc}1-t & t \\ 1 & 0\end{array}\right)$ Which is Re Burom map.
Using this linear adgabre lemme you get the Alex. ply.
Lemma: © opentor on the poly algebra $\mathbb{C}\left[z_{1},, z_{w}\right]$ coming from $\tilde{\theta}$ on $\mathbb{C}\left[Z_{1}\right] \oplus \mathbb{C}\left[Z_{2}\right] \oplus \cdots \in \mathbb{C}\left[Z_{N}\right]$. If spectrum $\lambda \tilde{\sigma} \in \dot{D}^{2}$ for Some $\lambda \in \mathbb{C}$, Then $\sum_{\eta \geqslant 0} \lambda^{n} \operatorname{Tr}_{N} Q=\frac{1}{\operatorname{det}_{V_{N}^{(1)}}(1-\lambda \tilde{\theta})}$.

Thusdey 27 trbmung 2020

$$
-\lim _{d \rightarrow \infty} \frac{\left.\log \left\lvert\, V_{d}\left(K ; e^{2 \pi}\right)^{\frac{2}{d}}\right.\right) \mid}{d}=\lim _{d \rightarrow \infty} \frac{\log \left|A_{d}(K, t)\right|}{\left.d\right|^{2}}
$$

Jum inportant Zeta finetion:

Ricmann

$$
\xi(s)=\sum_{1}^{\infty} \frac{1}{n^{s}}
$$

Conal
X nomststar preferive nedin
Vacictyon 踥

$$
\xi_{x}(z)=\exp \left(\sum_{m=1}^{\infty} \frac{z^{m}}{m} N_{m}\right)
$$

1. Fmational equation over $\mathbb{F}_{q} m$

$$
\xi(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \xi(1-s)
$$

2. Euer product: $\sum_{n=1}^{\infty} n^{-s}=\prod_{\text {pines }}\left(1-p^{-s}\right)^{-1}=\frac{1}{1-p_{1}^{s}} \cdot \frac{1}{1-p_{2}^{-\frac{s}{2}}} \cdots$
3. Remamptypo: Trivid zerss $s=-2,-4, \ldots$ (yon have to do analytic extarion to see this)
nontivial zees: all have $R(s)=\frac{1}{2}$

* Deir Zeta Function

1. Rationality (done by $\frac{D_{\text {worte }}}{2 n} \xi_{x}(z)$ is nutional

$$
\begin{aligned}
& \left(\text { done by } D_{\text {work) }}^{2 n} \xi_{x}(z)\right. \\
& \xi_{x}(s)=\prod_{i=0}^{(-1+1} P_{i}(z)^{(1)} \text { and } P_{i}(z) \text { is a pdy } \\
& P_{0}(z)=1-\xi \quad P_{2 n}(z)=1-q^{n} z
\end{aligned}
$$

$$
\begin{aligned}
& (z)=1-z \quad P_{2 n}(z)=1-93 \\
& P_{i}(z)=\prod_{j}\left(1-\alpha_{i j} z\right) \text { jus fatorization by the zenss }
\end{aligned}
$$

Deligne proved That $\alpha_{i j}$ saisfy a version of Riemamd Hypo there $\left|\alpha_{i j}\right|=9^{\frac{1}{2}}$
2. Functional Equation $\zeta_{x}\left(q^{-n} z^{-1}\right)= \pm q^{n x / 2} z^{x} \xi_{x}(z)$

Gothendicek buitt motif cohamiberys
to prove Riemamtlypo for X but Euter chamenteristic Deligne praved it whing p-ddic colomoloyy cithant Gritherdieck notit chhmbay.
The quasion cie are interested is wheat is the analog of all these for colored Jonsss or the (twisted) Alex. prly.? Most likedy related to Weil instead of Riernamn.

