Solutions to Practice Problems II

Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 12:45 - 1:45pm Last updated 7/12/2016

Answers

This page contains answers only. Detailed solutions are on the following pages.

- 1. (a) $y = e^{-2x}(c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x)$ (b) $y = c_1 + c_2 e^x + c_3 x e^x$ (c) $u = c_1 e^{-\frac{1}{2}t} + c_2 e^{3t}$ (d) $r = c_1 e^s + c_2 e^{-s} + c_3 \cos s + c_4 \sin s$ 2. $W = 2e^{6x}$ 3. (a) $y_2 = x^2 \ln x$ (b) $W = x^3$ (c) $y = c_1 x^2 + c_2 x^2 \ln x$ 4. $y_2 = -t^{1/2}$ 5. (a) $y_p = At^2 + Bt + C$ (b) Answers will vary (c) $y_p = At^2 + Bt + C + Ee^{-2t}$ (d) $y_p = Ae^{3t}\sin 4t + Be^{3t}\cos 4t$ (e) Answers will vary (f) $y_p = A + (Bt^2 + Ct + E)e^{-t}$ (g) $y_p = A\cos 2t + B\sin 2t$ (h) Answers will vary (i) $y_p = (At + B) + (Ct + E)\sin t + (Ft + G)\cos t$ 6. $y = c_1 + c_2 e^{-2t} + \frac{3}{2}t - \frac{1}{2}\sin 2t - \frac{1}{2}\cos 2t$ 7. $y = 2e^{-2t} + 9te^{-2t} + \left(\frac{1}{6}t^3 + \frac{3}{2}t^2\right)e^{-2t}$ 8. $y = c_1 \cos t + c_2 \sin t - \cos t \ln |\sec t + \tan t|$.
- 9. $y = c_1 \cos(\ln t) + c_2 \sin(\ln t) + \ln |\cos(\ln t)|(\cos(\ln t)) + \ln |t|(\sin(\ln t)))$

Detailed Solutions

- 1. Find the general solution of the following homogeneous higher-order differential equations:
 - (a) y'' + 4y' + 7y = 0 (use x as the independent variable)

Solution. The characteristic equation is $r^2 + 4r + 7 = 0$. Using the quadratic equation, we see the roots are

$$r = \frac{-4 \pm \sqrt{4^2 - 4(1)(7)}}{2} \quad \Rightarrow \quad r = \frac{-4 \pm i2\sqrt{3}}{2} = -2 \pm i\sqrt{3}$$

We have two complex roots, hence the solution to the differential equation is

$$y = e^{-2x}(c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x)$$

(b) $y^{(3)} + 2y'' + y' = 0$ (use x as the independent variable)

Solution. The characteristic equation is $r^3 + 2r^2 + r = 0$ which factors as

$$r(r^2 + 2r + 1) = 0 \implies r(r+1)^2 = 0.$$

Therefore the roots are r = 0 multiplicity 1, r = -1 multiplicity 2. The solution to the differential equation is therefore

$$y = c_1 e^{0x} + c_2 e^{1x} + c_3 x e^{1x}$$
 or $y = c_1 + c_2 e^x + c_3 x e^x$.

(c) $2\frac{d^2u}{dt^2} - 5\frac{du}{dt} - 3u = 0$

Solution. The characteristic equation is $2r^2 - 5r - 3 = 0$, which factors as

u

(2r+1)(r-3) = 0.

The roots are $r = -\frac{1}{2}$, r = 3 each with multiplicity 1. The solution to the differential equation is therefore

$$= c_1 e^{-\frac{1}{2}t} + c_2 e^{3t}.$$

(d)
$$\frac{d^4r}{ds^4} - r = 0$$

Solution. The characteristic equation is $m^4 - 1 = 0$ (we cannot use r as our characteristic equation variable since it is being used in the differential equation). This factors as

$$(m^2 - 1)(m^2 + 1) = 0 \Rightarrow (m - 1)(m + 1)(m - i)(m + i) = 0.$$

The roots are $m = 1, -1, \pm i$. The solution to the differential equation is

$$r = c_1 e^s + c_2 e^{-s} + e^{0s} (c_3 \cos s + c_4 \sin s) \quad \Rightarrow \quad r = c_1 e^s + c_2 e^{-s} + c_3 \cos s + c_4 \sin s.$$

