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Abstract. We introduce a modified equation which shares properties of the

incompressible Navier-Stokes equation on the one hand and the Burgers equation on

the other hand. For this equation, we demonstrate global well posedness for sufficiently

smooth initial conditions in the periodic case and in R
3. The key feature of the

modification is the availability of an additional estimate which shows that the L
4-

norm remains finite.

PACS numbers: 02.30.Jr,47.10-g

1. Introduction

The problem of whether the three-dimensional incompressible Navier-Stokes equations

can develop a finite time singularity from smooth initial conditions or if it has global

solutions remains unresolved (see [1, 2, 3] and the references therein). The answer to

this important question is recognized as one of the Millennium prize problems [4, 5].

Despite the complexity of the topic, a lot of progress has been made on this field

in the past. For the two-dimensional case, global-in-time existence of unique weak and

strong solutions is well-known (see [1, 2]). In three dimensions weak solutions are known

to exist globally in time. For strong solutions, existence and uniqueness is known for a

short interval of time which depends continuously on the initial data [6]. Many results

published in the past, starting with [7], provide criteria for the global regularity of

solutions via conditions applied to the velocity field [8, 9] or components thereof [10],

the vorticity [11], its direction [12] or to the pressure field [13, 14].

The theory for the compressible Navier-Stokes equation is less well developed, and

we will not attempt a summary here. The multi-dimensional Burgers equation [15] can

be regarded as a crude simplification of this model. Global existence and uniqueness of

strong solutions can be established in two and three-dimensions for suitably small initial

conditions, much as with the Navier-Stokes system. Irrotational flows do possess global

solutions for large data in arbitrary dimension, thanks to the Cole-Hopf transformation
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[16, 17]. However, there is no multidimensional weak theory because of the absence of

a mechanism for energy dissipation, unlike Navier-Stokes.

In this paper, we introduce a new equation which is a hybrid of the Navier-Stokes

equation and the Burgers equation. For this model equation, we can show existence

and regularity for H1 initial conditions of arbitrary size. This will be carried out in R
3

and periodic domains in R
3. A simple modification of the nonlinearity makes the proof

of global solutions possible, insofar as an additional estimate is available showing that

the solution remains finite in Lp, 2 < p < ∞. With p = 4, this is then coupled with

standard estimates for the H1-norm to complete the proof.

2. Model equation

We consider a three-dimensional domain Ω which shall be either R
3 or a bounded

rectangle in R
3 with periodic boundary conditions. Let P = 1 − ∆−1∇ ⊗ ∇ be the

Leray-Hopf projection operator (with periodic boundary conditions when Ω is bounded):

P[P[u]] = P[u] , ∇ · P[u] = 0 . (1)

The usual incompressible Navier-Stokes equation

∂

∂t
v + v · ∇v +∇p = ν∆v + f , ∇ · v = 0

can be written with the projection operator P

∂

∂t
v + P[v · ∇v] = ν∆v + P[f ] , ∇ · v = 0

such that no explicit pressure term is present in the equation.

We can rewrite the Navier-Stokes equation without the incompressibility constraint

in the form
∂

∂t
u+ P[u] · ∇P[u] = ν∆u+ f , (2)

where the solution of the Navier-Stokes equation can be recovered by taking v = P [u].

The equation (2) can be compared with Burgers’ equation whose structure is

formally similar:

∂

∂t
u+ u · ∇u = ν∆u+ f . (3)

For equation (3) the nonlinearity is purely local, whereas for equation (2) the nonlinear

interaction involves the nonlocal projection.

A natural hybrid of these two equations leads a new model equation involving a

compressible velocity field u that is convected by its solenoidal part P[u]:

∂

∂t
u+ P[u] · ∇u = ν∆u+ f . (4)

More accurately this means: The convection of the velocity field u is local in position

space, but the projection operator is local in Fourier space and thus shares this mixture

of local and non-local interactions with the original Navier-Stokes equation.

In the next section, we show global regularity for equation (4) for suitable initial

data without any size restrictions.
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3. Global solutions

In this section, the existence of global solutions is proven for the model equation (4) in

a domain Ω which shall either be R
3 or a periodic rectangle in R

3.