- rationaili

$$
\frac{1}{\Delta_{R}(t)}
$$

$$
V_{d}(k ; q)
$$

- Fmectional equation?
- Riemamn flypo
"B. Marure has same ideas" in "Knas, panne \&PD""
-Ragier's modulanty oonjecture:: K knst \longrightarrow prime pin \mathbb{Z}

$$
\text { G}_{\text {given a knst }} k \text {, detine } J_{k}, \mathbb{Q} / \mathbb{Z} \longrightarrow J_{c}\left(k ; e^{2 \pi i a} c\right)
$$

$$
\left\{\frac{a}{c}\{(a, c)=1\}\right.
$$

So every knt gives a fmation on rationals.
But $S(2, \mathbb{Z})$ ats on \mathbb{Q} / \mathbb{Z} by $x \in \mathbb{Q} / \mathbb{Z}: \gamma(x)=\frac{a x+b}{a+d}$ for $\gamma\binom{a b}{c d}$
Cojjeture: Detine $t=\frac{2 \pi i}{x+\frac{d}{c}}$,
of the hyp struture
from $\varphi: \pi /\left(S^{3}(k) \rightarrow\right.$ PSL12,
CS invaricat comis from $\varphi\left(\pi,\left(s^{3}(k) \rightarrow P S 12,5\right)\right.$ (Sinvaricat

$$
\begin{aligned}
& J_{k}(E X(x))=J_{k}(X) \cdot\left(\frac{2 \pi}{\hbar}\right)^{\frac{3}{2}} \cdot e^{i(v o l+i C S) / \hbar} \cdot[\text { anst }+h \cdot 0 \cdot T] \\
& x=\frac{a_{x}}{c_{x}} \quad 1 \\
& \text { histher order }
\end{aligned}
$$

haplent:

$$
\quad \int_{c_{x}}^{\frac{J_{x}}{c_{x}}}\left(k, e^{2 \pi i x}\right)
$$ terms in h.

Nate this implies Nome conjecture by choosing $x=N-1, r=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.

- For the nest we will try to argue co hat functional equ. \& R-H. are for The $\frac{1}{\Delta_{\text {(C }}(t)}$.
- Recall Miluor's theorem $\frac{1}{\Delta_{k}(t)}$ is a Deil vern function.

$$
\begin{aligned}
& k \subset S^{3} \quad E_{k}=S^{3} \backslash k, \tilde{E}_{k}^{A b} \\
& K_{e r} A b \longrightarrow \pi_{1}\left(\tilde{E}^{a b}\right)=[\pi n] \\
& \pi_{1}\left(E_{k}\right) \xrightarrow{A b} \mathbb{Z}
\end{aligned}
$$

generator $1 \leadsto t: \tilde{E}_{k}^{A n} \theta$
$\frac{1}{\Delta_{K_{<}(t)}}$ is called the torsion of a kent.

$$
\begin{aligned}
& \frac{1}{\Delta_{K}(t)} \text { is called the torsion of aknot. } \operatorname{det}\left(\lambda I-T_{*}^{(i n)}\right) \\
& \tau(\lambda)=f_{0}(\lambda) f_{1}(\lambda)^{-1} f_{2}(\lambda) f_{3}(\lambda)^{-1} \text { cohere } f_{1}(\lambda) \text { is the characterise } \\
& \text { pay of } t_{*}: H_{i}\left(E_{x}^{a b} s\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { here fill }(\lambda) \text { is the characteristic } \\
& \text { paly of } t_{*}: H_{i}\left(\tilde{E}_{x}^{a b} ; Q\right)=
\end{aligned}
$$

Then we can setup the "Deil' zeta function:

$$
\begin{array}{ll}
\text { setup the a Deil zeta function: } \\
\xi_{k}(z)=\exp \left(\sum_{n=0} \frac{z^{n}}{n} L\left(t^{m}\right)\right) & \text { where } L(f)=\sum_{i=0}^{\infty}\left((1)^{2} T f_{* i}\right. \\
& \text { where } f_{i=1}: H_{i}\left(A_{j} Q\right) S
\end{array}
$$

where $f_{n}: H_{i}\left(M_{j} Q\right) S$ for difteo $\mathcal{L}: M \rightarrow M$
Cxhilnor's the: $\tau_{k}(z) \xi_{k}(z)=z^{x}$
and $\frac{1}{\Delta_{k}(\lambda)}=\tau_{k}(\lambda)$ so $\quad \xi_{k} \frac{\left(z^{-1}\right)}{Z X}=\Delta_{k}(z)$

