
MIDTERM 1

(1) Solve the first order PDE {
−2ux + uy − yu = 0

u(x, 0) = x2.

(2) Attempt to find a particular solution of

3yux − 2xuy = 0.

Determine if there is a unique solution, no solution, or infinitely many solutions for auxiliary
conditions
(a) u(x, y) = x2 on the line y = x.
(b) u(x, y) = 1− x2 on the line y = −x.
(c) u(x, y) = 2x on the ellipse 2x2 + 3y2 = 4.

(3) Show that the general solution of the wave equation utt − c2uxx = 0 is given by

u(x, t) = f(x− ct) + g(x+ ct)

for sufficiently differentiable functions f and g by considering the change of variables

s = x− ct
r = x+ ct.

(4) Solve the initial value problem
utt − uxx = 0 on −∞ < x <∞, t > 0

u(x, 0) = 0

ut(x, 0) = ψ(x).

where

ψ(x) =

{
1 on |x| ≤ 1

0 on |x| > 1.

You may leave your solution in terms of ψ. Using this solution, answer the following
(a) Will the wave ever return to its original state at x = 0?
(b) What happens at each point x when t→∞?
(c) For some positive time t > 0, is there a location x such that u(x, t) = 0?

1



2 MIDTERM 1

1. Solutions

(1) First we compute the characteristic curves.

dx

dy
= −2.

Solving for this, we have

x = −2y + t

Changing variables so that

s = y

t = x+ 2y

transforms the PDE to

us − su = 0.

This can be solved as a separable ODE so that

du

u
= sds

so

ln |u| = 1

2
s2 + f(t)

where f is some function that depends on the other variable t. Exponentiating both sides yields

u(s, t) = C(t)e
s2

2 .

Plugging back x and y, we get

u(x, y) = C(x+ 2y)e
y2

2 .

Plugging in the auxiliary condition, we have

x2 = u(x, 0) = C(x),

which tells us what the function C(t) is hence the particular solution is given by

u(x, y) = (x+ 2y)2e
y2

2 .

(2) First we find the general solution by the method of characteristic. Dividing by 3y, we get ux −
2x
3yuy = 0. Then we want to solve the ODE

dy

dx
= −2x

3y
.

This gives us
3

2
y2 = −x2 + t.

For convenience, we multiply through by 2 and use the change of variables

s = x

t = 2x2 + 3y2.

The change of variables transforms the PDE to

us = 0,

hence the solution is given by

u(s, t) = f(t)

or

u(x, y) = f(2x2 + 3y2).
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Now we check each condition.
(a) x2 = u(x, x) = f(5x2), hence f(s) = s

5 would satisfy the initial condition so u(x, y) = 2x2+3y2

5 .

(b) 1 − x2 = u(x,−x) = f(5x2) so f(s) = 1 − s
5 . Therefore the particular solution is u(x, y) =

1− 2x2+3y2

5 .
(c) 2x = u(x, y) = f(4), since the right hand side is a constant and the left a variable, there does

not exist an f(s) that satisfies the equation, hence no solution.
(3) By applying Chain rule, the change of variables transforms the PDE to

usr = 0

This means that
u(s, r) = f(s) + g(r)

for some functions f and g. Plugging back the variables, we have

f(x, y) = f(x− ct) + g(x+ ct).

(4) By d’Alembert’s formula, the solution is given by

u(x, y) =
1

2

∫ x+t

x−t
ψ(s)ds.

(a) No, see part b for details.
(b) Fix an arbitrary x. Then taking the limit as t→∞, we have

lim
t→∞

u(x, t) =
1

2

∫ ∞
−∞

ψ(s)ds =
1

2

∫ 1

−1
ψ(s)ds = 1.

So each point will converge to the height 1. Since the effect holds for any x, in particular, at
x = 0, the height will converge to 1 and hence will not return to its initial height, u(0, 0) = 0.

(c) Simply consider the point x = 2 and t = 1. Then

u(2, 1) =

∫ 3

1
ψ(s)ds = 0.

In general, choosing a point x > t + 1 would yield 0 height. This comes from the fact that
the solution to the wave equation experiences finite propagation.
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