2. Calculate $W(y_1, y_2, y_3)$ where $y_1 = e^x, y_2 = e^{2x}, y_3 = e^{3x}$.

Solution.

$$\begin{split} W(e^{x}, e^{2x}, e^{3x}) &= \begin{vmatrix} e^{x} & e^{2x} & e^{3x} \\ (e^{x})' & (e^{2x})' & (e^{3x})' \\ (e^{x})'' & (e^{2x})'' & (e^{3x})'' \end{vmatrix} = \begin{vmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{vmatrix} \\ &= e^{x} \begin{vmatrix} 2e^{2x} & 3e^{3x} \\ 4e^{2x} & 9e^{3x} \end{vmatrix} - e^{x} \begin{vmatrix} e^{2x} & e^{3x} \\ 4e^{2x} & 9e^{3x} \end{vmatrix} + e^{x} \begin{vmatrix} 2e^{2x} & e^{3x} \\ 2e^{2x} & 3e^{3x} \end{vmatrix} \\ &= e^{x}(18e^{5x} - 12e^{5x}) - e^{x}(9e^{5x} - 4e^{5x}) + e^{x}(3e^{5x} - 2e^{3x}) \\ &= e^{x}(6e^{5x} - 5e^{5x} + e^{5x}) \\ &= 2e^{6x} \end{split}$$

3. (a) The function $y_1 = x^2$ is a solution of $x^2y'' - 3xy' + 4y = 0$. Use the method of reduction of order to find a second solution y_2 to the differential equation on the interval $(0, \infty)$.

Proof. We need to write the differential equation in standard form by dividing through by x^2 :

$$y'' - \frac{3}{x}y' + \frac{4}{x^2}y = 0 \tag{1}$$

Let $y_2 = vy_1$ where v is a function of x. Since $y_1 = x^2$, then $y_2 = x^2v$. We wish to plug this into the equation above, so we need to find y'_2, y''_2 using the product rule:

$$y_{2} = x^{2}v$$

$$y_{2}' = (x^{2})'v + x^{2}v' = 2xv + x^{2}v'$$

$$y_{2}'' = (2xv)' + (x^{2}v')' = (2x)'v + 2xv' + (x^{2})'v' + x^{2}v'' = 2v + 2xv' + x^{2}v'' = 2v + 4xv' + x^{2}v''$$

$$(2xv)' + (x^{2}v')' = (2x)'v + 2xv' + (x^{2})'v' + x^{2}v'' = 2v + 2xv' + x^{2}v'' = 2v + 4xv' + x^{2}v''$$

Substitute these into the standard form equation (5) above:

$$2v + 4xv' + x^{2}v'' - \frac{3}{x}(2xv + x^{2}v') + \frac{4}{x^{2}}(x^{2}v) = 0$$

$$\Rightarrow \quad 2v + 4xv' + x^{2}v'' - 6xv - 3xv' + 4v = 0$$

$$\Rightarrow \quad x^{2}v'' + xv' = 0$$
(2)

Now let w = v', then w = v'' and (6) becomes

$$x^2w' + xw = 0 \quad \Rightarrow \quad x^2\frac{dw}{dx} = -xw.$$

This is a separable equation. Separate the variables:

$$\frac{dw}{w} = -\frac{1}{x}dx$$

Integrate both sides:

$$\int \frac{dw}{w} = -\int \frac{1}{x} dx \quad \Rightarrow \quad \ln w = -\ln x \quad \Rightarrow \quad \ln w = \ln\left(\frac{1}{x}\right)$$

Solve for w:

$$w = \frac{1}{x}.$$

But, w = v', and so we have

$$v' = \frac{1}{x} \quad \Rightarrow \quad v = \int \frac{1}{x} dx = \ln x$$

Therefore

$$y_2 = x^2 v \quad \Rightarrow \quad y_2 = x^2 \ln x.$$

(b) Show that y_1 and y_2 form a fundamental set of solutions to the differential equation. Solution. We need to show that $W(y_1, y_2) \neq 0$ in the interval $(0, \infty)$.

$$W(y_1, y_2) = \begin{vmatrix} x^2 & x^2 \ln x \\ (x^2)' & (x^2 \ln x)' \end{vmatrix} = \begin{vmatrix} x^2 & x^2 \ln x \\ 2x & 2x \ln x + x \end{vmatrix}$$
$$= x^2 (2x \ln x + x) - 2x (x^2 \ln x)$$
$$= x^3$$

 $W = x^3$ which is nonzero since we are in the interval $(0, \infty)$.