- (H. Tetras :Tank): Garden of rector functions
(H. STark): Garden st given any finite graph ∇ <compat>ᄋiented you can de tine

$\xi_{T}(Z)$: count primitive loops with aright $e^{-5, l \text { length }}$

Tueday Bch hanh 2020
Leta furiton apprach to V.O.
Rremame \& 2reis

- Rationality
- Fundtomal eq $1-1$ stadulaity conin ?
-Remamr lyypshaths 1 ?
Gothendieck Phibsolyy, essence of Zeta fumation?
connting crith coseights
De will start with Thera-Selberg zera fumcion of graphs then knnt diygrames (IP.Sere)
Cjiven a finive unoriented graph G
Let $\mathrm{G}^{+}=$be the doubled oriented graph $\stackrel{G}{\longrightarrow} \Rightarrow \bigoplus^{+}$
Lhere Zeto function $\xi_{G}(u)=\prod_{P G^{+}}\left(1-u^{|P|}\right)$
a sone variable
- $p \in P G^{+}=$The set of all primisive, reduced cydes on G^{+}
- $|P|=$ length $=\#$ ofedgesin P

$\xi(u)=\left(1-u^{3}\right)\left(1-u^{3}\right)$
为
here you have $\left|P G^{+}\right|=\infty$
So $\xi_{G}(u)$ is an infinite product

Bass evaluation: $\xi_{Q}(u)=\operatorname{det}(1-u T)$ where T is a finite matrix! (z) S. The inftivire product ultimately gives something finite.

Def. T: Let $V(E)=C-$ spam st all edges in G^{+}
Le $J: V(E) \rightarrow V(E)$

$$
e_{i j} \longrightarrow \bar{e}_{i j}=e_{j i}
$$

Succession max Suck: $V(E) \longrightarrow V(E)$
And then define

$$
e_{i j} \longrightarrow \sum_{e_{j l} \neq e_{j i}} e_{j \mu}
$$

$$
T=\operatorname{secc}-J
$$

Example:
1D Icing modes: Given lattice $S_{\text {, write }} \xi_{S}(z, \beta)=\exp \left(\sum_{n=1}^{\infty} \frac{z^{n}}{n} \frac{z_{n}(S)}{1}\right)$
Fact: This is rationaland equal
to $\frac{1}{\text { de(sth) }}$ determinant to something model of size $\underline{\underline{n}}$ \rightarrow deleted To Trans sermanaix T.
X.L. Lion and Z.w.

Random walks on Knit diagrams
\Longrightarrow a new prat of the Melvin-Moton Conjecture
Remark by V. Jones: The Buran representation has an interpretation as bowling on braids.
Buran res $\varphi: B_{n} \longrightarrow G L_{n}\left(\mathbb{Z}\left[t^{t^{\prime}}\right]\right)$
Given $b \in \mathcal{B}_{n}$

Note $1-t^{-1}$ or $1-t<0$ bur here we are doing formed claus.

R-matrix gives rise to Jones poly

$$
\begin{aligned}
& R=q^{1 / 4}\left(\begin{array}{ccc}
1 & & 0 \\
0 & 1-q^{-1} & q^{-\frac{1}{2}} \\
0 & a^{-\frac{1}{2}} & 0
\end{array}\right)=q^{-\frac{1}{4}}\left(\begin{array}{ccc}
a^{1 / 2} & \\
a^{1 / 2}-q^{-\frac{1}{2}} & 1 \\
1 & 0 & q^{\frac{1}{2}} \\
1 & 0 &
\end{array}\right) \\
& \xrightarrow{q \rightarrow q^{2}} q^{-1 / 2}\left(\begin{array}{cccc}
q & & & \\
a-q^{-1} & \\
& 1 & 0 & \\
& & & q
\end{array}\right) \leftarrow \text { call This } R_{J}
\end{aligned}
$$

we Shall replace
q by q^{2}. define also $R_{A}=\left(\begin{array}{cccc}9 & 9-a^{-1} & & \\ & 1 & 0 & \\ & & & -q^{-1}\end{array}\right)$
R_{J} gives Jones, R_{A} gives Alex-Note how close they are.
$R_{A}: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \triangleq$ write $\mathbb{C}^{2}=\mathbb{C}|\dot{\mid}\rangle \otimes|j\rangle$ then labels on matrix
coos $\$$ columns are

