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SSDB spaces and maximal monotonicity

by

Stephen Simons

Abstract

In this paper, we develop some of the theory of SSD spaces and SSDB spaces, and
deduce some results on maximally monotone multifunctions on a reflexive Banach space.

1 Introduction

In this paper, we develop enough of the theory of SSD spaces and SSDB spaces that we
can obtain some significant results on maximally monotone multifunctions on a reflexive
Banach space. With a few minor additions, this is a written version of the lecture with
the same title delivered at the IX ISORA meeting in Lima, Peru, in October 2009, and
we will not attempt to give a comprehensive exposition of the theory of SSD spaces and
SSDB spaces. For this, we refer the reader to [14] and [15], from which many of the proofs
given here are taken.

Many of the original results on maximally monotone multifunctions on a reflexive
Banach space were obtained using Brouwer’s fixed–point theorem either directly or in-
directly. The approach given here is based on convex analysis — more specifically the
Fenchel duality theorem. In Section 2, we give the three versions of the Fenchel duality
theorem that we will use in this paper.

In Section 3, we introduce the concepts of SSD space, q–positive set and the functions
Φ·, which are the generalizations to SSD spaces of Fitzpatrick functions of monotone
sets. We also introduce the q–positive sets Pq(·) determined by certain convex functions.
Despite the fact that this section uses the idea of conjugate function from convex analysis,
the arguments used are essentially algebraic, apart from the disguised differentiability
argument of Lemma 3.7.

In Section 4, we introduce the concept of SSDB space, which is a SSD space with
an appropriate Banach space structure. The main results of this section are the two
“pos–neg theorems”, Theorem 4.3 and 4.6 and the criterion for and properties of maximal
q–positivity contained in Theorem 4.4.

For the rest of this paper, we suppose that E is a reflexive Banach space. In Section
5, we show how E ×E∗ can be considered as an SSDB space, and how Theorems 2.4 and
4.4 lead to results on maximal monotonicity. Theorem 5.1 and Theorem 5.4 will be used
in Section 6.

Up to this point, our discussion of monotonicity has been in terms of monotone subsets
of E × E∗. In Section 6 we move the emphasis to monotone multifunctions from E into
E∗. In Theorem 6.3, we show how Theorem 5.1 gives Rockafellar’s surjectivity theorem,
and in Theorem 6.5, we show how Theorem 5.4 gives sufficient conditions for the sum of
maximally monotone multifunctions to be maximally monotone.

In the final section of this paper, Section 7, we show how the pos–neg theorem,
Theorem 4.6, together with the simple properties of the reflection maps ρ1, ρ2: E ×E∗ →
E × E∗ defined by ρ1(x, x

∗) := (−x, x∗) and ρ2(x, x
∗) := (x,−x∗) lead to an abstract

Hammerstein theorem.
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The author would like to express his appreciation to Radu Ioan Boţ for some very
constructive comments on the first version of this paper.

2 Versions of the Fenchel duality theorem

All vector spaces in the paper will be real. If X is a nonzero vector space and f : F 7→
]−∞,∞] then we write dom f := {x ∈ F : f(x) ∈ R}. The set dom f is the effective domain
of f . f is said to be proper if dom f 6= ∅. We write PC(X) for the set of proper convex
functions from X into ]−∞,∞]. If X is a nonzero normed space we write PCLSC(X)
for {f ∈ PC(X): f is lower semicontinuous}. If E and F are nonzero vector spaces,
〈·, ·〉:E × F → R is a bilinear form and f ∈ PC(E) then the Fenchel conjugate, f∗, of f
with respect to 〈·, ·〉 is defined for y ∈ F by

f∗(y) := supx∈E

[

〈x, y〉 − f(x)
]

.

The commonest (but not the only) use of this notation is when E is a normed space, F is
the dual, E∗, of E and 〈·, ·〉 is the duality pairing.

We start off by stating a result that is an immediate consequence of Rockafellar’s
version of the Fenchel duality theorem (see [11, Theorem 1, p. 82–83] for the original
version and Zălinescu, [18, Theorem 2.8.7, p. 126–127] for more general results):

Theorem 2.1. Let F be a nonzero normed space, f : F 7→ ]−∞,∞] be proper and convex,
g: F 7→ R be convex and continuous, and f + g ≥ 0 on F . Then there exists z∗ ∈ F ∗ such
that f∗(z∗) + g∗(−z∗) ≤ 0.

Theorem 2.2 below was first proved by Attouch–Brezis
(

this follows from [1, Corollary

2.3, pp. 131–132]
)

– there is a somewhat different proof in Simons, [14, Theorem 15.1, p.
66], and a much more general result was established in Zălinescu, [18, Theorem 2.8.6, pp.
125–126]. We note that the result contained in Simons, [14, Theorem 8.4, p. 46] implies
both Theorem 2.1 and Theorem 2.2, and that [14, Theorem 7.4, p. 43] gives a sharp lower
bound on the possible values of ‖z∗‖.

Theorem 2.2. Let E be a nonzero Banach space, f, g ∈ PCLSC(E), f + g ≥ 0 on E and
⋃

λ>0 λ
[

dom f − dom g
]

be a closed linear subspace of E. Then there exists z∗ ∈ E∗ such
that f∗(z∗) + g∗(−z∗) ≤ 0.

Notation 2.3. If E and F are nonzero normed spaces, we define the dual of E ×F to be
E∗×F ∗ under the pairing

〈

(x, y), (x∗, y∗)
〉

:= 〈x, x∗〉+〈y, y∗〉
(

(x, y) ∈ E×F, (x∗, y∗) ∈

E∗ × F ∗). We then define the projection maps π1, π2 by π1(x, y) := x and π2(x, y) := y.

