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Abstract. We study the conjugate of the maximum, f ∨ g, of f and g when
f and g are proper convex lower semicontinuous functions on a Banach space
E. We show that (f ∨g)∗∗ = f∗∗ ∨g∗∗ on the bidual, E∗∗, of E provided that
f and g satisfy the Attouch-Brézis constraint qualification, and we also derive
formulae for (f ∨ g)∗ and for the “preconjugate” of f∗ ∨ g∗.

Introduction

Let E be a real nontrivial Banach space. If f : E → R ∪ {∞}, we write

dom f := {x ∈ E : f(x) ∈ R},

the “effective domain” of f . We write PCLSC(E) for the set of all convex lower
semicontinuous functions f : E → R∪{∞} such that dom f 6= ∅. (The “P” stands
for “proper”, which is the adjective frequently used to denote the fact that the
effective domain of a function is nonempty.)

We write E∗ for the dual space of E. If f ∈ PCLSC(E), we define f∗ : E∗ →
R ∪ {∞} by

f∗(x∗) := sup
E

(x∗ − f),

the conjugate of f . Then (see [5], p. 210) f∗ ∈ PCLSC(E∗).
We define the biconjugate, f∗∗, of f by

f∗∗(x∗∗) := (f∗)∗(x∗∗) (x∗∗ ∈ E∗∗).

From what we have observed above, f∗∗ ∈ PCLSC(E∗∗). In fact, f∗∗ is lower
semicontinuous with respect to the weak∗ topology of E∗∗ and (see [5], p. 210
again)

for all x ∈ E, f∗∗(x̂) = f(x),(0.1)

where x̂ is the canonical image of x in E∗∗.
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Let f, g ∈ PCLSC(E). We say that f and g satisfy the Attouch–Brézis constraint
qualification if ⋃

λ>0

λ(dom f − dom g) is a closed subspace of E.(AB)

It is well known that if f, g ∈ PCLSC(E) and f and g satisfy (AB), then

(f + g)∗∗ = f∗∗ + g∗∗ on E∗∗.(0.2)

In fact, Rockafellar used the equality (0.2) (under a stronger constraint qualifica-
tion) in his proof in [5], Proposition 1, pp. 211–212 that the subdifferential of an
element of PCLSC(E) is maximal monotone. The equality (0.2) follows easily from
the “inf–convolution” formula for (f + g)∗; namely that, for all w∗ ∈ E∗,

(f + g)∗(w∗) = min
y∗, z∗∈E∗, y∗+z∗=w∗

[
f∗(y∗) + g∗(z∗)

]
,(0.3)

which was established by Attouch–Brézis in [1], Corollary 2.3, pp. 131–132.
In this paper, we consider the corresponding problem with f + g replaced by

f ∨ g, where, for all f, g ∈ PCLSC(E), f ∨ g is defined by

(f ∨ g)(x) := max{f(x), g(x)} (x ∈ E).

Indeed, we will prove in Theorem 6 that if f, g ∈ PCLSC(E) and f and g satisfy
(AB), then

(f ∨ g)∗∗ = f∗∗ ∨ g∗∗ on E∗∗.(0.4)

We will complement this in Remark 8 by giving an example showing that the
equality (0.4) can fail when (AB) is not satisfied, even if f ∨ g ∈ PCLSC(E). Now
(0.4) would follow easily from the equality that, for all w∗ ∈ E∗,

(f ∨ g)∗(w∗) = inf
ρ∈[0,1], u∗, v∗∈E∗, ρu∗+(1−ρ)v∗=w∗

[
ρf∗(u∗) + (1− ρ)g∗(v∗)

]
.(0.5)

Unfortunately, (0.5) fails even if E = R2, g ∈ CC(E) and f and g satisfy (AB),
where CC(E) stands for the set of all real convex continuous functions on E. We
give an example of this in Remark 3. The actual formula for (f ∨ g)∗ is much more
complicated. In fact, we give two such formulae. The first, in (2.3), appears in
Traoré and Volle, [7], Section 7, p. 149 and does not seem to lead easily to (0.4).
We now give the background for the second, much more complicated formula, which
appears in (2.1), and does lead easily to (0.4). Let F be a nontrivial Banach space.
(The reason why we also introduce the symbol F to represent a Banach space is
that we will be applying these concepts with F := E∗.) If w ∈ F and δ > 0, let
B(w, δ) := {x ∈ F : ‖x− w‖ < δ} and

L(w, δ) := {(ρ, σ, u, v) : ρ > 0, σ > 0, u, v ∈ F, ρ+ σ = 1, ρu+ σv ∈ B(w, δ)}.