Another fact: $R_{J, A}-R_{J, A}^{-1}=\left(q-q^{-1}\right)$.Id gives $-q^{-1}$ instead of q. Also nose factor" $q^{-1 / 2}$ for $R J$.
Set link invarients from enhanced R-matix:
Both B-matrix give risetorep of B_{n}
-i-ruplace

$$
\varphi_{J}: \sigma_{i} \in B_{n} \longrightarrow I d Q-Q R_{j} \ln \text { ad }
$$

φ_{A} : similar to do ave
For Jones $J(\hat{b} ; q)=? ?^{n} \operatorname{Tr}\left(\mu^{2 n} \rho_{J}(b)\right)$
fermion

For Alex

$$
\Delta(\hat{b} ; q)=7 \underset{\substack{\text { Supetrce }}}{\operatorname{S}_{\text {Sup }}} \operatorname{tr}\left(r r^{+} \varphi_{\Delta}(b)\right)
$$ trace

suportace a basis of $\left(\mathbb{C}^{2}\right)^{i n}$ is a length n-bar sting $|I\rangle=\left|i_{1} \ldots i_{n}\right\rangle \operatorname{sum} \sum_{i j}$

- For example: $\varphi\left(\lambda_{2}^{1}\right)=\begin{aligned} & 1\left(\begin{array}{cc}1.1 & 2 \\ 1 & 0\end{array}\right) ~\end{aligned}$
- Maim: Buran rep is always reducible. Since $\left(\begin{array}{l}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$ is an eigenvector. due to preservation of probability $\varphi(b)\binom{1}{\vdots}=\binom{1}{1}$.
So define the reduced Buran by restricting to

$\widetilde{\varphi}(b)=\frac{\text { reduced Buran }}{}$, Then define $\Delta(\hat{b})=\frac{\operatorname{det}(1-\widetilde{\varphi(b)})}{1+\tau+\cdots+\tau^{n-1}}$ is the Alex. poly.
- Extend the Buraureps to String links.

for any 1-stringlink
because no natter how the bowling goes, it will end up in Th some place as there
is only one sting

2) each entry in $\varphi(L)$ is a rational funnering

We cont to generalize this idea to Jones poly.
random watk/rate-sum models of quant invariants
Amitsur-Levitzki identity, Take any $2 n$ matrices $A_{1}, \ldots, A_{2 n}$ of sizenxn

$$
\begin{aligned}
& \sum_{\sigma \in S_{2 n}} \frac{\pi(\sigma)}{} \begin{array}{l}
\frac{1}{\text { parity of }} \\
\text { permutation }
\end{array} \quad \begin{array}{l}
\text { For } n=1 \text { - it says } \\
\text { complex numbers } c o
\end{array}
\end{aligned}
$$

$$
\text { or } n=1 \text { complex numbers commute }
$$

Zeta function approach to MME Conjecture:
Given a kurt $1<$

$$
\begin{aligned}
& J_{d}(K ; q) \cong J\left(k_{l}^{Q d}, q\right)
\end{aligned}
$$

notice hoo this is like the bowling situation.

Thursdy 5 "M Mach 20.20
Lera function apprach to V.C.

- Rasionality $\frac{\text { Colores Jones }}{V} L$
- Functional eq. Ragie's machlority Conjecture symmetric
R.H.

$$
\begin{array}{r}
\eta \longleftarrow \text { R. H. For Thara } \\
\text { Zeta function }
\end{array}
$$