We end this section with a bivariate generalization of Theorem 2.2, which was first
proved in Simons–Zălinescu, [16, Theorem 4.2, pp. 9–10]. There was a simpler proof given
in Simons, [14, Theorem 16.4, pp. 68–69]. The hypothesis of Theorem 2.4 is that h(x, ·)
is the “inf–convolution” of f(x, ·) and g(x, ·), and the conclusion is that h∗(·, y∗) is the
“exact inf–convolution” of f∗(·, y∗) and g∗(·, y∗).
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Theorem 2.4. Let E and F be nonzero Banach spaces, f, g: E × F 7→ ]−∞,∞] be
proper, convex and lower semicontinuous,

⋃

λ>0 λ
[

π1 dom f − π1 dom g
]

be a closed linear
subspace of E and, for all (x, y) ∈ E × F ,

h(x, y) := inf
{

f(x, u) + g(x, v): u, v ∈ F, u+ v = y
}

> −∞.

Then, for all (x∗, y∗) ∈ E∗ × F ∗ = (E × F )∗,

h∗(x∗, y∗) = min
{

f∗(s∗, y∗) + g∗(t∗, y∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗}.

3 SSD spaces

Definition 3.1. We will say that
(

B, ⌊·, ·⌋
)

is a symmetrically self–dual space (SSD space)
if B is a nonzero real vector space and ⌊·, ·⌋:B ×B → R is a symmetric bilinear form. In
this case, we will always write q(b) := 1

2⌊b, b⌋ (b ∈ B). (“q” stands for “quadratic”.)

Now let
(

B, ⌊·, ·⌋
)

be an SSD space and A ⊂ B. We say that A is q–positive if A 6= ∅
and

b, c ∈ A =⇒ q(b− c) ≥ 0.

In this case, since q(0) = 0,

b ∈ A =⇒ inf q(A− b) = 0. (1)

We then define ΦA: B → ]−∞,∞] by

ΦA(b) := supA
[

⌊·, b⌋ − q
]

(b ∈ B). (2)

ΦA is a generalization to SSD spaces of the “Fiztpatrick function” of a monotone set,
which was originally introduced in [6] in 1988, but lay dormant until it was rediscovered
by Mart́ınez-Legaz and Théra in [8] in 2001. We note then that, for all b ∈ B,

ΦA(b) = q(b)− infa∈A

[

q(a)− ⌊a, b⌋+ q(b)
]

= q(b)− infa∈A q(a− b) = q(b)− inf q(A− b).

}

(3)

From (1),
ΦA = q on A. (4)

Thus ΦA ∈ PC(B). We say that A is maximally q–positive if A is q–positive and A is not
properly contained in any other q–positive set. In this case, if b ∈ B and inf q(A− b) ≥ 0
then clearly b ∈ A. In other words,

(

b ∈ B \ A =⇒ inf q(A − b) < 0
)

. From (1),

inf q(A− b) ≤ 0 and
(

inf q(A− b) = 0 ⇐⇒ b ∈ A
)

. Thus, from (3)

ΦA ≥ q on B and
(

ΦA(b) = q(b) ⇐⇒ b ∈ A
)

. (5)

We make the elementary observation that if b ∈ B and q(b) ≥ 0 then the linear span Rb

of {b} is q–positive.

3
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We now give some examples of SSD spaces and their associated q–positive sets. These
examples are taken from [14, pp. 79–80].

Example 3.2. Let B be a Hilbert space with inner product (b, c) 7→ 〈b, c〉.

(a) If, for all b, c ∈ B, ⌊b, c⌋ := 〈b, c〉 then q(b) = 1
2
‖b‖2 and every nonempty subset of

B is q–positive.

(b) If, for all b, c ∈ B, ⌊b, c⌋ := −〈b, c〉 then q(b) = −1
2‖b‖

2 and the q–positive sets are
the singletons.

(c) If B = R
3 and

⌊

(b1, b2, b3), (c1, c2, c3)
⌋

:= b1c2 + b2c1 + b3c3,

then q(b1, b2, b3) = b1b2 +
1
2b

2
3. Here, if M is any nonempty monotone subset of R × R

(in the obvious sense) then M × R is a q–positive subset of B. The set R(1,−1, 2) is a
q–positive subset of B which is not contained in a set M × R for any monotone subset of
R×R. The helix

{

(cos θ, sin θ, θ): θ ∈ R
}

is a q–positive subset of B, but if 0 < λ < 1 then

the helix
{

(cos θ, sin θ, λθ): θ ∈ R
}

is not.

Example 3.3. Let E be a nonzero Banach space and B := E × E∗. For all (x, x∗) and
(y, y∗) ∈ B, we set

⌊

(x, x∗), (y, y∗)
⌋

:= 〈x, y∗〉+ 〈y, x∗〉. Then
(

B, ⌊·, ·⌋
)

is an SSD space

with q(x, x∗) = 1
2

[

〈x, x∗〉 + 〈x, x∗〉
]

= 〈x, x∗〉. Consequently, if (x, x∗), (y, y∗) ∈ B

then 〈x− y, x∗− y∗〉 = q(x− y, x∗− y∗) = q
(

(x, x∗)− (y, y∗)
)

. Thus if A ⊂ B then A is
q–positive exactly when A is a nonempty monotone subset of B in the usual sense, and A

is maximally q–positive exactly when A is a maximally monotone subset of B in the usual
sense. We point out that any finite dimensional SSD space of the form described here must
have even dimension. Thus cases of Example 3.2 with finite odd dimension cannot be of
this form.

Example 3.4.
(

R
3, ⌊·, ·⌋

)

is not an SSD space with

⌊

(b1, b2, b3), (c1, c2, c3)
⌋

:= b1c2 + b2c3 + b3c1.

(The bilinear form ⌊·, ·⌋ is not symmetric.)

Definition 3.5. Let
(

B, ⌊·, ·⌋
)

be an SSD space. If f ∈ PC(B) and f ≥ q on B, we write

Pq(f) :=
{

b ∈ B: f(b) = q(b)
}

.

We then note from (5) that

if A is maximally q–positive then A = Pq(ΦA). (6)

If g ∈ PC(B) and g ≥ −q on B then we write Nq(g) :=
{

b ∈ B: g(b) = −q(b)
}

.

We now introduce the concept of intrinsic conjugate for an SSD space.
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Definition 3.6. If
(

B, ⌊·, ·⌋
)

is an SSD space and f ∈ PC(B), we write f@ for the Fenchel
conjugate of f with respect to the pairing ⌊·, ·⌋, that is to say,

for all c ∈ B, f@(c) := supB
[

⌊·, c⌋ − f
]

.