Suppose that f, g ∈ PCLSC(F ). If w ∈ F , write

(f ∧
δ
g)(w) := inf

(ρ,σ,u,v)∈L(w,δ)

[
ρf(u) + σg(v)

]
(δ > 0) and

(f ∧
0
g)(w) := sup

δ>0
(f ∧

δ
g)(w) = lim

δ→0
(f ∧

δ
g)(w).

Then the formula that we shall give in (2.1) is that if w∗ ∈ E∗, then

(f ∨ g)∗(w∗) = (f∗ ∧
0
g∗)(w∗).
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Incidentally, the equality (0.4) is closely related to the result proved by Gossez
in [3], Lemme 2.1, p. 375 that the subdifferential of an element of PCLSC(E) is
maximal monotone of “dense type”. Unfortunately, it would take us much too far
afield to dwell on this issue any further.

Up to this point, we have presented the quantity (f ∧
0
g)(w) simply as a number

which appears as the result of certain computations. In fact, f ∧
0
g has much more

significance when we consider it as a function. We shall show in Theorem 11 that
if f, g ∈ PCLSC(F ) and dom f∗ ∩ dom g∗ 6= ∅, then

f ∧
0
g ∈ PCLSC(F ) and (f ∧

0
g)∗ = f∗ ∨ g∗ on F ∗.

In other words, f ∧
0
g is the “preconjugate” of f∗ ∨ g∗. We shall use this result in

Theorem 12 to give a precise description of when (0.4) occurs. Namely, if f, g ∈
PCLSC(E) and dom f ∩ dom g 6= ∅, then (0.4) occurs if, and only if,

(f ∨ g)∗ = f∗ ∧
0
g∗ on E∗.

In the proof of Theorem 2, we shall use the minimax theorem below, which
follows from a result of Fan (see [2]). (See also [4] and [6] for simple generalizations
of Fan’s result.)

Theorem 1. Let A be a nonempty convex subset of a vector space, and let B be a
nonempty compact convex subset of a topological vector space. Let h : A × B → R
be convex on A, and concave and upper semicontinuous on B. Then

inf
A

max
B

h = max
B

inf
A
h.

The conjugate of a maximum

Theorem 2. Suppose that f, g ∈ PCLSC(E), f and g satisfy (AB) and w∗ ∈ E∗.
Then:

(f ∨ g)∗(w∗) = (f∗ ∧
0
g∗)(w∗).(2.1)

Proof. We first prove that if ρ, σ > 0, then there exist u∗, v∗ ∈ E∗ such that

ρu∗ + σv∗ = w∗ and ρf∗(u∗) + σg∗(v∗) = sup
A

[
w∗ − ρf − σg

]
,(2.2)

where A is the nonempty convex set dom f ∩ dom g. To this end, let ρ, σ > 0.
Clearly ρf and σg also satisfy (AB); consequently, from the Attouch–Brézis formula
for the conjugate of a sum (see (0.3) above), there exist y∗ ∈ E∗ and z∗ ∈ E∗ such
that

y∗ + z∗ = w∗ and (ρf)∗(y∗) + (σg)∗(z∗) = (ρf + σg)∗(w∗).

We now put u∗ := y∗/ρ and v∗ := z∗/σ, and obtain (2.2) since we then have
(ρf)∗(y∗) = ρf∗(u∗), (σg)∗(z∗) = σg∗(v∗) and

(ρf + σg)∗(w∗) = sup
A

[
w∗ − ρf − σg

]
.

We next prove that

(f ∨ g)∗(w∗) = min
λ∈[0,1]

sup
A

[
w∗ − λf − (1− λ)g

]
.(2.3)
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This follows from the minimax theorem, Theorem 1, with B := [0, 1], since

(f ∨ g)∗(w∗) = sup
x∈A

[
〈x,w∗〉 − (f ∨ g)(x)

]
= sup

x∈A
min
λ∈[0,1]

[
〈x,w∗〉 − λf(x) − (1− λ)g(x)

]
.