Recall Ihara zeta function
G finite comnected unoriented graph

$$
G^{+}=\text {doubded } G
$$

comnetred d-regular for which $-d \leqslant s$ pectumes d
coith $\lambda_{1}=d$. - wish $\lambda_{1}=d$.
Q regular d-graph:
$Y d$-edges like $d=4$. for Knot diagrams R.H.: $\xi_{G}(u)$ has a R.H. (i.e every zero with $0<$ Re $(j)<1$, then (Corrospondence is $u=q^{-s, q=d-1), ~ F u t h e r ~} \max _{i=2, m, m}(1 \lambda i l) \leqslant 2 \sqrt{d-1}$

Zera funtion approach to Melvin-Morton conjecture (X.S. Liu and Z.w.)
Side remark

$$
A: V \rightarrow V_{k}
$$

\qquad $\operatorname{dim} V<\infty$ Then (1) det $\left(e^{t}\right)=e^{\operatorname{trA}}$
extend to exterior

$$
\text { (2) } \operatorname{det}(I-A)
$$

Qroduct

$$
\Lambda^{i} A: \Lambda^{i} V \rightarrow \Lambda^{i} V \quad=\sum_{i \geqslant 0}(-1)^{i} \operatorname{Tr}\left(\Lambda^{i} A\right)
$$

Cain $\frac{1}{\operatorname{det}(I-A)}$ should be regarded as a zeta function (we urilldetive A later)
define zorn function of A. $\sum_{A}^{\infty}(z)=\exp \left(\sum_{n \geqslant 1}^{\infty} \frac{2^{n}}{n} \operatorname{tr}\left(A^{n}\right)\right)$

$$
\text { only? ? }{ }^{\text {No Te that }}-\log (1-x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n} \leadsto \frac{1}{1-x}=\exp \geq \frac{x^{n}}{n}
$$

\Rightarrow So for diagonal matrices it is The That $\frac{1}{\operatorname{det}(1-z A)}=\exp \left(\sum \Sigma^{n} \operatorname{Tr}\left(f^{n}\right)\right)$ and by Jordan decomposition the rest follows.

Recall Oirtinger presemation for $\pi\left(S^{3} \backslash K\right)$

$$
\tilde{B}=\begin{array}{l|l|l|l|l}
\hline & & 2 & 3 \\
\hline 2 & 1-\tau & & t & \\
\hline 3 & & 1-t & & \bar{t} \\
\hline 4 & t & & 1-\tau & \\
\end{array}
$$

define a walk graph, vertices = arescolored

$$
\begin{aligned}
& 2 \overbrace{1-t}^{\frac{t}{4}} \\
& t(\downarrow_{t=t^{-1}}^{1-\tau \underbrace{1-t}_{1-\tau} \quad \uparrow \tau) t ?} \text { \& }
\end{aligned}
$$

where $\bar{E}=t^{-1}$

Declaim cletersinant of $I-B_{(i j)}=$ Alex poly where $B_{(i j)}$ is delete $i-$ th row fun $A B$. For example $E-B_{11}=\left(\begin{array}{ccc}1 & -\tau & 0 \\ E-1 & 1 & -E \\ 0 & E-1 & 1\end{array}\right)$ gives determinant $=3-t-\bar{t}=1-z^{2}$ for $z=t^{1 / 2}-t^{-\frac{1}{2}}$
(What dos it count? They should count "clausal orbits"
delete one sow and one column
Click corresponds to this \rightarrow
$\mathrm{Knot} \longmapsto 1$-string link
Side remark: For Types of winkles in The plane we associate + , -based on the crossing. Wealso associate a potation number
S. we have labeling $++1,+1+\cdots, \ldots$
cone choose, she 1 sting using $t+$ Kink to conned and we do same random walk that do not touch the red part $++C$

- The nonsrivial part in the proot is why $\frac{1}{\operatorname{det}(I-\beta)}=1+\sum_{k} \sum_{\left.k=-c_{k}\right) \in Q \in e}^{\infty} w\left(C_{k}\right) \cdots\left(C_{k}^{4}\right.$ Deed to detive 2 yndon ©ords: Let A be Linire alphaber set totally ordered $A=\{0,1,2, \ldots, n\}$. Let $A^{*}=$ all words including ϕ.
Case we are interested in is $A=\{0,1\}$.
Det. a lyndon coord is a non-emppty word which is (1) not a poner (2) $\frac{\text { minimal in its cyelic dass }}{4 \text { in lexizognph }}$
l.g. $0,1,0,0,1 \%, K, 0,0,01,0 x$
yo, 壮, …