The concepts introduced in Definitions 3.5 and 3.6 are related in our next result, which
uses a disguised differentiability argument.

Lemma 3.7. Let
(

B, ⌊·, ·⌋
)

be an SSD space, f ∈ PC(B) and f ≥ q on B. Then
f@ = q on Pq(f).

Proof. Let a ∈ Pq(f). Let λ ∈ ]0, 1[ . For simplicity in writing, let µ := 1 − λ ∈ ]0, 1[ .
Then, for all b ∈ B,

λ2q(b) + λµ⌊b, a⌋+ µ2q(a) = q
(

λb+ µa
)

≤ f(λb+ µa)

≤ λf(b) + µf(a) = λf(b) + µq(a).

Thus λ2q(b) + λµ⌊b, a⌋ ≤ λf(b) + λµq(a). Dividing by λ and letting λ → 0, we have
⌊b, a⌋ ≤ f(b) + q(a), that is to say ⌊a, b⌋ − f(b) ≤ q(a), and, taking the supremum
over b, f@(a) ≤ q(a). On the other hand, f@(a) ≥ ⌊a, a⌋ − f(a) = 2q(a) − q(a) = q(a),
completing the proof of Lemma 3.7. �

The next result gives a basic property of ΦA
@.

Lemma 3.8. Let
(

B, ⌊·, ·⌋
)

be an SSD space and A be a nonempty q–positive subset of

B. Then ΦA
@ ≥ ΦA on B.

Proof. Let c ∈ B. Then, from (4),

ΦA
@(c) = supB

[

⌊c, ·⌋ − ΦA

]

≥ supA
[

⌊c, ·⌋ − ΦA

]

= supA
[

⌊c, ·⌋ − q
]

= ΦA(c). �

We now introduce the important concepts of “BC–function” and “TBC–function”.

Definition 3.9. Let
(

B, ⌊·, ·⌋
)

be a SSD space and f, g ∈ PC(B). We say that f is a
BC–function if

b ∈ B =⇒ f@(b) ≥ f(b) ≥ q(b). (7)

“BC” stands for “bigger conjugate”. We say that g is a TBC–function if

b ∈ B =⇒ g@(−b) ≥ g(b) ≥ −q(b). (8)

“TBC” stands for “twisted bigger conjugate”. Of course, g is a TBC–function if, and only
if, g is a BC–function with respect to the SSD space

(

B,−⌊·, ·⌋
)

Lemma 3.10. Let
(

B, ⌊·, ·⌋
)

be a SSD space and f ∈ PC(B) be a BC–function. Then

Pq

(

f@
)

= Pq(f).

Proof. This follows from Lemma 3.7 and the inclusion Pq

(

f@
)

⊂ Pq(f), which is
immediate from (7). �
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Theorem 3.11. Let
(

B, ⌊·, ·⌋
)

be an SSD space and A be a maximally q–positive subset

of B. Then ΦA is a BC–function and Pq

(

ΦA
@
)

= Pq

(

ΦA

)

= A.

Proof. The first assertion follows from Lemma 3.8 and (5), and the second assertion is
immediate from Lemma 3.10 and (6). �

Remark 3.12. We shall see by combining (9) and Remark 5.5 that there may exist a
function that is both a BC–function and a TBC–function but not of the form ΦA for any
nonempty q–positive set A.

We now give two computational results. In the first of these, we investigate the
“translation” of a BC–function. This result will be used in the “pos–neg” theorems,
Theorem 4.3 and Theorem 4.6.

Lemma 3.13. Let
(

B, ⌊·, ·⌋
)

be a SSD space, f ∈ PC(B) be a BC–function and c ∈ B.
We define fc ∈ PC(B) by fc := f(· + c) − ⌊·, c⌋ − q(c). Then fc is a BC–function,
dom fc = dom f − c and Pq(fc) = Pq(f)− c.

Proof. For all b ∈ B,

fc
@(b) = supd∈B

[

⌊d, b⌋+ ⌊d, c⌋+ q(c)− f(d+ c)
]

= supe∈B

[

⌊e− c, b+ c⌋+ q(c)− f(e)
]

= supe∈B

[

⌊e, b+ c⌋ − ⌊c, b⌋ − f(e)
]

− q(c)

= f@(b+ c)− ⌊c, b⌋ − q(c).

It follows from (7) that fc
@(b) ≥ f(b+ c)− ⌊b, c⌋ − q(c) = fc(b) and

fc(b) = f(b+ c)− ⌊b, c⌋ − q(c) ≥ q(b+ c)− ⌊b, c⌋ − q(c) = q(b).

Consequently, fc is a BC–function. It is obvious that dom fc = dom f − c. Further, since

b ∈ Pq(fc) ⇐⇒ f(b+ c)− ⌊b, c⌋ − q(c) = q(b)

⇐⇒ f(b+ c) = q(b+ c) ⇐⇒ b+ c ∈ Pq(f),

we have Pq(fc) = Pq(f)− c, as required. �

In the second computational result, we show how we can always obtain a TBC–
function from a BC–function by an appropriate linear transformation.

Lemma 3.14. Let
(

B, ⌊·, ·⌋
)

be an SSD space, ρ:B → B be a linear surjection such

that, for all b, c ∈ B,
⌊

ρ(b), ρ(c)
⌋

= ⌊b,−c⌋, and g ∈ PC(B) be a BC–function. Then
g ◦ ρ and g ◦ (−ρ) are TBC– functions, ρ dom (g ◦ ρ) = dom g, ρNq(g ◦ ρ) = Pq(g),
−ρ dom (g ◦ (−ρ)) = dom g and −ρNq(g ◦ (−ρ)) = Pq(g).