We now prove the inequality “≥” in (2.1). Since this is trivially true if
(f ∨ g)∗(w∗) = ∞, we can and will suppose that (f ∨ g)∗(w∗) ∈ R. Let δ, ε > 0.
We shall prove that there exists (ρ, σ, u∗, v∗) ∈ L(w∗, δ) such that

ρf∗(u∗) + σg∗(v∗) ≤ (f ∨ g)∗(w∗) + ε.(2.4)

The desired inequality will then follow by taking the infimum over (ρ, σ, u∗, v∗) ∈
L(w∗, δ) and then letting δ → 0 and ε→ 0. From (2.3), there exists λ ∈ [0, 1] such
that

sup
A

[
w∗ − λf − (1− λ)g

]
= (f ∨ g)∗(w∗).

Case 1 (λ ∈ (0, 1)). From (2.2), there exist u∗, v∗ ∈ E∗ such that

λu∗ + (1− λ)v∗ = w∗ and λf∗(u∗) + (1− λ)g∗(v∗) = (f ∨ g)∗(w∗)

and (2.4) is immediate with ρ := λ and σ := 1− λ.

Case 2 (λ = 0). Here we have

sup
A

[
w∗ − g

]
= (f ∨ g)∗(w∗).(2.5)

As we have already observed, f∗ ∈ PCLSC(E∗). Hence there exists x∗ ∈ E∗ such
that f∗(x∗) ∈ R. If ρ > 0, σ > 0, ρ+ σ = 1 and (ρ, σ) is sufficiently close to (0, 1),
then

(ρ, σ, x∗, w∗) ∈ L(w∗, δ) and ρf∗(x∗) ≤ ρ(f ∨ g)∗(w∗) + ε.(2.6)

Using (2.2) again, there exist u∗, v∗ ∈ E∗ such that

ρu∗ + σv∗ = ρx∗ + σw∗(2.7)

and

ρf∗(u∗) + σg∗(v∗) = sup
A

[
ρx∗ + σw∗ − ρf − σg

]
= sup

A

[
ρ(x∗ − f) + σ(w∗ − g)

]
≤ ρ sup

A

[
x∗ − f

]
+ σ sup

A

[
w∗ − g

]
≤ ρf∗(x∗) + σ sup

A

[
w∗ − g

]
.

Thus, from (2.6) and (2.5),

ρf∗(u∗) + σg∗(v∗) ≤
[
ρ(f ∨ g)∗(w∗) + ε

]
+ σ(f ∨ g)∗(w∗)

= (f ∨ g)∗(w∗) + ε.

We now obtain (2.4) since, from (2.6) and (2.7), (ρ, σ, u∗, v∗) ∈ L(w∗, δ).

Case 3 (λ = 1). The proof of this is similar to that of Case 2, except that the roles
of f and g are reversed. This completes the proof of the inequality “≥” in (2.1).
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We now prove the reverse inequality. Let x ∈ A and (ρ, σ, u∗, v∗) ∈ L(w∗, δ).
Then

ρf∗(u∗) + σg∗(v∗) ≥ ρ
[
〈x, u∗〉 − f(x)

]
+ σ

[
〈x, v∗〉 − g(x)

]
= 〈x, ρu∗ + σv∗〉 − ρf(x)− σg(x)

≥ 〈x,w∗〉 − δ‖x‖ − (f ∨ g)(x).

Taking the infimum over (ρ, σ, u∗, v∗) ∈ L(w∗, δ), we obtain

(f∗ ∧
δ
g∗)(w∗) ≥ 〈x,w∗〉 − δ‖x‖ − (f ∨ g)(x).

Letting δ → 0,

(f∗ ∧
0
g∗)(w∗) ≥ 〈x,w∗〉 − (f ∨ g)(x).

The inequality “≤” in (2.1) now follows by taking the supremum of the right hand
side over x ∈ A. (Note: this can also be deduced from Lemma 10(a), which is
independent of the analysis in this Theorem.)

This completes the proof of Theorem 2.

If C ⊂ E, the indicator function of C is the function IC : E → R ∪ {∞} defined
by

IC(x) :=

{
0 if x ∈ C;
∞ otherwise.

Remark 3. We now give the promised example where f, g ∈ PCLSC(E) and f and
g satisfy (AB), but (0.5) fails. (We leave it to the reader to check that (0.5) does hold
if both f ∈ CC(E) and g ∈ CC(E).) Here is the example. Define f ∈ PCLSC(R2)
and g ∈ CC(R2) by

f(x1, x2) :=

{
x2 if x1 ≥ 0;
∞ otherwise;

and

g(x1, x2) := x1.