(c) Write the general solution of the differential equation using y_1 and y_2 . Solution. The general solution to the differential equation is $y = c_1y_1 + c_2y_2$, which is

$$y = c_1 x^2 + c_2 x^2 \ln x.$$

4. Use reduction of order to find a second solution y_2 to the differential equation

$$4t^2y'' + y = 0$$

given that $y_1 = t^{1/2} \ln t$ is a solution.

Solution. Let $y_2 = vy_1 = v(t^{1/2} \ln t)$. We need to find y_2', y_2'' :

$$\begin{split} y_2' &= v'(t^{1/2}\ln t) + v(t^{1/2}\ln t))' = v'(t^{1/2}\ln t) + v\left(\frac{1}{2}t^{-1/2}\ln t + t^{-1/2}\right) \\ &= v'(t^{1/2}\ln t) + v\left(t^{-1/2}\left(\frac{1}{2}\ln t + 1\right)\right) \\ y_2'' &= v''(t^{1/2}\ln t) + v'(t^{1/2}\ln t)' + v'\left(t^{-1/2}\left(\frac{1}{2}\ln t + 1\right)\right) + v\left(t^{-1/2}\left(\frac{1}{2}\ln t + 1\right)\right)' \\ &= v''(t^{1/2}\ln t) + 2v'\left(t^{-1/2}\left(\frac{1}{2}\ln t + 1\right)\right) + v\left(-\frac{1}{2}t^{-3/2}\left(\frac{1}{2}\ln t + 1\right) + t^{-1/2} \cdot \frac{1}{2t}\right) \\ &= v''(t^{1/2}\ln t) + 2v'\left(t^{-1/2}\left(\frac{1}{2}\ln t + 1\right)\right) + v\left(-\frac{1}{4}t^{-3/2}\ln t\right) \end{split}$$

Now plug these into the original equation:

$$\begin{aligned} 4t^2y'' + y &= 4t^2 \left(v''(t^{1/2}\ln t) + 2v' \left(t^{-1/2} \left(\frac{1}{2}\ln t + 1 \right) \right) + v \left(-\frac{1}{4}t^{-3/2}\ln t \right) \right) + v(t^{1/2}\ln t) \\ &= 4v''t^{5/2}\ln t + 8t^2v' \left(t^{-1/2} \left(\frac{1}{2}\ln t + 1 \right) \right) - t^2v \left(t^{-3/2}\ln t \right) + v(t^{1/2}\ln t) \\ &= 4v''t^{5/2}\ln t + 8t^2v' \left(t^{-1/2} \left(\frac{1}{2}\ln t + 1 \right) \right) \end{aligned}$$

Now set this equal to 0:

$$4v''t^{5/2}\ln t + 8t^2v'\left(t^{-1/2}\left(\frac{1}{2}\ln t + 1\right)\right) = 0$$

Let w = v', then w' = v'':

$$4w't^{5/2}\ln t + 8t^2w\left(t^{-1/2}\left(\frac{1}{2}\ln t + 1\right)\right) = 0$$

This is a separable equation. We can rewrite w' as $\frac{dw}{dx}$ and get w's on one side, t's on the other:

$$4\frac{dw}{dt}t^{5/2}\ln t = -8t^2w\left(t^{-1/2}\left(\frac{1}{2}\ln t + 1\right)\right)$$
$$\frac{dw}{w} = \frac{-2t^2\left(t^{-1/2}\left(\frac{1}{2}\ln t + 1\right)\right)}{t^{5/2}\ln t}$$

Simplify the right hand side:

$$\frac{-t^{3/2}\ln t - 2t^{3/2}}{t^{5/2}\ln t} = -\frac{1}{t} - \frac{2}{t\ln t}$$

Integrate both sides:

$$\int \frac{dw}{w} = \int \left(-\frac{1}{t} - \frac{2}{t\ln t}\right) dt$$

On the right hand side you will need to use the substitution $a = \ln t, da = \frac{1}{t}dt$:

$$\ln|w| = -\ln|t| - 2\ln|\ln t$$

Now solve for w. But first we need to combine the log terms on the right hand side:

$$\ln|w| = \ln\left|\frac{1}{t}\right| + \ln\left|\frac{1}{(\ln t)^2}\right|$$
$$\ln|w| = \ln\left|\frac{1}{t(\ln t)^2}\right|$$