Theorem 1. Let u0 ∈ H1(Ω). Let f ∈ L2
loc(R

+, L2(Ω)) ∩ L1
loc(R

+, L4(Ω)). Then the

initial value problem for the model equation (4) has a unique global solution

u ∈ C(R+, H1(Ω)) ∩ L2
loc(R

+, H2(Ω)) .

The aim is to show that the solution remains a priori bounded in

L∞([0, T ), H1(Ω)) ∩ L2([0, T ), H2(Ω)) for any T > 0, which implies its existence and

uniqueness with standard arguments comparable to e.g. [1, 18]. Throughout the

argument, we denote the Euclidean norm of the vector u =
∑

i uiei by u = (
∑

i u
2
i )

1/2.

We first prove the following lemma:

Lemma 1. Let u0, f , Ω be defined as above. Then the quantity ‖u(t)‖Lp remains finite

for 2 ≤ p ∈ R.

Proof. Taking the Euclidean inner product of (4) with u yields the identity

1

2

(
∂

∂t
u2 + Pu · ∇u2

)

=
ν

2
∆u2 − ν|∇u|2 + f · u . (5)

Integrate (5) over Ω, use the fact that Pu is divergence free, and then apply the Cauchy-

Schwarz inequality to obtain

1

2

∂

∂t
‖u‖2L2 + ν‖∇u‖2L2 ≤ ‖f‖L2‖u‖L2 . (6)

Defining x(t) = 1
2

(

‖u(t)‖2L2 +
∫ t

0
ν‖∇u(s)‖2L2ds

)

, we have that

x′(t) ≤ ‖f(t)‖L2(2x(t))1/2 .

Upon integration, this gives the inequality

‖u(t)‖2L2 +

∫ t

0

ν‖∇u(s)‖2L2ds ≤

(

‖u0‖L2 +

∫ t

0

‖f(s)‖L2ds

)2

. (7)

With this estimate the lemma is shown for the case p = 2.

Let 2 ≤ n ∈ R and multiply the identity (5) by u2(n−1):

1

2n

(
∂

∂t
u2n + Pu · ∇u2n

)

=
ν

2

(
∂

∂xj
(u2(n−1) ∂

∂xj
u2)−

4(n− 1)

n2
|∇un|2

)

− νu2(n−1)|∇u|2 + u2(n−1)f · u .

Integrate this over Ω and apply Hölder’s inequality:

1

2n

∂

∂t
‖u‖2nL2n +

∫

Ω

(
2ν(n−1)

n2 |∇un|2 + νu2(n−1)|∇u|2
)

dx ≤ ‖f‖L2n‖u‖2n−1
L2n

If we let

y(t) =
1

2n
‖u(t)‖2nL2n +

∫ t

0

∫

Ω

(
2ν(n−1)

n2 |∇un(s)|2 + νu2(n−1)(s)|∇u(s)|2
)

dxds ,
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then we obtain

y′(t) ≤ ‖f(t)‖L2n(2n y(t))
2n−1

2n .

This leads to the estimate

‖u(t)‖2nL2n + 2n

∫ t

0

∫

Ω

(
2ν(n−1)

n2 |∇un(s)|2 + νu2(n−1)(s)|∇u(s)|2
)

dxds (8)

≤

(

‖u0‖L2n +

∫ t

0

‖f(s)‖L2nds

)2n

.

Remark: This key argument fails for the case of the Navier-Stokes equation.

Proof of Theorem 1. Take the L2-inner product of (4) with ∆u and integrate by parts:

1

2

∂

∂t
‖∇u‖2L2 + ν‖∆u‖2L2 =

∫

Ω

(Pu · ∇u) ·∆u dx

︸ ︷︷ ︸

(i)

+

∫

Ω

f ·∆u dx

︸ ︷︷ ︸

(ii)

.

The forcing term (ii) has the bound
∫

Ω

f ·∆udx ≤ ‖f‖L2‖∆u‖L2 ≤
ν

4
‖∆u‖2L2 +

1

ν
‖f‖2L2 .

