Solutions to Practice Problems II

Written by Victoria Kala
vtkala@math.ucsb.edu
SH 6432u Office Hours: T 12:45-1:45pm
Last updated 7/12/2016

Answers

This page contains answers only. Detailed solutions are on the following pages.

1. (a) $y=e^{-2 x}\left(c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x\right)$
(b) $y=c_{1}+c_{2} e^{x}+c_{3} x e^{x}$
(c) $u=c_{1} e^{-\frac{1}{2} t}+c_{2} e^{3 t}$
(d) $r=c_{1} e^{s}+c_{2} e^{-s}+c_{3} \cos s+c_{4} \sin s$
2. $W=2 e^{6 x}$
3. (a) $y_{2}=x^{2} \ln x$
(b) $W=x^{3}$
(c) $y=c_{1} x^{2}+c_{2} x^{2} \ln x$
4. $y_{2}=-t^{1 / 2}$
5. (a) $y_{p}=A t^{2}+B t+C$
(b) Answers will vary
(c) $y_{p}=A t^{2}+B t+C+E e^{-2 t}$
(d) $y_{p}=A e^{3 t} \sin 4 t+B e^{3 t} \cos 4 t$
(e) Answers will vary
(f) $y_{p}=A+\left(B t^{2}+C t+E\right) e^{-t}$
(g) $y_{p}=A \cos 2 t+B \sin 2 t$
(h) Answers will vary
(i) $y_{p}=(A t+B)+(C t+E) \sin t+(F t+G) \cos t$
6. $y=c_{1}+c_{2} e^{-2 t}+\frac{3}{2} t-\frac{1}{2} \sin 2 t-\frac{1}{2} \cos 2 t$
7. $y=2 e^{-2 t}+9 t e^{-2 t}+\left(\frac{1}{6} t^{3}+\frac{3}{2} t^{2}\right) e^{-2 t}$
8. $y=c_{1} \cos t+c_{2} \sin t-\cos t \ln |\sec t+\tan t|$.
9. $y=c_{1} \cos (\ln t)+c_{2} \sin (\ln t)+\ln |\cos (\ln t)|(\cos (\ln t))+\ln |t|(\sin (\ln t))$

Detailed Solutions

1. Find the general solution of the following homogeneous higher-order differential equations:
(a) $y^{\prime \prime}+4 y^{\prime}+7 y=0$ (use x as the independent variable)

Solution. The characteristic equation is $r^{2}+4 r+7=0$. Using the quadratic equation, we see the roots are

$$
r=\frac{-4 \pm \sqrt{4^{2}-4(1)(7)}}{2} \Rightarrow r=\frac{-4 \pm i 2 \sqrt{3}}{2}=-2 \pm i \sqrt{3}
$$

We have two complex roots, hence the solution to the differential equation is

$$
y=e^{-2 x}\left(c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x\right)
$$

(b) $y^{(3)}+2 y^{\prime \prime}+y^{\prime}=0$ (use x as the independent variable)

Solution. The characteristic equation is $r^{3}+2 r^{2}+r=0$ which factors as

$$
r\left(r^{2}+2 r+1\right)=0 \Rightarrow r(r+1)^{2}=0
$$

Therefore the roots are $r=0$ multiplicity $1, r=-1$ multiplicity 2 . The solution to the differential equation is therefore

$$
y=c_{1} e^{0 x}+c_{2} e^{1 x}+c 3 x e^{1 x} \quad \text { or } \quad y=c_{1}+c_{2} e^{x}+c_{3} x e^{x}
$$

(c) $2 \frac{d^{2} u}{d t^{2}}-5 \frac{d u}{d t}-3 u=0$

Solution. The characteristic equation is $2 r^{2}-5 r-3=0$, which factors as

$$
(2 r+1)(r-3)=0
$$

The roots are $r=-\frac{1}{2}, r=3$ each with multiplicity 1 . The solution to the differential equation is therefore

$$
u=c_{1} e^{-\frac{1}{2} t}+c_{2} e^{3 t}
$$

(d) $\frac{d^{4} r}{d s^{4}}-r=0$

Solution. The characteristic equation is $m^{4}-1=0$ (we cannot use r as our characteristic equation variable since it is being used in the differential equation). This factors as

$$
\left(m^{2}-1\right)\left(m^{2}+1\right)=0 \quad \Rightarrow \quad(m-1)(m+1)(m-i)(m+i)=0
$$