Then (f ∨g)∗(0) = − inf(f ∨g) = 0. On the other hand, f∗ is the indicator function
of (−∞, 0]× {1} and g∗ is the indicator function of {(1, 0)}. Consequently, if ρ ∈
[0, 1], u∗ ∈ R2, v∗ ∈ R2 and ρu∗+ (1− ρ)v∗ = 0, then ρf∗(u∗) + (1− ρ)g∗(v∗) =∞,
and so (0.5) fails. We note that (AB) is satisfied in this example because g ∈ CC(R2).

Remark 4. Let f, g ∈ PCLSC(E), f, g satisfy (AB), x ∈ E and f(x) = g(x) ∈ R.
We briefly discuss the problem of finding a formula for ∂(f ∨ g)(x). Suppose first
that, for all w∗ ∈ ∂(f ∨ g)(x), the following “exact” version of (0.5) holds:

(f ∨ g)∗(w∗) = min
ρ∈[0,1], u∗, v∗∈E∗, ρu∗+(1−ρ)v∗=w∗

[
ρf∗(u∗) + (1− ρ)g∗(v∗)

]
.(4.1)

Then it is easily seen that

∂(f ∨ g)(x) = co(∂f(x) ∪ ∂g(x)).

In general, we have the formulae for (f ∨ g)∗(w∗) given by (2.1) and (2.3), and we
have the formula established by Volle in [8], Théorème 2, p. 848 that

∂(f ∨ g)(x) = co(∂f(x) ∪ ∂g(x)) +Ndomf (x) +Ndomg(x),(4.2)
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where “NC(x)” stands for the normal cone to C at x. However, we do not know
an easy way of deducing (4.2) from (2.1) or (2.3).

The biconjugate of a maximum

It is an easy consequence of the definitions that if f ∈ PCLSC(E), then

t∗∗ ∈ E∗∗, f∗∗(t∗∗) ≤ 0 and w∗ ∈ E∗ =⇒ 〈w∗, t∗∗〉 ≤ f∗(w∗).(4.3)

Lemma 5. Suppose that f, g ∈ PCLSC(E), f and g satisfy (AB) and also that
f∗∗(t∗∗) ∨ g∗∗(t∗∗) ≤ 0.

(a) Let w∗ ∈ E∗. Then 〈w∗, t∗∗〉 ≤ (f ∨ g)∗(w∗).
(b) (f ∨ g)∗∗(t∗∗) ≤ 0.

Proof. (a) Let δ > 0. If (ρ, σ, u∗, v∗) ∈ L(w∗, δ), then, using (4.3),

ρf∗(u∗) + σg∗(v∗) ≥ ρ〈u∗, t∗∗〉+ σ〈v∗, t∗∗〉
= 〈ρu∗ + σv∗, t∗∗〉
≥ 〈w∗, t∗∗〉 − δ‖t∗∗‖.

Thus, taking the infimum over (ρ, σ, u∗, v∗) ∈ L(w∗, δ),

(f∗ ∧
δ
g∗)(w∗) ≥ 〈w∗, t∗∗〉 − δ‖t∗∗‖,

and (a) now follows from Theorem 2 by letting δ → 0. (b) is immediate from
(a).

Theorem 6. Suppose that f, g ∈ PCLSC(E), and f and g satisfy (AB). Then

(f ∨ g)∗∗ = f∗∗ ∨ g∗∗ on E∗∗.

Proof. We first prove that if t∗∗ ∈ E∗∗, then

(f ∨ g)∗∗(t∗∗) ≤ f∗∗(t∗∗) ∨ g∗∗(t∗∗).(6.1)

Let α := f∗∗(t∗∗) ∨ g∗∗(t∗∗). Since (6.1) is immediate if α = ∞, we can and will
suppose that α ∈ R. Then (6.1) follows from Lemma 5(b) with f replaced by f −α
and g replaced by g − α.

Since f ∨ g ≥ f on E, (f ∨ g)∗∗ ≥ f∗∗ on E∗∗. Similarly, (f ∨ g)∗∗ ≥ g∗∗ on E∗∗,
and so (f ∨ g)∗∗ ≥ f∗∗ ∨ g∗∗ on E∗∗. The result now follows from (6.1).

Corollary 7. Let g0 ∈ PCLSC(E) and g1, . . . , gm ∈ CC(E). Then

(g0 ∨ · · · ∨ gm)∗∗ = g0
∗∗ ∨ · · · ∨ gm∗∗.

Proof. This is immediate from Theorem 6 and induction.