Take the exponential of both sides:

$$w = \frac{1}{t(\ln t)^2}$$

But, w = v', so

$$v = \int \frac{1}{t(\ln t)^2} dt$$

and using the substitution $a = \ln t, da = \frac{1}{t}dt$,

$$v = \int \frac{1}{a^2} da = -\frac{1}{a} = -\frac{1}{\ln t}.$$

Therefore

$$y_2 = v_2 t^{1/2} \ln t = -\frac{1}{\ln t} \cdot t^{1/2} \ln t = -t^{1/2}.$$

- 5. Suppose you are solving the equation y'' + P(t)y' + Q(t)y = g(t), where P(t) and Q(t) are constants, using the method of undetermined coefficients. Complete the table below. Assume g(t) has no function in common with the homogeneous solution y_h . List your solutions for (a) (i).

g(t)	Form of y_p	g(t)	Form of y_p
$3t^2 - 2$	(a)	$1 - t^2 e^{-t}$	(f)
(b)	Ae^{5t}	$3\cos 2t$	(g)
$6t^2 + 2 - 12e^{-2t}$	(c)	(h)	At + B
$e^{3x}\sin 4x$	(d)	$4t(1+3\sin t)$	(i)
(e)	$(At+B)e^{-3t}$		

Solution. (a) g(t) is a second degree polynomial, so we must guess a second degree polynomial: $y_p = At^2 + Bt + C$

- (b) y_p is an exponential function, so g must have also been an exponential function: $g = 100e^{5t}$ (answers will vary)
- (c) g(t) is a second degree polynomial added to an exponential function, so we must guess a second degree polynomial added to an exponential function: $y_p = At^2 + Bt + C + Ee^{-2t}$.
- (d) g(t) is an exponential function multiplied by a sine function, so we must also guess an exponential function multiplied by a sine function (we will also have to include a cosine function since sine and cosine come in pairs): $y_p = Ae^{3t} \sin 4t + Be^{3t} \cos 4t$
- (e) y_p is a first degree polynomial multiplied by an exponential function, so g must have been a first degree polynomial multiplied by an exponential function: $g = 18te^{-3t}$ (answers will vary)
- (f) g(t) is a constant term added to a second degree polynomial multiplied by an exponential function, so we guess the same thing: $y_p = A + (Bt^2 + Ct + E)e^{-t}$
- (g) g(t) is a cosine function, so we must also guess a cosine function (we will also have to include a sine function since sine and cosine come in pairs): $y_p = A \cos 2t + B \sin 2t$
- (h) y_p is a first degree polynomial, so g must have also been a first degree polynomial: g = -t + 3 (answers will vary)
- (i) Distribute first:

$$g = 4t + 12t\sin t$$

g is a first degree polynomial added to a first degree polynomial multiplied by a sine function, so we must also guess the same thing (we will also have to include a cosine function since sine and cosine come in pairs): $y_p = At + B + (Ct + E) \sin t + (Ft + G) \cos t$

6. Solve the given differential equation using the method of undetermined coefficients.

$$y'' + 2y' = 3 + 4\sin 2t.$$

Solution. We first find the homogeneous solution:

$$y'' + 2y' = 0$$

has the characteristic equation

$$r^{2} + 2r = 0 \implies r(r+2) = 0 \quad r = 0, r = -2$$

therefore the homogeneous solution is $y_h = c_1 + c_2 e^{-2t}$.

Now we guess a particular solution. $g(t) = 3 + 4 \sin 2t$, which is a constant term added to a sine term. We must also guess the same thing, but we will need to include a cosine term as well since sine and cosine come in pairs:

$$y_p = A + B\sin 2t + C\cos 2t$$

Now we compare with y_h to check if there are any solutions in common. Notice that y_p has a constant term in common with y_h (c_1), so we must multiply our constant A by t ("bump it up") so there is no more overlap:

$$y_p = At + B\sin 2t + C\cos 2t$$

We compare again with y_h , and we see there are no more solutions in common, so this is our final guess.