Proof. We give the proof for g ◦ ρ. The proof for g ◦ (−ρ) is similar. For all c ∈ B,

(g ◦ ρ)@(−c) = supb∈B

[

⌊b,−c⌋ − g
(

ρ(b)
)]

= supb∈B

[

⌊ρ(b), ρ(c)⌋ − g
(

ρ(b)
)]

= supd∈B

[

⌊d, ρ(c)⌋ − g(d)
]

= g@
(

ρ(c)
)

≥ g
(

ρ(c)
)

≥ q
(

ρ(c)
)

= 1
2⌊ρ(c), ρ(c)⌋ =

1
2⌊c,−c⌋ = −q(c).

6
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Thus g ◦ ρ is a TBC– function. Further,

b ∈ ρ dom (g ◦ ρ) ⇐⇒ there exists c ∈ B such that g
(

ρ(c)
)

∈ R and b = ρ(c)

⇐⇒ there exists d ∈ B such that g(d) ∈ R and b = d

⇐⇒ g(b) ∈ R ⇐⇒ b ∈ dom g,

from which ρ dom (g ◦ ρ) = dom g, and

b ∈ ρNq(g ◦ ρ) ⇐⇒ there exists c ∈ B such that g
(

ρ(c)
)

= −q(c) and b = ρ(c)

⇐⇒ there exists c ∈ B such that g
(

ρ(c)
)

= q
(

ρ(c)
)

and b = ρ(c)

⇐⇒ there exists d ∈ B such that g(d) = q(d) and b = d

⇐⇒ b ∈ Pq(g),

from which ρNq(g ◦ ρ) = Pq(g). �

Lemma 3.15 is a subtler property of the bilinear form q. In the situation of Example
3.3, Corollary 3.16 gives us Voisei–Zălinescu [17, Proposition 1].

Lemma 3.15. Let
(

B, ⌊·, ·⌋
)

be an SSD space, f ∈ PC(B), f ≥ q on B and b, c ∈ B.
Then

−q(b− c) ≤
[

√

(f − q)(b) +
√

(f − q)(c)
]2

.

Proof. See [15, Lemma 2.6]. �

Corollary 3.16. Let
(

B, ⌊·, ·⌋
)

be an SSD space, f ∈ PC(B), f ≥ q on B and b, c ∈ B.
Then

−q(b − c) ≤ 2(f − q)(b) + 2(f − q)(c).

Proof. This is immediate from Lemma 3.15 and the Cauchy–Schwarz inequality. �

Lemma 3.17 is suggested by Burachik–Svaiter, [5, Theorem 3.1, pp. 2381–2382] and
Penot, [9, Proposition 4(h)=⇒(a), pp. 860–861]. Lemma 3.17 will be used in Theorem 4.4.

Lemma 3.17. Let
(

B, ⌊·, ·⌋
)

be an SSD space, f ∈ PC(B), f ≥ q on B and Pq(f) 6= ∅.
Then Pq(f) is a q–positive subset of B.

Proof. This is immediate from Lemma 3.15, or Corollary 3.16, or by using the fact that
q satisfies the parallelogram law: x, y ∈ B =⇒ q(x) + q(y) = 1

2q(x+ y) + 1
2q(x− y). �

The final result of this section can be thought of as a completion of Lemma 3.8. It
will not be used in the sequel.

Lemma 3.18. Let
(

B, ⌊·, ·⌋
)

be an SSD space and A be a nonempty q–positive subset of

B. Then ΦA
@ ≤ q on A, ΦA

@ ≥ q on B, and ΦA
@@ = ΦA on B.

Proof. See [15, Lemma 2.11]. �
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4 SSDB spaces

We now introduce the SSDB spaces, a subclass of the class of SSD spaces. Our treatment
of the SSD spaces in Section 3 has been essentially nontopological. The additional norm
structure of the SSDB spaces is essentially what makes maximally monotone multifunctions
on a reflexive Banach space much more tractable than those on a general Banach space.
We will return to this issue when we consider Example 3.3 in Section 5.

Definition 4.1. We will say that
(

B, ⌊·, ·⌋, ‖·‖
)

is a symmetrically self–dual Banach space

(SSDB space) if
(

B, ⌊·, ·⌋
)

is a SSD space,
(

B, ‖ · ‖
)

is a Banach space, and there exists a

linear isometry ι from B onto B∗ such that, for all b, c ∈ B,
〈

b, ι(c)
〉

= ⌊b, c⌋. We note then

that, for all f ∈ PC(B) and c ∈ B, f@(c) := supB
[

⌊·, c⌋ − f
]

= supB
[

〈·, ι(c)〉 − f
]

=

f∗(ι(c)
)

, that is to say f@ = f∗ ◦ ι. It is easy to see that the quadratic form q is

continuous and, for all b ∈ B, |q(b)| = 1
2

∣

∣⌊b, b⌋
∣

∣ ≤ 1
2
‖b‖2.

Let g0 := 1
2‖ · ‖

2 on B. Then, for all b ∈ B,

g0
@(b) = g0

∗(ι(b)
)

= 1
2
‖ι(b)‖2 = 1

2
‖b‖2 = g0(b).

It follows that
g0 is both a BC–function and a TBC–function. (9)

Examples 4.2. (a) In Example 3.2(a),
(

B, ⌊·, ·⌋, ‖ · ‖
)

is a SSDB space under the Hilbert

space norm, q = g0 and Nq(g0) = {0}.
(

We recall that the set Nq(g0) was defined in

Definition 3.5.
)

(b) In Example 3.2(b),
(

B, ⌊·, ·⌋, ‖ · ‖
)

is a SSDB space under the Hilbert space norm,
q = −g0 and Nq(g0) = B.

(c) In Example 3.2(c),
(

B, ⌊·, ·⌋, ‖ · ‖
)

is a SSDB space under the Euclidean norm and

Nq(g0) = {(b1, b2, b3) ∈ B: b1 + b2 = 0, b3 = 0}.

Our next result is the “pos–neg theorem of Rockafellar type”. This will be used
indirectly in Theorem 5.1, which will be used in turn indirectly in our proof of Rockafellar’s
surjectivity theorem, Theorem 6.3, and the sum theorem, Theorem 6.5. This result first
appeared in Simons, [14, Theorem 19.16, p. 83].

Theorem 4.3. Let
(

B, ⌊·, ·⌋, ‖ · ‖
)

be a SSDB space, f ∈ PC(B) be a BC–function and
g:B → R be a continuous TBC–function. Then Pq(f)−Nq(g) = B.