Remark 8. We now give an example showing that (0.4) can fail when (AB) is not
satisfied, even if f ∨ g ∈ PCLSC(E). (The conclusion of Theorem 2 must also fail
for this example, as we shall see in Theorem 12.) Let E = c0,

C :=
{
{xn}n≥1 ∈ c0 : x1 ≥ x2 ≥ x3 ≥ . . . 0

}
,

D :=
{
{xn}n≥1 ∈ c0 :

∞∑
n=1

1
2n

(x1 − xn+1) = 0
}
,



ON THE POINTWISE MAXIMUM OF CONVEX FUNCTIONS 3559

and define f, g ∈ PCLSC(E) by f := IC and g := ID. Now if x ∈ C ∩D, then
∞∑
n=1

1
2n

(x1 − xn+1) = 0 and, for all n ≥ 1, x1 − xn+1 ≥ 0.

It follows that, for all n ≥ 1, x1 − xn+1 = 0, and so x is a constant sequence. Since
x ∈ c0, we deduce that x = 0. These observations lead easily to the conclusion that
f ∨ g = I{0}, from which (f ∨ g)∗ = 0 and (f ∨ g)∗∗ = I{0} (relative to E∗∗). In
particular, if e := (1, 1, 1, . . . ) ∈ `∞ = E∗∗, then

(f ∨ g)∗∗(e) =∞.(8.1)

If m ≥ 1, define ym and zm ∈ E as follows:

ymn :=

{
1 if n ≤ m;
0 otherwise;

and zmn :=


1 if n ≤ m;
2 if n = m+ 1;
0 otherwise.

Then ym ∈ C and zm ∈ D, from which f(ym) = 0 and g(zm) = 0. Using (0.1),
we deduce from this that f∗∗(ŷm) = 0 and g∗∗(ẑm) = 0. Since ŷm → e and
ẑm → e in the weak∗ topology of E∗∗ as m→∞, and f∗∗ and g∗∗ are weak∗ lower
semicontinuous, it follows that f∗∗(e) ≤ 0 and g∗∗(e) ≤ 0, from which

(f∗∗ ∨ g∗∗)(e) ≤ 0.(8.2)

If we now combine (8.1) and (8.2), we see that (0.4) fails, as claimed.

The preconjugate of a maximum

Lemma 9. Suppose that f, g ∈ PCLSC(F ) with dom f∗ ∩ dom g∗ 6= ∅, and δ > 0.
(a) Let x∗ ∈ F ∗. Then f ∧

δ
g ≥ x∗ − (f∗ ∨ g∗)(x∗)− δ‖x∗‖ on F .

(b) f ∧
δ
g : F → R ∪ {∞}.

(c) f ∧
δ
g ≤ f on F and f ∧

δ
g ≤ g on F .

(d) f ∧
δ
g is convex.

Proof. (a) Since the result is trivial if (f∗ ∨ g∗)(x∗) =∞, we can and will suppose
that (f∗ ∨ g∗)(x∗) ∈ R. Let w ∈ F and (ρ, σ, u, v) be an arbitrary element of
L(w, δ). Then

ρf(u) + σg(v) ≥ ρ
[
〈u, x∗〉 − f∗(x∗)

]
+ σ

[
〈v, x∗〉 − g∗(x∗)

]
≥ 〈ρu+ σv, x∗〉 − f∗(x∗) ∨ g∗(x∗)
≥ 〈w, x∗〉 − δ‖x∗‖ − (f∗ ∨ g∗)(x∗).

We now obtain (a) by taking the infimum over (ρ, σ, u, v) ∈ L(w, δ).
(b) This follows from (a) by taking x∗ ∈ dom f∗ ∩ dom g∗.
(c) We shall prove that f ∧

δ
g ≤ f on F , the proof that f ∧

δ
g ≤ g on F is similar.

So let w ∈ F . We need to show that

(f ∧
δ
g)(w) ≤ f(w).(9.1)

Since this is trivial if f(w) = ∞, we can and will suppose that w ∈ dom f . Fix
v ∈ dom g. If ρ > 0, σ > 0, ρ+ σ = 1 and (ρ, σ) is sufficiently close to (1, 0), then
(ρ, σ, w, v) ∈ L(w, δ) and so ρf(w) + σg(v) ≥ (f ∧

δ
g)(w). We now obtain (9.1) by

letting (ρ, σ)→ (1, 0).
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(d) For i = 1, 2, let wi ∈ E, λi > 0 and
∑
i λi = 1. Put w3 :=

∑
i λiwi. We

shall prove that ∑
i λi(f ∧

δ
g)(wi) ≥ (f ∧

δ
g)(w3),(9.2)

which will give the required result. To this end, let (ρi, σi, ui, vi) be arbitrary
elements of L(wi, δ). It is easy to check that∑

λi(ρiui + σivi) ∈ B(w3, δ).(9.3)

Put ρ3 :=
∑
i λiρi ∈ (0, 1), σ3 :=

∑
i λiσi ∈ (0, 1), u3 :=

∑
i λiρiui/ρ3 ∈ F and

v3 :=
∑
i λiσivi/σ3 ∈ F . Since ρ3 + σ3 = 1, it follows from these definitions that∑

i λiρif(ui) ≥ ρ3f(u3) and
∑

i λiσig(vi) ≥ σ3g(v3).