Find y'_p, y''_p :

$$y'_p = A + 2B\cos 2t - 2C\sin 2t$$
$$y''_p = -4B\sin 2t - 4C\cos 2t$$

Substitute these values into our equation above:

$$y'' + 2y' = -4B\sin 2t - 4C\cos 2t + 2(A + 2B\cos 2t - 2C\sin 2t)$$

= -4B\sin 2t - 4C\cos 2t + 2A + 4B\cos 2t - 4C\sin 2t

Set this equal to g(t):

$$-4B\sin 2t - 4C\cos 2t + 2A + 4B\cos 2t - 4C\sin 2t = 3 + 4\sin 2t$$

Set like terms equal to each other:

$$2A = 3$$
$$-4B - 4C = 4$$
$$-4C + 4B = 0$$

The solution to this system is $A = \frac{3}{2}, B = -\frac{1}{2}, C = -\frac{1}{2}$, therefore the particular solution is $y_p = \frac{3}{2}t - \frac{1}{2}\sin 2t - \frac{1}{2}\cos 2t$. The general solution is $y = y_h + y_p$:

$$y = c_1 + c_2 e^{-2t} + \frac{3}{2}t - \frac{1}{2}\sin 2t - \frac{1}{2}\cos 2t.$$

7. Solve the given initial-value problem.

$$y'' + 4y' + 4y = (3+t)e^{-2t}, \quad y(0) = 2, y'(0) = 5$$

Solution. We first find the homogeneous solution:

$$y'' + 4y' + 4y = 0$$

has the characteristic equation

$$r^2 + 4r + 4 = 0 \quad \Rightarrow \quad (r+2)^2 = 0 \quad \Rightarrow \quad r = -2 \text{ mult. } 2$$

therefore the homogeneous solution is $y_h = c_1 e^{-2t} + c_2 t e^{-2t}$.

We can use either the method of undetermined coefficients or variation of parameters to solve this equation. We will do both.

Undetermined coefficients: We need to guess our particular solution. $g(t) = (3+t)e^{-2t}$ is a first degree polynomial multiplied by an exponential term. We must also guess the same thing:

$$y_p = (At + B)e^{-2}$$

Now we compare with y_h to check if there are any solutions in common. Notice that y_p has both e^{-2t} and te^{-2t} in common with y_h , so we must multiply y_p by t ("bump it up"):

$$y_p = t(At + B)e^{-2t}$$

We compare again with y_h , and we see that y_p has te^{-2t} in common with y_h , so we must multiply y_p again by t (" bump it up"):

$$y_p = t^2 (At + B)e^{-2t}$$

We compare again with y_h , and we see there are no more solutions in common, so this is our final guess.

Find y'_p, y''_p :

$$y_p = (At^3 + Bt^2)e^{-2t}$$

$$y'_p = (3At^2 + 2Bt)e^{-2t} - 2(At^3 + Bt^2)e^{-2t}$$

$$y''_p = (6At + 2B)e^{-2t} - 2(3At^2 + 2Bt)e^{-2t} - 2(3At^2 + 2Bt)e^{-2t} + 4(At^3 + Bt^2)e^{-2t}$$

Substitute these values into our equation above:

$$\begin{split} y'' + 4y' + 4y &= (6At + 2B)e^{-2t} - 4(3At^2 + 2Bt)e^{-2t} + 4(At^3 + Bt^2)e^{-2t} \\ &+ 4\left((3At^2 + 2Bt)e^{-2t} - 2(At^3 + Bt^2)e^{-2t}\right) + 4(At^3 + Bt^2)e^{-2t} \\ &= (6At + 2B)e^{-2t} - 4(3At^2 + 2Bt)e^{-2t} + 4(At^3 + Bt^2)e^{-2t} + 4(3At^2 + 2Bt)e^{-2t} \\ &- 8(At^3 + Bt^2)e^{-2t} + 4(At^3 + Bt^2)e^{-2t} \\ &= (6At + 2B)e^{-2t} \end{split}$$

Set this equal to g(t):

$$(6At + 2B)e^{-2t} = (3+t)e^{-2t}$$

Set like terms equal to each other:

$$6A = 1$$
$$2B = 3$$

The solution to this system is $A = \frac{1}{6}, B = \frac{3}{2}$, therefore the particular solution is $y_p = \left(\frac{1}{6}t^3 + \frac{3}{2}t^2\right)e^{-2t}$. The general solution is $y = y_h + y_p$:

$$y = c_1 e^{-2t} + c_2 t e^{-2t} + \left(\frac{1}{6}t^3 + \frac{3}{2}t^2\right) e^{-2t}.$$