Proof. Let c be an arbitrary element of B. From Lemma 3.13, fc is a BC–function and
so, using (7) and (8),

b ∈ B =⇒ fc(b) + g(b) ≥ q(b)− q(b) = 0.

Rockafellar’s version of the Fenchel duality theorem, Theorem 2.1, and the surjectivity of ι
now give b ∈ B such that fc

∗(ι(b)
)

+g∗
(

−ι(b)) ≤ 0, that is to say fc
@(b)+g@(−b) ≤ 0.

From (7) and (8) again, fc(b)+g(b) ≤ 0 = q(b)−q(b). From (7) and (8) for a third time,
fc(b) = q(b) and g(b) = −q(b), that is to say, using Lemma 3.13, b ∈ Pq(fc) = Pq(f)−c

and also b ∈ Nq(g). But then c = (c + b) − b ∈ Pq(f) − Nq(g). This completes the
proof of Theorem 4.3. �
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Theorem 4.4. Let
(

B, ⌊·, ·⌋, ‖ · ‖
)

be a SSDB space. Then:

(a) Let f ∈ PC(B) be a BC–function. Then Pq(f)−Nq(g0) = B.

(b) Let A be a q–positive subset of B and A − Nq(g0) = B. Then A is maximally
q–positive.

(c) Let f ∈ PC(B) be a BC–function. Then Pq(f) is maximally q–positive. Further-
more, Pq(f

@) = Pq(f).

(d) Let A be a q–positive subset of B. Then A is maximally q–positive if, and only if
A−Nq(g0) = B.

Proof. (a) This follows from (9) and Theorem 4.3.

(b) Suppose that b ∈ B and A ∪ {b} is q–positive. By hypothesis, there exists
a ∈ A such that a − b ∈ Nq(g0). Thus 1

2‖a − b‖2 = −q(a − b). Since A ∪ {b} is
q–positive, q(a− b) ≥ 0, and so 1

2
‖a− b‖2 ≤ 0. Thus b = a ∈ A.

(c) From (a) and Lemma 3.17, Pq(f) is nonempty and q–positive. (c) now follows
from (a), (b) and Lemma 3.10.

(d) We have already established (⇐=) in (b). Suppose, conversely, that A is maxi-
mally q–positive. It follows from Theorem 3.11 that ΦA is a BC–function and Pq(ΦA) = A.
Thus, from (a), A−Nq(g0) = Pq(ΦA)−Nq(g0) = B. �

Remark 4.5. We note from (9) and Theorem 4.4(c) that Pq(g0) is maximally q–positive
and Pq(g0

@) = Pq(g0). Now suppose that a ∈ Pq(g0) and b ∈ B. From the Fenchel–
Young inequality, ⌊a, b⌋ − q(a) = ⌊a, b⌋ − g0

@(a) ≤ g0(b). Taking the supremum over
a ∈ Pq(g0), we deduce that ΦPq(g0) ≤ g0 on B. In particular, domΦPq(g0) = B.

The next result in this section is the “pos-neg theorem of Attouch–Brezis type”. A
stronger result was proved in Simons, [14, Theorem 21.12, p. 93].

Theorem 4.6. Let
(

B, ⌊·, ·⌋, ‖·‖
)

be a SSDB space, f ∈ PCLSC(B) be a BC–function, and
g ∈ PCLSC(B) be a TBC–function. Then dom f −dom g = B ⇐⇒ Pq(f)−Nq(g) = B.

Proof. Since the implication (⇐=) is trivial, we only have to prove (=⇒). Let c be an
arbitrary element of B. Then, from Lemma 3.13,

dom fc − dom g = dom f − c− dom g = B − c = B,

and so
⋃

λ>0 λ
[

dom fc − dom g
]

= B. From Lemma 3.13, fc is a BC–function and so,
using (7) and (8),

b ∈ B =⇒ fc(b) + g(b) ≥ q(b)− q(b) = 0.

The Attouch–Brezis theorem, Theorem 2.2, and the surjectivity of ι now give b ∈ B such
that fc

∗(ι(b)
)

+ g∗
(

−ι(b)) ≤ 0, that is to say fc
@(b)+ g@(−b) ≤ 0. From (7) and (8)

again, fc(b) + g(b) ≤ 0 = q(b)− q(b). From (7) and (8) for a third time, fc(b) = q(b)
and g(b) = −q(b), that is to say, using Lemma 3.13, b ∈ Pq(fc) = Pq(f) − c and also
b ∈ Nq(g). But then c = (c + b) − b ∈ Pq(f) − Nq(g). This completes the proof of
Theorem 4.6. �
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Corollary 4.7 below is the form in which we will actually apply Theorem 4.6 to abstract
Hammerstein theorems in Theorem 7.1.

Corollary 4.7. Let
(

B, ⌊·, ·⌋, ‖ · ‖
)

be a SSDB space, f, g ∈ PCLSC(B) and f, g be BC–
functions. Suppose, further, that ρ:B → B is a continuous linear bijection such that, for
all b, c ∈ B, ⌊ρ(b), ρ(c)⌋ = ⌊b,−c⌋. Then

dom f − ρ−1dom g = B ⇐⇒ Pq(f)− ρ−1Pq(g) = B

and
dom f + ρ−1dom g = B ⇐⇒ Pq(f) + ρ−1Pq(g) = B.

Proof. This is immediate from Theorem 4.6 and Lemma 3.14. �

5 BC–functions on E ×E∗

From now on, E is a nonzero reflexive Banach space and E∗ is its topological dual space.
As observed in Example 3.3,

(

E × E∗, ⌊·, ·⌋
)

is an SSD space with q(x, x∗) = 〈x, x∗〉, and
if A ⊂ E × E∗ then A is q–positive exactly when A is a nonempty monotone set in the
usual sense, and A is maximally q–positive exactly when A is a maximally monotone set
of in the usual sense. We norm E ×E∗ by

∥

∥(x, x∗)
∥

∥ :=
√

‖x‖2 + ‖x∗‖2. Then

(

E × E∗, ‖ · ‖
)∗

= (E∗ × E, ‖ · ‖
)

,

under the duality
〈

(x, x∗), (y∗, y)
〉

:= 〈x, y∗〉+ 〈y, x∗〉. Combining this with the formula in

Example 3.3, we have
〈

(x, x∗), (y∗, y)
〉

=
⌊

(x, x∗), (y, y∗)
⌋

, and so ι(y, y∗) = (y∗, y).