The nonlinear term (i) is estimated as follows:
∫

Ω

(Pu · ∇u) ·∆u dx = −

∫
∂

∂xk

ui
∂

∂xk

(

(Pu)j
∂

∂xj

ui

)

dx

= −

∫
∂

∂xk

ui

(

(Pu)j
∂

∂xj

∂

∂xk

ui +
∂

∂xk

(Pu)j
∂

∂xj

ui

)

dx

= −

∫ (
1

2
(Pu)j

∂

∂xj

|∇u|2 +
∂

∂xk

ui
∂

∂xj

(
∂

∂xk

(Pu)jui)

)

dx

=

∫
∂

∂xj

∂

∂xk
ui

∂

∂xk
(Pu)jui dx

≤ ‖∇2u‖L2‖∇Pu‖L4‖u‖L4 .

The second norm above is handled by interpolation. We first note that

‖∇Pu‖L4 ≤ ‖∇Pu‖
3/4
L6 ‖∇Pu‖

1/4
L2 .

Now when Ω = R
3, the Sobolev embedding theorem gives

‖∇Pu‖L6 ≤ C‖∇2Pu‖L2 . (9)

When Ω is a periodic domain, the norm on the right must be replaced by ‖∇Pu‖H1 .

However, since ∇Pu has zero mean, this is bounded again by C‖∇2Pu‖L2 , by the

Poincaré inequality. Therefore, (9) holds in both cases. Using the facts that the operator

P commutes with derivatives and that it is a projection in L2, we have that

‖∇Pu‖L2 ≤ ‖∇u‖L2 and ‖∇2Pu‖L2 ≤ ‖∇2u‖L2 .
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Next, we use integration by parts to obtain the simple ellipticity identity

‖∇2u‖2L2 =

∫

Ω

∂

∂xj

∂

∂xk
ui

∂

∂xj

∂

∂xk
ui dx (10)

=

∫

Ω

∂

∂xj

∂

∂xj
ui

∂

∂xk

∂

∂xk
ui dx

= ‖∆u‖2L2 .

Combining these observations with Young’s inequality, we conclude that the nonlinear

term (i) is bounded by

C‖∆u‖
7/4
L2 ‖∇u‖

1/4
L2 ‖u‖L4 ≤

ν

4
‖∆u‖2L2 +

C

ν7
‖∇u‖2L2‖u‖8L4 .

Altogether, we get the inequality

∂

∂t
‖∇u‖2L2 + ν‖∆u‖2L2 ≤

C

ν7
‖∇u‖2L2‖u‖8L4 +

C

ν
‖f‖2L2 .

Using Gronwall’s inequality, we find that

‖∇u‖2L2 + ν

∫ t

0

‖∆u(s)‖2L2 ds ≤ ‖∇u0‖
2
L2 exp

C

ν7

∫ t

0

‖u(s)‖8L4 ds (11)

+
C

ν

∫ t

0

(

exp
C

ν7

∫ t

s

‖u(σ)‖8L4 dσ

)

‖f(s)‖2L2 ds .

Combining (7) and Lemma 1 with p = 4, and (11), we see that the quantity

‖u(t)‖2H1 +

∫ t

0

ν[‖∇u(s)‖2L2 + ‖∆u(s)‖2L2 ] ds

remains finite. However, by (10) and the fact that L∞
loc(R

+, L2(Ω)) ⊂ L2
loc(R

+, L2(Ω))

we have that

‖u(t)‖2H1 +

∫ t

0

ν‖u(s)‖|2H2(Ω) ds

also remains finite.

4. Final remarks

In this paper, we have focused on the existence of global solutions for an equation similar

to the incompressible Navier-Stokes equation. The main feature of this equation is the

existence of an infinite number of conserved quantities ‖u‖Lp in the ideal (non-viscous)

case without forcing. This property is not only responsible for the existence of global

solutions but should show up in the statistics of intermittent turbulent fluctuations.

Work in this direction is in progress.
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