Variation of Parameters: Let $y_1 = e^{-2t}$, $y_2 = te^{-2t}$ (these come from y_h above). Then

$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-2t} & te^{-2t} \\ -2e^{-2t} & e^{-2t} - 2te^{-2t} \end{vmatrix} = e^{-2t}(e^{-2t} - 2te^{-2t}) - (-2e^{-2t})(te^{-2t}) = e^{-4t}$$
$$W_1 = \begin{vmatrix} 0 & y_2 \\ g & y'_2 \end{vmatrix} = \begin{vmatrix} 0 & te^{-2t} \\ (3+t)e^{-2t} & e^{-2t} - 2te^{-2t} \end{vmatrix} = -(3+t)e^{-2t}(te^{-2t}) = -(3+t)te^{-4t}$$
$$W_2 = \begin{vmatrix} y_1 & 0 \\ y'_1 & g \end{vmatrix} = \begin{vmatrix} e^{-2t} & 0 \\ -2e^{-2t} & (3+t)e^{-2t} \end{vmatrix} = e^{-2t}(3+t)e^{-2t} = (3+t)e^{-4t}$$

Find u_1, u_2 :

$$u_1' = \frac{W_1}{W} = \frac{-(3+t)te^{-4t}}{e^{-4t}} = -3t - t^2 \quad \Rightarrow \quad u_1 = \int (-3t - t^2)dt = -\frac{3}{2}t^2 - \frac{1}{3}t^3$$
$$u_2' = \frac{W_2}{W} = \frac{(3+t)e^{-4t}}{e^{-4t}} = 3 + t \quad \Rightarrow \quad u_2 = \int (3+t)dt = 3t + \frac{1}{2}t^2$$

The particular solution is $y_p = u_1 y_1 + u_2 y_2$:

$$y_p = \left(-\frac{3}{2}t^2 - \frac{1}{3}t^3\right)e^{-2t} + \left(3t + \frac{1}{2}t^2\right)te^{-2t}$$
$$= -\frac{3}{2}t^2e^{-2t} - \frac{1}{3}t^3e^{-2t} + 3te^{-2t} + \frac{1}{2}t^3e^{-2t}$$
$$= \frac{3}{2}t^2e^{-2t} + \frac{1}{6}t^3e^{-2t}$$

The general solution is $y = y_h + y_p$:

$$y = c_1 e^{-2t} + c_2 t e^{-2t} + \left(\frac{1}{6}t^3 + \frac{3}{2}t^2\right) e^{-2t}.$$

We aren't finished! We need to find c_1, c_2 given y(0) = 2, y'(0) = 5. Find y':

$$y = c_1 e^{-2t} + c_2 t e^{-2t} + \left(\frac{1}{6}t^3 + \frac{3}{2}t^2\right) e^{-2t}$$
$$y' = -2c_1 e^{-2t} + c_2(e^{-2t} - 2te^{-2t}) + \left(\frac{1}{2}t^2 + 3t\right) e^{-2t} - 2\left(\frac{1}{6}t^3 + \frac{3}{2}t^2\right) e^{-2t}$$

When t = 0, y = 2, y' = 5:

$$2 = c_1$$

$$5 = -2c_1 + c_2$$

The solution to this system is $c_1 = 2, c_2 = 9$, therefore the general solution is

$$y = 2e^{-2t} + 9te^{-2t} + \left(\frac{1}{6}t^3 + \frac{3}{2}t^2\right)e^{-2t}.$$

8. Find the general solution of the given differential equation using variation of parameters.

$$y'' + y = \tan t$$

Solution. We first find the homogeneous solution:

$$y'' + y = 0$$

has the characteristic equation

$$r^2 + 1 = 0 \quad \Rightarrow \quad r = \pm i$$

therefore the homogeneous solution is $y = c_1 \cos t + c_2 \sin t$. Let $y_1 = \cos t, y_2 = \sin t$. Then

$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{vmatrix} = \cos^2 t + \sin^2 t = 1$$
$$W_1 = \begin{vmatrix} 0 & y_2 \\ g & y'_2 \end{vmatrix} = \begin{vmatrix} 0 & \sin t \\ \tan t & \cos t \end{vmatrix} = -\sin t \tan t = -\frac{\sin^2 t}{\cos t}$$
$$W_2 = \begin{vmatrix} y_1 & 0 \\ y'_1 & g \end{vmatrix} = \begin{vmatrix} \cos t & 0 \\ -\sin t & \tan t \end{vmatrix} = \cos t \tan t = \sin t$$