It is easily seen from these relationships that
(

E × E∗, ⌊·, ·⌋, ‖ · ‖
)

is an SSDB space.
Further, (x, x∗) ∈ Pq(g0) ⇐⇒ 1

2‖x‖
2 + 1

2‖x
∗‖2 = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ G(J),

and (x, x∗) ∈ Nq(g0) ⇐⇒ 1
2
‖x‖2 + 1

2
‖x∗‖2 = −〈x, x∗〉 ⇐⇒ (x, x∗) ∈ G(−J),

where J :E ⇉ E∗ is the duality map. Thus we obtain the following fundamental
result:

Theorem 5.1. Let E be a nonzero reflexive Banach space. Then:

(a) If f ∈ PC(E × E∗) and f is a BC–function then Pq(f) is maximally monotone,
Pq

(

f@
)

= Pq(f) and Pq(f)−G(−J) = B.

(b) If A is a monotone subset of E × E∗ then A is maximally monotone if, and only if,
A−G(−J) = E × E∗.

Proof. (a) is immediate from Theorem 4.4(a,c), and (b) is immediate from Theorem
4.4(d). �

Remark 5.2. If f ∈ PCLSC(E) and, for all (x, x∗) ∈ B, h(x, x∗) := f(x) + f∗(x∗) then
the Fenchel–Moreau theorem and the Fenchel–Young inequality imply that h is a BC–
function on E ×E∗. Since Pq(h) = G(∂f), Theorem 5.1(a) gives us that ∂f is maximally
monotone. (Remember that we are assuming that E is reflexive!)

We note that the “partial episum theorem” of Theorem 5.3 below can also be deduced
from Penot–Zălinescu, [10, Corollary 3.7].
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Theorem 5.3. Let E be a nonzero reflexive Banach space, f, g ∈ PCLSC(E × E∗) be
BC–functions,

⋃

λ>0 λ
[

π1 dom f − π1 dom g
]

be a closed linear subspace of E and, for all
(x, x∗) ∈ E ×E∗,

h(x, x∗) := inf
{

f(x, s∗) + g(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗}. (10)

Then h is a BC–function, Pq(h
@) =

{

(x, s∗ + t∗): (x, s∗) ∈ Pq(f
@), (x, t∗) ∈ Pq(g

@)
}

,
and

Pq(h) =
{

(x, s∗ + t∗): (x, s∗) ∈ Pq(f), (x, t∗) ∈ Pq(g)
}

.

Proof. Since f ≥ q and g ≥ q on E × E∗, (10) implies that, for all (x, x∗) ∈ E × E∗,

h(x, x∗) ≥ inf
{

〈x, s∗〉+ 〈x, t∗〉: s∗, t∗ ∈ E∗, s∗ + t∗ = x∗} = 〈x, x∗〉 = q(x, x∗),

and then Theorem 2.4 and the fact that f@ ≥ f and g@ ≥ g on E ×E∗ give

h@(x, x∗) = h∗(x∗, x) = min
{

f∗(s∗, x) + g∗(t∗, x): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗}

= min
{

f@(x, s∗) + g@(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗} (11)

≥ inf
{

f(x, s∗) + g(x, t∗): s∗, t∗ ∈ E∗, s∗ + t∗ = x∗} = h(x, x∗).

Thus h is a BC–function, the required characterization of Pq(h
@) is immediate from (11),

and the final assertion now follows from three applications of Theorem 5.1(a). �

Theorem 5.4. Let E be a nonzero reflexive Banach space, f, g ∈ PCLSC(E × E∗) be
BC–functions and

⋃

λ>0 λ
[

π1 dom f − π1 dom g
]

be a closed linear subspace of E. Then

{

(x, s∗ + t∗): (x, s∗) ∈ Pq(f), (x, t∗) ∈ Pq(g)
}

is a maximally monotone subset of E × E∗.

Proof. This is immediate from Theorem 5.1(a) and Theorem 5.3. �

Remark 5.5. The question arises naturally as to whether there can exist a q–positive
subset A of B such that ΦA = g0. It would then follow from (4) that g0 = q on A, and so
A ⊂ Pq(g0). Thus, for all b ∈ B, (2) would give

g0(b) = ΦA(b) = supA
[

⌊·, b⌋ − q
]

= supA
[

⌊·, b⌋ − g0
]

≤ supPq(g0)

[

⌊·, b⌋ − g0
]

. (12)

Now let H be a nonzero Hilbert space, and consider the SSDB space
(

H ×H, ⌊·, ·⌋, ‖ · ‖
)

,
as described at the beginning of this section. Then (x, x∗) ∈ Pq(g0) ⇐⇒ x∗ = x. Let
y ∈ H \ {0}. Then (12) would give

‖y‖2 = g0(y,−y) ≤ supx∈H

[⌊

(x, x), (y,−y)
⌋

− g0(x, x)
]

= supx∈H

[

−g0(x, x)
]

≤ 0.

Since this is manifestly impossible, there cannot exist a q–positive subset A of B such that
ΦA = g0. This example is an extension of [14, Example 19.20, p. 85].
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6 Monotone multifunctions on reflexive Banach spaces

Let E be a nonzero reflexive Banach space. If S: E ⇉ E∗ is a multifunction then we use
the standard notation G(S) :=

{

(x, x∗) ∈ E × E∗: x∗ ∈ Sx
}

. We also write D(S) :=
{

x ∈ E: Sx 6= ∅
}

= π1G(S). If S is monotone and G(S) is nonempty, we define the
Fitzpatrick functions, ϕS , associated with S by

ϕS(x, x
∗) := ΦG(S)(x, x

∗) = sup(s,s∗)∈G(S)

[

〈x, s∗〉+ 〈s, x∗〉 − 〈s, s∗〉
]

.