The roots are $m=1,-1, \pm i$. The solution to the differential equation is

$$
r=c_{1} e^{s}+c_{2} e^{-s}+e^{0 s}\left(c_{3} \cos s+c_{4} \sin s\right) \quad \Rightarrow \quad r=c_{1} e^{s}+c_{2} e^{-s}+c_{3} \cos s+c_{4} \sin s
$$

2. Calculate $W\left(y_{1}, y_{2}, y_{3}\right)$ where $y_{1}=e^{x}, y_{2}=e^{2 x}, y_{3}=e^{3 x}$.

Solution.

$$
\begin{aligned}
W\left(e^{x}, e^{2 x}, e^{3 x}\right) & =\left|\begin{array}{ccc}
e^{x} & e^{2 x} & e^{3 x} \\
\left(e^{x}\right)^{\prime} & \left(e^{2 x}\right)^{\prime} & \left(e^{3 x}\right)^{\prime} \\
\left(e^{x}\right)^{\prime \prime} & \left(e^{2 x}\right)^{\prime \prime} & \left(e^{3 x}\right)^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right| \\
& =e^{x}\left|\begin{array}{ll}
2 e^{2 x} & 3 e^{3 x} \\
4 e^{2 x} & 9 e^{3 x}
\end{array}\right|-e^{x}\left|\begin{array}{cc}
e^{2 x} & e^{3 x} \\
4 e^{2 x} & 9 e^{3 x}
\end{array}\right|+e^{x}\left|\begin{array}{cc}
e^{2 x} & e^{3 x} \\
2 e^{2 x} & 3 e^{3 x}
\end{array}\right| \\
& =e^{x}\left(18 e^{5 x}-12 e^{5 x}\right)-e^{x}\left(9 e^{5 x}-4 e^{5 x}\right)+e^{x}\left(3 e^{5 x}-2 e^{3 x}\right) \\
& =e^{x}\left(6 e^{5 x}-5 e^{5 x}+e^{5 x}\right) \\
& =2 e^{6 x}
\end{aligned}
$$

3. (a) The function $y_{1}=x^{2}$ is a solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$. Use the method of reduction of order to find a second solution y_{2} to the differential equation on the interval $(0, \infty)$.
Proof. We need to write the differential equation in standard form by dividing through by x^{2} :

$$
\begin{equation*}
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0 \tag{1}
\end{equation*}
$$

Let $y_{2}=v y_{1}$ where v is a function of x. Since $y_{1}=x^{2}$, then $y_{2}=x^{2} v$. We wish to plug this into the equation above, so we need to find $y_{2}^{\prime}, y_{2}^{\prime \prime}$ using the product rule:

$$
\begin{aligned}
& y_{2}=x^{2} v \\
& y_{2}^{\prime}=\left(x^{2}\right)^{\prime} v+x^{2} v^{\prime}=2 x v+x^{2} v^{\prime} \\
& y_{2}^{\prime \prime}=(2 x v)^{\prime}+\left(x^{2} v^{\prime}\right)^{\prime}=(2 x)^{\prime} v+2 x v^{\prime}+\left(x^{2}\right)^{\prime} v^{\prime}+x^{2} v^{\prime \prime}=2 v+2 x v^{\prime}+2 x v^{\prime}+x^{2} v^{\prime \prime}=2 v+4 x v^{\prime}+x^{2} v^{\prime \prime}
\end{aligned}
$$

Substitute these into the standard form equation (5) above:

$$
\begin{gather*}
2 v+4 x v^{\prime}+x^{2} v^{\prime \prime}-\frac{3}{x}\left(2 x v+x^{2} v^{\prime}\right)+\frac{4}{x^{2}}\left(x^{2} v\right)=0 \\
\Rightarrow \quad 2 v+4 x v^{\prime}+x^{2} v^{\prime \prime}-6 x v-3 x v^{\prime}+4 v=0 \\
\Rightarrow \quad x^{2} v^{\prime \prime}+x v^{\prime}=0 \tag{2}
\end{gather*}
$$

Now let $w=v^{\prime}$, then $w=v^{\prime \prime}$ and (6) becomes

$$
x^{2} w^{\prime}+x w=0 \quad \Rightarrow \quad x^{2} \frac{d w}{d x}=-x w .
$$

This is a separable equation. Separate the variables:

$$
\frac{d w}{w}=-\frac{1}{x} d x
$$

Integrate both sides:

$$
\int \frac{d w}{w}=-\int \frac{1}{x} d x \quad \Rightarrow \quad \ln w=-\ln x \quad \Rightarrow \quad \ln w=\ln \left(\frac{1}{x}\right)
$$

Solve for w :

$$
w=\frac{1}{x} .
$$

But, $w=v^{\prime}$, and so we have

$$
v^{\prime}=\frac{1}{x} \quad \Rightarrow \quad v=\int \frac{1}{x} d x=\ln x
$$

Therefore

$$
y_{2}=x^{2} v \quad \Rightarrow \quad y_{2}=x^{2} \ln x .
$$

(b) Show that y_{1} and y_{2} form a fundamental set of solutions to the differential equation.