Find u_1 and u_2 :

$$u_1' = \frac{W_1}{W} = -\frac{\sin^2 t}{\cos t}$$

$$\Rightarrow \quad u_1 = -\int \frac{\sin^2 t}{\cos t} dt = -\int \frac{1 - \cos^2 t}{\cos t} dt = -\int (\sec t - \cos t) dt = -\ln|\sec t + \tan t| + \sin t$$

$$u_2' = \frac{W_2}{W} = \sin t$$

$$\Rightarrow \quad u_2 = \int \sin t dt = -\cos t$$

The particular solution is $y_p = u_1y_1 + u_2y_2$:

$$y_p = (-\ln|\sec t + \tan t| + \sin t)\cos t + \sin t\cos t = -\cos t\ln|\sec t + \tan t|$$

The general solution is $y = y_h + y_p$:

$$y = c_1 \cos t + c_2 \sin t - \cos t \ln |\sec t + \tan t|.$$

9. $y_1 = \cos(\ln t), y_2 = \sin(\ln t)$ are independent solutions of the equation $t^2y'' + ty' + y = 0$. Find the general solution of the equation

$$t^2y'' + ty' + y = \sec(\ln t).$$

Solution. Use variation of parameters to solve. Write the equation in standard form:

$$y'' + \frac{1}{t}y' + \frac{1}{t^2}y = \frac{\sec(\ln t)}{t^2}$$

We are given that the homogeneous solution is

$$y_h = c_1 \cos(\ln t) + c_2 \sin(\ln t).$$

Let $y_1 = \cos(\ln t), y_2 = \sin(\ln t)$. Then

$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} \cos(\ln t) & \sin(\ln t) \\ -\frac{\sin(\ln t)}{t} & \frac{\cos(\ln t)}{t} \end{vmatrix} = \frac{\cos^2(\ln t)}{t} + \frac{\sin^2(\ln t)}{t} = \frac{1}{t}$$
$$W_1 = \begin{vmatrix} 0 & y_2 \\ g & y'_2 \end{vmatrix} = \begin{vmatrix} 0 & \sin(\ln t) \\ \frac{\sec(\ln t)}{t^2} & \frac{\cos(\ln t)}{t} \end{vmatrix} = -\frac{\sin(\ln t)\sec(\ln t)}{t^2} = -\frac{\tan(\ln t)}{t^2}$$
$$W_2 = \begin{vmatrix} y_1 & 0 \\ y'_1 & g \end{vmatrix} = \begin{vmatrix} \cos(\ln t) & 0 \\ -\frac{\sin(\ln t)}{t} & \frac{\sec(\ln t)}{t^2} \end{vmatrix} = \frac{1}{t^2}$$

Find u_1 and u_2 :

$$u_{1}' = \frac{W_{1}}{W} = \frac{-\frac{\tan(\ln t)}{t^{2}}}{\frac{1}{t}} = -\frac{\tan(\ln t)}{t}$$

$$\Rightarrow \quad u_{1} = -\int \frac{\tan(\ln t)}{t} dt = -\int \tan a da = -\int \frac{\sin a}{\cos a} da = \int \frac{1}{b} db = \ln|b| = \ln|\cos(\ln t)|$$

$$u_{2}' = \frac{W_{2}}{W} = \frac{\frac{1}{t^{2}}}{\frac{1}{t}} = \frac{1}{t}$$

$$\Rightarrow \quad u_{2} = \int \frac{1}{t} dt = \ln|t|$$

For u_1 we used the substitutions $a = \ln t$, $da = \frac{1}{t}dt$, and $b = \cos a$, $db = -\sin ada$. The particular solution is $y_p = u_1y_1 + u_2y_2$:

$$y = \ln |\cos(\ln t)|(\cos(\ln t)) + \ln |t|(\sin(\ln t)).$$

The general solution is $y = y_h + y_p$:

$$y = c_1 \cos(\ln t) + c_2 \sin(\ln t) + \ln|\cos(\ln t)|(\cos(\ln t)) + \ln|t|(\sin(\ln t)).$$