The function ϕA was introduced by Fitzpatrick in [6, Definition 3.1, p. 61]. The following
result was first proved in [6, Corollary 3.9, p. 62] and [6, Proposition 4.2, pp. 63–64].

Theorem 6.1. E be a nonzero reflexive Banach space and S: E ⇉ E∗ be maximally
monotone. Then ϕS is a BC–function and Pq

(

ϕS
@
)

= Pq

(

ϕS

)

= G(S).

Proof. This is immediate from Theorem 3.11. �

The following result will be useful in Corollary 6.6.

Lemma 6.2. E be a nonzero reflexive Banach space and S: E ⇉ E∗ be maximally
monotone. Then D(S) ⊂ π1domϕS .

Proof. From Theorem 6.1 and the finite–valuedness of q, G(S) = Pq(ϕS) ⊂ domϕS , from
which D(S) = π1G(S) ⊂ π1domϕS . �

If S, T : E ⇉ F then, for all x ∈ E, we use the following standard notation:

(S + T )x := {y + z: y ∈ Sx, z ∈ Tx}.

Theorem 6.3 is “Rockafellar’s surjectivity theorem” — see [12, Proposition 1, p. 77] for
the original proof depending ultimately on Brouwer’s fixed–point theorem and an Asplund
renorming. The proof given here is a simplification of that given in Simons–Zălinescu, [16,
Theorem 3.1(b), p. 8], and appeared in Simons, [14, Theorem 29.6, p. 119]. These references
also provide a number of formulae for the exact value of min

{

‖x‖: x ∈ E, (S + J)x ∋ 0
}

in terms of ϕG(S). Here is one of them:

min
{

‖x‖: x ∈ E, (S + J)x ∋ 0
}

= 1√
2
supb∈E×E∗

[

‖b‖ −
√

2ϕS(b) + ‖b‖2
]

∨ 0.

Theorem 6.3. Let E be a nonzero reflexive Banach space and S: E ⇉ E∗ be maximally
monotone. Then (S + J)(E) = E∗.

Proof. Let y∗ be an arbitrary element of E∗. From Theorem 5.1(b)
(

with A := G(S)
)

,
(0, y∗) ∈ G(S) − G(−J). Thus there exist (s, s∗) ∈ G(S) and (x, x∗) ∈ G(J) such that
(0, y∗) = (s, s∗)− (x,−x∗). But then x = s, and so

y∗ = s∗ + x∗ ∈ Sx+ Jx = (S + J)x ⊂ (S + J)(E). �

Remark 6.4. We note that if J and J−1 are single–valued then the converse of Theorem
6.3 holds, that is to say (S + J)(E) = E∗ =⇒ S is maximally monotone, however this
fails in general. See Simons, [14, Remark 29.7, pp. 120–121]. It is interesting to observe
that, even when the converse of Theorem 6.3 fails, the necessary and sufficient condition
for maximal monotonicity given in Theorem 5.1(b) remains true.
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We now come to the “sum theorem”. More general results can be found in Boţ–
Csetnek–Wanka, [3] and Boţ–Grad–Wanka, [4].

Theorem 6.5. Let E be a nonzero reflexive Banach space, S, T : E ⇉ E∗ be maximally
monotone and

⋃

λ>0 λ
[

π1domϕS − π1domϕT

]

be a closed linear subspace of E. Then
S + T is maximally monotone.

Proof. From Theorem 6.1, ϕS and ϕT are BC–functions, Pq

(

ϕS

)

= G(S) and Pq

(

ϕT

)

=
G(T ). Theorem 5.4 with f := ϕS and g := ϕT now implies that

{

(x, s∗ + t∗): (x, s∗) ∈ G(S), (x, t∗) ∈ G(T )
}

= G(S + T )

is a maximally monotone subset of E × E∗. This completes the proof of Theorem 6.5. �

The following consequence of Theorem 6.5 is useful in applications:

Corollary 6.6. Let E be a nonzero reflexive Banach space, S, T : E ⇉ E∗ be maximally
monotone and

⋃

λ>0 λ
[

D(S)−D(T )
]

= E. Then S + T is maximally monotone.

Proof. This is immediate from Lemma 6.2 and Theorem 6.5. �

Our next result is “Rockafellar’s sum theorem”. It follows immediately from Corollary
6.6.

Corollary 6.7. Let E be a nonzero reflexive Banach space, S, T : E ⇉ E∗ be maximally
monotone and D(S) ∩ intD(T ) 6= ∅. Then S + T is maximally monotone.

A number of other sufficient conditions have been given for the sum of maximally
monotone multifunctions on a reflexive Banach space to be maximally monotone. Many
of them are contained in the following “ Sandwiched closed subspace theorem”, which first
appeared in Simons–Zălinescu, [16, Theorem 5.5, p. 13].

Theorem 6.8. Let E be a nonzero reflexive Banach space, S, T : E ⇉ E∗ be maximally
monotone, and suppose that there exists a closed linear subspace F of E such that

D(S)−D(T ) ⊂ F ⊂
⋃

λ>0
λ
[

π1domϕS − π1domϕT

]

.

Then S + T is maximally monotone. Furthermore, for all ε > 0,

D(S)−D(T ) ⊂ π1domϕS − π1domϕT ⊂ (1 + ε)
(

D(S)−D(T )
)

,

(that is to say, the sets π1domϕS − π1domϕT and D(S)−D(T ) are almost identical)
and

⋃

λ>0
λ
[

π1domϕS − π1domϕT

]

=
⋃

λ>0
λ
[

D(S)−D(T )
]

.

7 An abstract Hammerstein theorem

Let E be a nonzero reflexive Banach space. We define the reflection maps ρ1, ρ2
on E × E∗ by ρ1(x, x

∗) := (−x, x∗) and ρ2(x, x
∗) := (x,−x∗). Our first result is the

“ρ1–transversality theorem”.
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Theorem 7.1. Let E be a nonzero reflexive Banach space, f, g ∈ PCLSC(E × E∗) and
f, g be BC–functions. Then:

dom f + ρ1dom g = E ×E∗ ⇐⇒ Pq(f) + ρ1Pq(g) = E × E∗

and
dom f − ρ1dom g = E ×E∗ ⇐⇒ Pq(f)− ρ1Pq(g) = E × E∗.