Solution. We need to show that $W\left(y_{1}, y_{2}\right) \neq 0$ in the interval $(0, \infty)$.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right) & =\left|\begin{array}{cc}
x^{2} & x^{2} \ln x \\
\left(x^{2}\right)^{\prime} & \left(x^{2} \ln x\right)^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{2} & x^{2} \ln x \\
2 x & 2 x \ln x+x
\end{array}\right| \\
& =x^{2}(2 x \ln x+x)-2 x\left(x^{2} \ln x\right) \\
& =x^{3}
\end{aligned}
$$

$W=x^{3}$ which is nonzero since we are in the interval $(0, \infty)$.
(c) Write the general solution of the differential equation using y_{1} and y_{2}.

Solution. The general solution to the differential equation is $y=c_{1} y_{1}+c_{2} y_{2}$, which is

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x
$$

4. Use reduction of order to find a second solution y_{2} to the differential equation

$$
4 t^{2} y^{\prime \prime}+y=0
$$

given that $y_{1}=t^{1 / 2} \ln t$ is a solution.
Solution. Let $y_{2}=v y_{1}=v\left(t^{1 / 2} \ln t\right)$. We need to find $y_{2}^{\prime}, y_{2}^{\prime \prime}$:

$$
\begin{aligned}
y_{2}^{\prime} & \left.=v^{\prime}\left(t^{1 / 2} \ln t\right)+v\left(t^{1 / 2} \ln t\right)\right)^{\prime}=v^{\prime}\left(t^{1 / 2} \ln t\right)+v\left(\frac{1}{2} t^{-1 / 2} \ln t+t^{-1 / 2}\right) \\
& =v^{\prime}\left(t^{1 / 2} \ln t\right)+v\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right) \\
y_{2}^{\prime \prime} & =v^{\prime \prime}\left(t^{1 / 2} \ln t\right)+v^{\prime}\left(t^{1 / 2} \ln t\right)^{\prime}+v^{\prime}\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)+v\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)^{\prime} \\
& =v^{\prime \prime}\left(t^{1 / 2} \ln t\right)+2 v^{\prime}\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)+v\left(-\frac{1}{2} t^{-3 / 2}\left(\frac{1}{2} \ln t+1\right)+t^{-1 / 2} \cdot \frac{1}{2 t}\right) \\
& =v^{\prime \prime}\left(t^{1 / 2} \ln t\right)+2 v^{\prime}\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)+v\left(-\frac{1}{4} t^{-3 / 2} \ln t\right)
\end{aligned}
$$

Now plug these into the original equation:

$$
\begin{aligned}
4 t^{2} y^{\prime \prime}+y & =4 t^{2}\left(v^{\prime \prime}\left(t^{1 / 2} \ln t\right)+2 v^{\prime}\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)+v\left(-\frac{1}{4} t^{-3 / 2} \ln t\right)\right)+v\left(t^{1 / 2} \ln t\right) \\
& =4 v^{\prime \prime} t^{5 / 2} \ln t+8 t^{2} v^{\prime}\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)-t^{2} v\left(t^{-3 / 2} \ln t\right)+v\left(t^{1 / 2} \ln t\right) \\
& =4 v^{\prime \prime} t^{5 / 2} \ln t+8 t^{2} v^{\prime}\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)
\end{aligned}
$$

Now set this equal to 0 :

$$
4 v^{\prime \prime} t^{5 / 2} \ln t+8 t^{2} v^{\prime}\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)=0
$$

Let $w=v^{\prime}$, then $w^{\prime}=v^{\prime \prime}$:

$$
4 w^{\prime} t^{5 / 2} \ln t+8 t^{2} w\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)=0
$$

This is a separable equation. We can rewrite w^{\prime} as $\frac{d w}{d x}$ and get w 's on one side, t 's on the other:

$$
\begin{gathered}
4 \frac{d w}{d t} t^{5 / 2} \ln t=-8 t^{2} w\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right) \\
\frac{d w}{w}=\frac{-2 t^{2}\left(t^{-1 / 2}\left(\frac{1}{2} \ln t+1\right)\right)}{t^{5 / 2} \ln t}
\end{gathered}
$$

