MIDTERM 2

Please write your name on each page of your answer sheet and do not fold the pages together.
(1) Show the uniqueness to the solution of

up — ktgy = f(z,t) forO<az <L, t>0

u(z,0) = ¢(z)
u(0,t) = g(t)
u(L,t) = h(t)

for sufficiently nice functions f, g, h, ¢. You can use whatever method you want. A useful energy
for the heat equation is the L? energy given by Elu](t) = fOL u?(x,t)dz.
(2) Solve in terms of the error function
ur —kuz, =0 onl0<z<oo,t>0
u(x,0) =0
u(0,t) = 1.
Hint: First consider v := u — 1. What equation does v satisfy? Then solve that equation, keeping
in mind that we are solving this on the half-line. The error function is given by

2 [T
Srf(x):ﬁ ; e ¥ ds.

(3) Solve by finding an explicit formula. Make sure to integrate out the solution of

Ugt — Uge = €2¥  on (z,t) € R?
u(z,0) =0
ut(x,0) = 0.

Note that sinh(z) = “=f—, cosh(z) = 4 and that (sinh(z))’ = cosh(z).
(4) Let L,T > 0. Suppose u is twice differentiable on the open rectangle (0, L) x (0,7") and satisfies
the partial differential inequality

U — Ugy +u < 0.

Suppose further that u is continuous on R = [0, L] x [0,T]. If M is the maximum on of v on R
and M > 0, then show that w attains the value M on the sides x = 0 or x = L or on the bottom
t = 0 of R. Hint: Consider the sign or value of each quantity in the partial differential inequality
at a maximum point if it were to occur in the interior. No v = u + € trick is necessary for this
problem. Bonus 42 Do the same problem but with < replaced with < in the PDE. (Make sure
to justify each step).
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1. SOLUTIONS
(1) Let u; and ug be two solutions. Let w = u; — uz. Then w satisfies the PDE

wy —kwee, =0 for0<z <L, t>0,

w(z,0) =0
w(0,t) =0
w(L,t) =0.

Method 1 By the maximum principle, we have that w(z,t) < 0 for z,¢ in the domain. Since
—w satisfies the same equation with the same initial conditions, we know that w(x,t) > 0, hence
0 = w = uy — u9, hence u; = us.

Method 2 Taking the derivative of the energy gives us

d L
th[ ]():/0 2uudx

L
= Qk/ Uz AT
0

L
= —2/<:/ (ug)?dx < 0.
0

Hence energy is nonincreasing. By definition, we have 0 < FE[w](t). When t = 0, we have
fo (2,0)%dx = 0, so

L
Elu](t) = /0 w(a,1)? =0,

which implies that w(z,t) = 0.
(2) Let v = u — 1. Then v satisfies
—kvg, =0 forO0<z<oo, t>0
v(z,0) = —
v(0,t) = 0.

Since v(0,t) = 0, we can use the odd extension of the initial condition to obtain the half-line

solution:

z+y)2 (@—)?
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Changing variables, we get
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v(z,t) = ﬁ/z e 5" ds — ﬁ/me_Sst
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Therefore,
x
u(zx,t) =1—&rf | —
(@9) <\/4kt>

(3) Using the nonhomogeneous solution to the wave equation on the whole line, we have

1
u(z,t) = 3 //T eXdyds

v(z,t) =
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where T' is the two dimensional characteristic triangle. The double integral can be parametrized
and computing in the following way

t z+(t—s)
/ / edyds = / / / edyds
T 0 z—(t—s)
1 [t z+(t—s)
= / e ds
2 Jo x—(t—s)

e2w t
_ 2/ (¢2(t=5) _ =209
0

=2 tsin — 5))ds
= [ sinh(2(t =~ 9)d

2x
= —% cosh(2(t — s))

s=t

s=0
€2x
= 7(cosh(2t) —1).

Hence the solution is given by

e2:p
u(z,t) = T(cosh(Qt) - 1)

Suppose u attains a nonnegative maximum at some point in the interior, say (xg,%o) and first
assume tg < 1. Then
u(zo,to) =M >0
u(xo, to) =0
—Ugz(T0,t0) > 0.
Plugging in to the PDE, at the maximum point we have
0 < ug(xo,to) — ugz(T0,t0) + u(xo, to) <0

which is a contradiction. If the maximum occurs at the interior of (0,L) but at t = T, then
the one-sided derivative at T' of w; is ui(xg,T") > 0 since this is a maximum. We get the same
contradiction hence the maximum cannot occur in the interior. Since R is compact, u must obtain
a maximum somewhere in R, which must be the sides or the bottom.

For the bonus, consider v, = v — &t.
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