Consequently, ∑
i λi
[
ρif(ui) + σig(vi)

]
≥ ρ3f(u3) + σ3g(v3).(9.4)

We also derive from (9.3) that ρ3u3 + σ3v3 ∈ B(w3, δ). Combining this with (9.4),
we obtain ∑

i λi
[
ρif(ui) + σig(vi)

]
≥ (f ∧

δ
g)(w3),

and (9.2) now follows by taking the infima over (ρi, σi, ui, vi) ∈ L(wi, δ).

Lemma 10. Suppose that f, g ∈ PCLSC(F ) and dom f∗ ∩ dom g∗ 6= ∅.
(a) Let x∗ ∈ F ∗. Then x∗ − f ∧

0
g ≤ (f∗ ∨ g∗)(x∗) on F .

(b) f ∧
0
g ≤ f on F and f ∧

0
g ≤ g on F .

Proof. These assertions follow easily from Lemma 9 by letting δ → 0.

Theorem 11. Suppose that f, g ∈ PCLSC(F ) and dom f∗ ∩ dom g∗ 6= ∅. Then

f ∧
0
g ∈ PCLSC(F ) and (f ∧

0
g)∗ = f∗ ∨ g∗ on F ∗.

Proof. It is clear from Lemma 9(a) by letting δ → 0 that (f ∧
0
g) : E → R ∪ {∞}

and is convex. In order to show that f ∧
0
g ∈ PCLSC(F ), it only remains to prove

that f ∧
0
g is lower semicontinuous on F . To this end, let w ∈ F and α < (f ∧

0
g)(w).

We can choose δ > 0 so that α < (f ∧
δ
g)(w). Let η := δ/2. Since

x ∈ B(w, η) =⇒ B(x, η) ⊂ B(w, δ),

it follows by taking the appropriate infima that

x ∈ B(w, η) =⇒ (f ∧
η
g)(x) ≥ (f ∧

δ
g)(w).

Hence

x ∈ B(w, η) =⇒ (f ∧
0
g)(x) > α.

This gives the required lower semicontinuity. It follows from Lemma 10(b) that
(f ∧

0
g)∗ ≥ f∗ on F ∗ and (f ∧

0
g)∗ ≥ g∗ on F ∗, from which (f ∧

0
g)∗ ≥ f∗ ∨ g∗ on

F ∗. The opposite inequality follows by taking the supremum over F in Lemma
10(a).

Theorem 12. Suppose that f, g ∈ PCLSC(E) and dom f ∩ dom g 6= ∅. Then

(f ∨ g)∗∗ = f∗∗ ∨ g∗∗ on E∗∗ ⇐⇒ (f ∨ g)∗ = f∗ ∧
0
g∗ on E∗.
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Proof. We first note that dom f∗∗ ∩ dom g∗∗ 6= ∅; hence, from Theorem 11 with
F := E∗ and f and g replaced by f∗ and g∗,

f∗ ∧
0
g∗ ∈ PCLSC(E∗) and (f∗ ∧

0
g∗)∗ = f∗∗ ∨ g∗∗ on E∗∗.(12.1)

It is immediate from this that

(f ∨ g)∗ = f∗ ∧
0
g∗ on E∗ =⇒ (f ∨ g)∗∗ = f∗∗ ∨ g∗∗ on E∗∗.

Now suppose that (f ∨g)∗∗ = f∗∗∨g∗∗ on E∗∗. From (12.1), (f ∨g)∗∗ = (f∗ ∧
0
g∗)∗

on E∗∗, and consequently

(f ∨ g)∗∗∗ = (f∗ ∧
0
g∗)∗∗ on E∗∗∗.

Since both (f ∨ g)∗ and (f∗ ∧
0
g∗) are in PCLSC(E∗), it follows from (0.1) (with E

replaced by E∗) that

(f ∨ g)∗ = f∗ ∧
0
g∗ on E∗,

as required.
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