Simplify the right hand side:

$$
\frac{-t^{3 / 2} \ln t-2 t^{3 / 2}}{t^{5 / 2} \ln t}=-\frac{1}{t}-\frac{2}{t \ln t}
$$

Integrate both sides:

$$
\int \frac{d w}{w}=\int\left(-\frac{1}{t}-\frac{2}{t \ln t}\right) d t
$$

On the right hand side you will need to use the substitution $a=\ln t, d a=\frac{1}{t} d t$:

$$
\ln |w|=-\ln |t|-2 \ln |\ln t|
$$

Now solve for w. But first we need to combine the log terms on the right hand side:

$$
\begin{gathered}
\ln |w|=\ln \left|\frac{1}{t}\right|+\ln \left|\frac{1}{(\ln t)^{2}}\right| \\
\ln |w|=\ln \left|\frac{1}{t(\ln t)^{2}}\right|
\end{gathered}
$$

Take the exponential of both sides:

$$
w=\frac{1}{t(\ln t)^{2}}
$$

But, $w=v^{\prime}$, so

$$
v=\int \frac{1}{t(\ln t)^{2}} d t
$$

and using the substitution $a=\ln t, d a=\frac{1}{t} d t$,

$$
v=\int \frac{1}{a^{2}} d a=-\frac{1}{a}=-\frac{1}{\ln t}
$$

Therefore

$$
y_{2}=v_{2} t^{1 / 2} \ln t=-\frac{1}{\ln t} \cdot t^{1 / 2} \ln t=-t^{1 / 2}
$$

5. Suppose you are solving the equation $y^{\prime \prime}+P(t) y^{\prime}+Q(t) y=g(t)$, where $P(t)$ and $Q(t)$ are constants, using the method of undetermined coefficients. Complete the table below. Assume $g(t)$ has no function in common with the homogeneous solution y_{h}. List your solutions for (a) - (i).

$g(t)$	Form of y_{p}	$g(t)$	Form of y_{p}
$3 t^{2}-2$	(a)	$1-t^{2} e^{-t}$	(f)
(b)	$A e^{5 t}$	$3 \cos 2 t$	$(\mathrm{~g})$
$6 t^{2}+2-12 e^{-2 t}$	(c)	(h)	$A t+B$
$e^{3 x} \sin 4 x$	(d)	$4 t(1+3 \sin t)$	(i)
(e)	$(A t+B) e^{-3 t}$		

Solution. (a) $g(t)$ is a second degree polynomial, so we must guess a second degree polynomial: $y_{p}=A t^{2}+B t+C$
(b) y_{p} is an exponential function, so g must have also been an exponential function: $g=100 e^{5 t}$ (answers will vary)
(c) $g(t)$ is a second degree polynomial added to an exponential function, so we must guess a second degree polynomial added to an exponential function: $y_{p}=A t^{2}+B t+C+E e^{-2 t}$.
(d) $g(t)$ is an exponential function multiplied by a sine function, so we must also guess an exponential function multiplied by a sine function (we will also have to include a cosine function since sine and cosine come in pairs): $y_{p}=A e^{3 t} \sin 4 t+B e^{3 t} \cos 4 t$
(e) y_{p} is a first degree polynomial multiplied by an exponential function, so g must have been a first degree polynomial multiplied by an exponential function: $g=18 t e^{-3 t}$ (answers will vary)
(f) $g(t)$ is a constant term added to a second degree polynomial multiplied by an exponential function, so we guess the same thing: $y_{p}=A+\left(B t^{2}+C t+E\right) e^{-t}$
(g) $g(t)$ is a cosine function, so we must also guess a cosine function (we will also have to include a sine function since sine and cosine come in pairs): $y_{p}=A \cos 2 t+B \sin 2 t$
(h) y_{p} is a first degree polynomial, so g must have also been a first degree polynomial: $g=-t+3$ (answers will vary)
(i) Distribute first:

$$
g=4 t+12 t \sin t
$$

g is a first degree polynomial added to a first degree polynomial multiplied by a sine function, so we must also guess the same thing (we will also have to include a cosine function since sine and cosine come in pairs): $y_{p}=A t+B+(C t+E) \sin t+(F t+G) \cos t$
6. Solve the given differential equation using the method of undetermined coefficients.