Proof. This follows from Corollary 4.7 with ρ := ρ2, and the fact that ρ1 = −ρ−1
2 . �

We give the next two results for completeness, though more general results are known.
See, for instance, Zălinescu, [19, Theorem 3 and Corollary 4].

Theorem 7.2. Let E be a nonzero reflexive Banach space, S, T : E ⇉ E∗ be maximally
monotone and domϕS + ρ1domϕT = E × E∗. Then (S + T )(E) = E∗.

Proof. Let y∗ be an arbitrary element of E∗. From Theorem 7.1 (with f := ϕS and
g := ϕT ) and Theorem 6.1, (0, y∗) ∈ G(S) + ρ1G(T ). Thus there exist (s, s∗) ∈ G(S)
and (x, x∗) ∈ G(T ) such that (0, y∗) = (s, s∗) + (−x, x∗). But then x = s, and so

y∗ = s∗ + x∗ ∈ Sx+ Tx = (S + T )x ⊂ (S + T )(E). �

Since G(J) = Pq(g0), it follows that ϕJ = ΦG(J) = ΦPq(g0). Thus Remark 4.5
implies that domϕJ = E×E∗. Consequently, the following result generalizes Theorem
6.3. Compare with

[

7, Theorem 2
(

(1)=⇒(2)
)]

.

Corollary 7.3. Let E be a nonzero reflexive Banach space, S, T : E ⇉ E∗ be maximally
monotone and domϕT = E ×E∗. Then (S + T )(E) = E∗.

Proof. This is immediate from Theorem 7.2. �

Theorem 7.4. Let E be a nonzero reflexive Banach space, f, g ∈ PCLSC(E × E∗) be
BC–functions, and w∗ ∈ E∗ be such that E × {w∗} ⊂ dom f and π2 dom g = E∗. Then:

(a) Pq(f) + ρ1 Pq(g) = E × E∗ and Pq(f)− ρ1 Pq(g) = E ×E∗.

(b) If x ∈ E then there exist (y, y∗) ∈ Pq(f) and (z, y∗) ∈ Pq(g) such that y + z = x.

(c) If x∗ ∈ E∗ then there exist (y, y∗) ∈ Pq(f) and (y, z∗) ∈ Pq(g) such that y∗ + z∗ = x∗.

Proof. (a) Let (x, x∗) be an arbitrary element of E ×E∗. Since π2 dom g = E∗, there
exist y, z ∈ E such that (y, x∗ − w∗) ∈ dom g and (z, w∗ − x∗) ∈ dom g. But
(x+ y, w∗) ∈ dom f and (x− z, w∗) ∈ dom f , hence

(x, x∗) = (x+ y, w∗) + ρ1(y, x
∗ − w∗) ∈ dom f + ρ1 dom g

and
(x, x∗) = (x− z, w∗)− ρ1(z, w

∗ − x∗) ∈ dom f − ρ1 dom g.

Thus we have proved that dom f+ρ1 dom g = E×E∗ and dom f−ρ1 dom g = E×E∗,
and (a) follows from Theorem 7.1.

(b) It follows from (a) that there exist (y, y∗) ∈ Pq(f) and (z, z∗) ∈ Pq(g) such
that (y, y∗) + (z,−z∗) = (x, 0). But then z∗ = y∗ and y + z = x.

(c) It follows from (a) that there exist (y, y∗) ∈ Pq(f) and (z, z∗) ∈ Pq(g) such
that (y, y∗)− (z,−z∗) = (0, x∗). But then z = y and y∗ + z∗ = x∗. �
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We now reverse the direction of T .

Theorem 7.5. Let E be a nonzero reflexive Banach space and S: E ⇉ E∗ and T : E∗ ⇉ E

be maximally monotone. Suppose that π1 domϕT = E∗ and there exists w∗ ∈ E∗ such
that E × {w∗} ⊂ domϕS . Then:

(a) If IE is the identity map on E, (IE + TS)(E) = E.

(b) If IE∗ is the identity map on E∗, (IE∗ + ST )(E∗) = E∗.

Proof. Let f := ϕS and g := ϕT−1 , so that π2 dom g = E∗.

(a) Let x be an arbitrary element of E. From Theorem 7.4(b) and Theorem 6.1,
there exist (y, y∗) ∈ G(S) and (y∗, z) ∈ G(T ) such that y + z = x. Thus
z ∈ Ty∗ ⊂ TSy and x = y + z ∈ (IE + TS)(y) ⊂ (IE + TS)(E).

(b) Let x∗ be an arbitrary element of E∗. From Theorem 7.4(c) and Theorem 6.1,
there exist (y, y∗) ∈ G(S) and (z∗, y) ∈ G(T ) such that y∗ + z∗ = x∗. Thus
y∗ ∈ Sy ⊂ STz∗ and x∗ = z∗ + y∗ ∈ (IE∗ + ST )(z∗) ⊂ (IE∗ + ST )(E∗). �

The next result is a considerable generalization of [20, Theorem 32.O, p. 909] which,
in turn, was applied to Hammerstein integral equations. See [14, Remark 30.5, p. 124] for
a more complete discussion.

Theorem 7.6. Let E be a nonzero reflexive Banach space and S: E ⇉ E∗ and T : E∗ ⇉ E

be maximal monotone. Suppose that either π1 domϕT = E∗ and there exists
w∗ ∈ E∗ such that E × {w∗} ⊂ domϕS or π1 domϕS = E and there exists
w ∈ E such that E × {w} ⊂ domϕT . Then (IE + TS)(E) = E.

Proof. The first case has already been established in Theorem 7.5(a), while the
second case follows from Theorem 7.5(b), with E replaced by E∗, and the roles of S

and T interchanged. �

Remark 7.7. In the recent paper [2], Jonathan Borwein has written a survey of the
history of monotonicity (even in the nonreflexive case) over the past fifty years.
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