## MATH 147A MIDTERM

Choose 5 of the 6. Each problem is worth 10 points for a total of 50 points. No extra credit for doing more problems. Please circle your choice of 5.

(1) Compute the curvature and torsion of

$$\gamma(t) = \left(2\cos\left(\frac{t}{\sqrt{5}}\right), 2\sin\left(\frac{t}{\sqrt{5}}\right), \frac{t}{\sqrt{5}}\right).$$

What curve is this.

(2) Compute the curvature and torsion (if it exists) of

$$\gamma(t) = (\alpha \cos(t), 1 - \sin(t), \beta \cos(t)),$$

where  $\alpha^2 + \beta^2 = 1$ . Show that  $\gamma$  parametrizes a circle, find its center, radius and the plane in which it lies.

- (3) Show that a reparametrization by arc-length of a regular curve gives a unit-speed curve. Show this for the curve  $\gamma(t) = (\cos(3t), \sin(3t))$ .
- (4) Let  $\gamma:(a,b)\to\mathbb{R}^2$  be a regular plane curve and let  $a\in\mathbb{R}^2$  such that  $\gamma(t)\neq a$  for all t. If there exists a  $t_0\in(a,b)$  such that

$$\|\gamma(t) - a\| \le \|\gamma(t_0) - a\|$$

for all  $t \in (a, b)$ , show that the straight line joining the point a with  $\gamma(t_0)$  is the normal line of  $\gamma$  at  $t_0$ .

(5) Let  $\gamma:(a,b)\to\mathbb{R}^3$  be a unit speed-curve such that  $\kappa>0$ . Consider the Frenet-Serret frame  $\{T,N,B\}$  centered at  $\gamma(t_0)$  and use coordinates  $\gamma(t)=(x(t),y(t),z(t))$  so that T=(1,0,0), N=(0,1,0) and B=(0,0,1), and  $\gamma(t_0)=(0,0,0)$ . Prove that

$$\tau(t_0) = \lim_{s \to 0} \frac{6z(s)}{\kappa(t_0)s^3}.$$

(6) Let  $\gamma:(a,b)\to\mathbb{R}^3$  be a unit-speed curve whose curvature  $\kappa$  and torsion  $\tau$  do not vanish. Prove that if  $\gamma$  lies on a unit-sphere, then

$$\frac{1}{\kappa^2} + \left(\frac{\kappa'}{\kappa^2 \tau}\right)^2 = 1$$

Hint: For an orthonormal frame  $\{T, N, B\}$ ,  $\gamma = (\gamma \cdot T)T + (\gamma \cdot N)N + (\gamma \cdot B)B$ . The converse is true if we assume that  $\kappa' \neq 0$ . Try to prove this for fun.

Date: April 28, 2016.