MATH 122B: MIDTERM

(1) Show that if f is holomorphic in D, then

$$f'(z_0) = \frac{df}{dz}(z_0) = \frac{\partial f}{\partial x}(z_0) = -i\frac{\partial f}{\partial y}(z_0)$$

- (2) Compute the integral $\int_{-\infty}^{\infty} \frac{\cos(2x)dx}{x^4+1}$. Make sure to show that the answer you obtain is a real number.
- (3) Find $\int_{|z|=2} \frac{dz}{(z^{2016}+1)(z-3)(z-4)}$ in closed form (not as a summation).
- (4) Show that if f is holomorphic on $\mathbb C$ and $|f(z)| \leq |z|$ for all $z \in \mathbb C$, then f = Az for some constant A.
- (5) Compute the Laurent series of $e^{z+\frac{1}{z}}$ centered at z=0. Then compute the integral $\int_{|z|=1} e^{z+\frac{1}{z}}$. Show that the magnitude of your answer is a finite number.