Theorem: $B(\Lambda)=\operatorname{det}(1-\beta)$ for any Linite matrix B.
Where $B=\left(b_{i j}\right)_{i, j=0}^{n-1}$ and $b_{i j}$ as a set of
commuting variable. Let $A=\{0,1, \ldots, n-1\}$ with $L_{A}=$ all a formal Commuting Variable.
Finlly $\beta(\underbrace{a_{1} \ldots a_{n}}_{a l y n d m \text { word }})=b_{a_{1} a_{2}} b_{a_{2} n_{3}} \ldots b_{a_{n} a_{1}}$ varabled by [O

$$
\begin{aligned}
& \text { alyndmeored } \\
& \text { So } \left.B: \mathbb{Z}\left[\{[\rho] \mid]_{i \in L A}^{[}\right] \longrightarrow \mathbb{Z}\left[\mid b_{i j}\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{lig} B=\left(\begin{array}{ll}
b_{00} & b_{01} \\
b_{1 .} & b_{11}
\end{array}\right) \quad \operatorname{det}(I-B)=\begin{array}{r}
\left(1-b_{00}\right)\left(1-b_{11}\right) \\
\\
-b_{01} b_{10}
\end{array} \\
& B(\Lambda)=\left(1-b_{00}\right)\left(1-b_{11}\right)\left(1-b_{01} b_{10}\right)(\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \beta(0)=b_{00} \\
& \beta(1)=b_{11} \\
& \beta(01)=b_{01} b_{10}
\end{aligned}
$$

Tums out eventhing else cancels!

- Going hack to The Theorem

2) For Alex. poly

Lax for finite simple cycles $=Q$

$$
\text { then }\left(c_{1, m}, c_{k}\right)=Q^{k}
$$

and $Q_{s}^{k} Q^{k}$ are the
ones the do not share any edges. Then apply $\beta(\Lambda)=\operatorname{det}(I-B)$ -
(1) For Jones poly: R-mustix $q\left(\begin{array}{ccc}9 & & \\ 9-\bar{q} & 1 & \\ 1 & 0 & q\end{array}\right)=q^{*} q\left(\begin{array}{cc}1-t & t \\ 1-a^{-2} & 99^{-2} \\ 99^{-2} & 0\end{array}\right)$

Twodey 10 th $M_{\text {aren }} 2020$

- Nolecture on Thursday

1_4-dim Topolyy (3+1)-DTQFT
2-VC: Configunation appraach
Top interpereation of Jones poy
Brid groups : fundamental graup of n psims in D^{2} n distinct pts, unordered

- detive Config.space

$$
C^{n}(X)=\left(D^{2}\right)^{n} \backslash \Delta
$$

it is vell-knoin $\pi_{1}\left(C^{n}\left(D^{2}\right), *\right) \cong B_{n}$ where $\Delta=\left\{\left(x_{i}\right) \mid x_{i}=x_{j}, \exists\left(x_{j}\right\}\right.$

- TM of a manifad M for $n=1,2,3,4$ is a homateg invariant of M
- Theretore we replace TM by $C^{2}(M)$ ohich is $n \pi$ a topobgical \&o not that usetal. invariant. In general $X_{1} \stackrel{\text { hom }}{\sim} X_{2} \not C^{n}\left(X_{1}\right) \stackrel{\text { ham }}{\sim} C^{n}\left(X_{2}\right)$
-olume Conjecture: For a hyperbaic knot $K \subset S^{3}$, Colored Jones poly $J_{d}^{\prime}(k ; q)$ (mormalized J_{d}) Then $\lim _{d \rightarrow \infty} \frac{\log \left|J_{d}^{\prime}\left(k ; e^{2 \pi / d}\right)\right|}{d}=\frac{1}{2 \pi} \operatorname{Ool}\left(s^{3} \backslash k\right)$

Some kind of zeta functions of graph

Two graphs: 1) U_{D}

The Universe graph
2) Walk graphs $W_{D}^{ \pm}$+ chase all + pTs in Gauss diagram Then Turn each over arc into a vertex From each vertex $v \geq$ twos edges.

