
MIDTERM 2

Please write your name on each page of your answer sheet and do not fold the pages together.

(1) Show the uniqueness to the solution of
ut − kuxx = f(x, t) for 0 < x < L, t > 0

u(x, 0) = φ(x)

u(0, t) = g(t)

u(L, t) = h(t)

for sufficiently nice functions f, g, h, φ. You can use whatever method you want. A useful energy

for the heat equation is the L2 energy given by E[u](t) =
∫ L
0 u2(x, t)dx.

(2) Solve in terms of the error function
ut − kuxx = 0 on 0 < x <∞, t > 0

u(x, 0) = 0

u(0, t) = 1.

Hint: First consider v := u− 1. What equation does v satisfy? Then solve that equation, keeping
in mind that we are solving this on the half-line. The error function is given by

Erf(x) =
2√
π

∫ x

0
e−s

2
ds.

(3) Solve by finding an explicit formula. Make sure to integrate out the solution of
utt − uxx = e2x on (x, t) ∈ R2

u(x, 0) = 0

ut(x, 0) = 0.

Note that sinh(x) = ex−e−x

2 , cosh(x) = ex+e−x

2 and that (sinh(x))′ = cosh(x).
(4) Let L, T > 0. Suppose u is twice differentiable on the open rectangle (0, L)× (0, T ) and satisfies

the partial differential inequality

ut − uxx + u < 0.

Suppose further that u is continuous on R = [0, L] × [0, T ]. If M is the maximum on of u on R
and M ≥ 0, then show that u attains the value M on the sides x = 0 or x = L or on the bottom
t = 0 of R. Hint: Consider the sign or value of each quantity in the partial differential inequality
at a maximum point if it were to occur in the interior. No v = u + ε trick is necessary for this
problem. Bonus +2 Do the same problem but with < replaced with ≤ in the PDE. (Make sure
to justify each step).
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1. Solutions

(1) Let u1 and u2 be two solutions. Let w = u1 − u2. Then w satisfies the PDE
wt − kwxx = 0 for 0 < x < L, t > 0,

w(x, 0) = 0

w(0, t) = 0

w(L, t) = 0.

Method 1 By the maximum principle, we have that w(x, t) ≤ 0 for x, t in the domain. Since
−w satisfies the same equation with the same initial conditions, we know that w(x, t) ≥ 0, hence
0 = w = u1 − u2, hence u1 = u2.
Method 2 Taking the derivative of the energy gives us

d

dt
E[w](t) =

∫ L

0
2uutdx

= 2k

∫ L

0
uuxxdx

= −2k

∫ L

0
(ux)2dx ≤ 0.

Hence energy is nonincreasing. By definition, we have 0 ≤ E[w](t). When t = 0, we have

E[w](0) =
∫ L
0 w(x, 0)2dx = 0, so

E[w](t) =

∫ L

0
w(x, t)2 = 0,

which implies that w(x, t) = 0.
(2) Let v = u− 1. Then v satisfies

vt − kvxx = 0 for 0 < x <∞, t > 0

v(x, 0) = −1

v(0, t) = 0.

Since v(0, t) = 0, we can use the odd extension of the initial condition to obtain the half-line
solution:

v(x, t) =
1√

4kπt

∫ ∞
0

e−
(x+y)2

4kt dy − 1√
4kπt

∫ ∞
0

e−
(x−y)2

4kt dy.

Changing variables, we get

v(x, t) =
1√
π

∫ ∞
x√
4kt

e−s
2
ds− 1√

π

∫ x√
4kt

−∞
e−s

2
ds

=
1√
π

∫ ∞
0

e−s
2
ds− 1√

π

∫ x√
4kt

0
e−s

2
ds− 1√

π

∫ 0

−∞
e−s

2
ds− 1√

π

∫ x√
4kt

0
e−s

2
ds

= − 2√
π

1√
π

∫ x√
4kt

0
e−s

2
= −Erf

(
x√
4kt

)
Therefore,

u(x, t) = 1− Erf

(
x√
4kt

)
(3) Using the nonhomogeneous solution to the wave equation on the whole line, we have

u(x, t) =
1

2

∫∫
T
e2ydyds
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where T is the two dimensional characteristic triangle. The double integral can be parametrized
and computing in the following way∫∫

T
e2ydyds =

∫ t

0

∫∫ x+(t−s)

x−(t−s)
e2ydyds

=
1

2

∫ t

0

(
e2y
∣∣∣∣x+(t−s)

x−(t−s)

)
ds

=
e2x

2

∫ t

0
(e2(t−s) − e−2(t−s)ds

= e2x
∫ t

0
sinh(2(t− s))ds

= −e
2x

2
cosh(2(t− s))

∣∣∣∣s=t

s=0

=
e2x

2
(cosh(2t)− 1).

Hence the solution is given by

u(x, t) =
e2x

4
(cosh(2t)− 1)

(4) Suppose u attains a nonnegative maximum at some point in the interior, say (x0, t0) and first
assume t0 < T . Then

u(x0, t0) = M ≥ 0

ut(x0, t0) = 0

−uxx(x0, t0) ≥ 0.

Plugging in to the PDE, at the maximum point we have

0 ≤ ut(x0, t0)− uxx(x0, t0) + u(x0, t0) < 0

which is a contradiction. If the maximum occurs at the interior of (0, L) but at t = T , then
the one-sided derivative at T of ut is ut(x0, T ) ≥ 0 since this is a maximum. We get the same
contradiction hence the maximum cannot occur in the interior. Since R is compact, u must obtain
a maximum somewhere in R, which must be the sides or the bottom.

For the bonus, consider vε = v − εt.
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