The reason to introduce These: statistical mechanics on tent diagrams/ State-sim construction.
(1) Kaulfman \rightarrow a state on a knot diagram is an assignment of A and B to each crossing $\longrightarrow 2^{\# \text { even g states }}$
For every stases, define $\langle s\rangle=\sum A^{\# \text { f } A^{\prime} \text { 'sins }} B^{\# \text { of } B \text { in the states }}$ Given a crossing resolve all crossing ($\left.d^{\# \text { edges }}\right)$

Stimiladyresolve (clockosse)

A STat with
A over crossing dickerise óveep ant 2 of 4 regions

Jones poly
define $J\left(K_{D}, A\right)=$

$$
(-A)^{-3 w\left(K_{D}\right)} \sum_{s}\langle s\rangle
$$

writheinex x

$$
x_{+1}^{x} x
$$

$$
B=A^{-1}
$$

$$
d=-A^{2}-A^{-2}
$$

$$
q=A^{-4}\left(\text { or } A^{-2}\right)
$$

(2) Turaer State sum

Ho get quant invariant find $(R, \alpha, \beta, \mu) \leftarrow$ enhanced Yang-Baxter operator"

$R=$| 0 | 00 | 0 | 10 | 11 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | -9 | | | | |
| 01 | | $\overline{9}-9$ | | | |
| 10 | | 1 | 1 | | |
| 11 | | | | -9 | |

$$
:\left(\mathbb{C}^{2}\right)^{\otimes^{2}} \supset
$$

basis $|i>| j\rangle \quad i, g \in\{0,1\}$

Theorem: $J(l<, q)=\alpha^{-w(D)} \beta^{-n} \operatorname{Tr}\left(\varphi_{R}(b) \cdot \mu^{(\Delta n}\right) \quad k=\frac{b}{a}=\left(-q^{2}\right)^{-w(D)} \operatorname{Tr}\left(\rho_{R}^{(b)} \mu^{(\beta n}\right) \quad b \in B_{n}$
Trefoil:

$$
\begin{array}{ll}
\text { basis } & |i>| j\rangle \\
\bar{q}=q^{-1}, & \alpha=-q^{2}, \beta=1, \mu=\left(\begin{array}{c}
\bar{q} \\
0 \\
0
\end{array}\right)
\end{array}
$$

\Rightarrow Alloys leads to a state sum

Take any knt diagram, a state on D is an assignment of $\underline{0}$ or 1 to each edge of U_{D}

(2.) a state is admissible

$$
\text { if } \pi(s) \neq 0
$$

$$
\begin{aligned}
& \text { looking at nonzero } R \text { entries } \\
& \text { to see admussability, Examples: } \\
& \text { These } \\
& \begin{array}{l}
\text { must } \\
\text { the }
\end{array} \\
& \text { must } \text { the same } \\
& \begin{array}{l}
0 \\
\pi(s)=(-9)^{3}
\end{array}
\end{aligned}
$$

 wore there are $2^{6}=64$ possibilities but admissability dramatically crops This number.

5 station number rot (S) inverted by whitney
draw the immersed curve which is in geneal position (nat having any K) The Tangent vector

and look how many times you loop around circle called the station number

Now take s and replace 0 labeled arcs by \because and I labeled ones by $\$, eng $x_{0}^{0} \rightarrow \cdots$
complement
of $s: \stackrel{\leftrightarrow}{1} \leftrightarrow$
Then you follow only $\backslash\binom{\text { after }}{\text { resolving }}_{0}^{1} X_{0}^{0} \rightarrow X$
ares along the knt. If

$$
\left\{\begin{array}{l}
\text { ares along the knot. If resolving } \\
\text { His clockwise } \frac{-1}{+1}
\end{array}\right.
$$

$$
\stackrel{\ddot{x}}{\underset{1}{\prime}} \rightarrow X \xrightarrow{\text { resolve }})(
$$

\Rightarrow Jones poly counts digging cycles of random walks which essentially implies the MM conjecture.