$$
y^{\prime \prime}+2 y^{\prime}=3+4 \sin 2 t
$$

Solution. We first find the homogeneous solution:

$$
y^{\prime \prime}+2 y^{\prime}=0
$$

has the characteristic equation

$$
r^{2}+2 r=0 \quad \Rightarrow \quad r(r+2)=0 \quad r=0, r=-2
$$

therefore the homogeneous solution is $y_{h}=c_{1}+c_{2} e^{-2 t}$.
Now we guess a particular solution. $g(t)=3+4 \sin 2 t$, which is a constant term added to a sine term. We must also guess the same thing, but we will need to include a cosine term as well since sine and cosine come in pairs:

$$
y_{p}=A+B \sin 2 t+C \cos 2 t .
$$

Now we compare with y_{h} to check if there are any solutions in common. Notice that y_{p} has a constant term in common with $y_{h}\left(c_{1}\right)$, so we must multiply our constant A by t ("bump it up") so there is no more overlap:

$$
y_{p}=A t+B \sin 2 t+C \cos 2 t .
$$

We compare again with y_{h}, and we see there are no more solutions in common, so this is our final guess.
Find $y_{p}^{\prime}, y_{p}^{\prime \prime}$:

$$
\begin{aligned}
& y_{p}^{\prime}=A+2 B \cos 2 t-2 C \sin 2 t \\
& y_{p}^{\prime \prime}=-4 B \sin 2 t-4 C \cos 2 t
\end{aligned}
$$

Substitute these values into our equation above:

$$
\begin{aligned}
y^{\prime \prime}+2 y^{\prime} & =-4 B \sin 2 t-4 C \cos 2 t+2(A+2 B \cos 2 t-2 C \sin 2 t) \\
& =-4 B \sin 2 t-4 C \cos 2 t+2 A+4 B \cos 2 t-4 C \sin 2 t
\end{aligned}
$$

Set this equal to $g(t)$:

$$
-4 B \sin 2 t-4 C \cos 2 t+2 A+4 B \cos 2 t-4 C \sin 2 t=3+4 \sin 2 t
$$

Set like terms equal to each other:

$$
\begin{aligned}
2 A & =3 \\
-4 B-4 C & =4 \\
-4 C+4 B & =0
\end{aligned}
$$

The solution to this system is $A=\frac{3}{2}, B=-\frac{1}{2}, C=-\frac{1}{2}$, therefore the particular solution is $y_{p}=$ $\frac{3}{2} t-\frac{1}{2} \sin 2 t-\frac{1}{2} \cos 2 t$. The general solution is $y=y_{h}+y_{p}$:

$$
y=c_{1}+c_{2} e^{-2 t}+\frac{3}{2} t-\frac{1}{2} \sin 2 t-\frac{1}{2} \cos 2 t .
$$

7. Solve the given initial-value problem.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=(3+t) e^{-2 t}, \quad y(0)=2, y^{\prime}(0)=5
$$

Solution. We first find the homogeneous solution:

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

has the characteristic equation

$$
r^{2}+4 r+4=0 \quad \Rightarrow \quad(r+2)^{2}=0 \quad \Rightarrow \quad r=-2 \text { mult. } 2
$$

therefore the homogeneous solution is $y_{h}=c_{1} e^{-2 t}+c_{2} t e^{-2 t}$.
We can use either the method of undetermined coefficients or variation of parameters to solve this equation. We will do both.
Undetermined coefficients: We need to guess our particular solution. $g(t)=(3+t) e^{-2 t}$ is a first degree polynomial multiplied by an exponential term. We must also guess the same thing:

$$
y_{p}=(A t+B) e^{-2 t}
$$

Now we compare with y_{h} to check if there are any solutions in common. Notice that y_{p} has both $e^{-2 t}$ and $t e^{-2 t}$ in common with y_{h}, so we must multiply y_{p} by ("bump it up"):

$$
y_{p}=t(A t+B) e^{-2 t}
$$

We compare again with y_{h}, and we see that y_{p} has $t e^{-2 t}$ in common with y_{h}, so we must multiply y_{p} again by t (" bump it up"):

$$
y_{p}=t^{2}(A t+B) e^{-2 t}
$$

We compare again with y_{h}, and we see there are no more solutions in common, so this is our final guess.
Find $y_{p}^{\prime}, y_{p}^{\prime \prime}$:

$$
\begin{aligned}
& y_{p}=\left(A t^{3}+B t^{2}\right) e^{-2 t} \\
& y_{p}^{\prime}=\left(3 A t^{2}+2 B t\right) e^{-2 t}-2\left(A t^{3}+B t^{2}\right) e^{-2 t} \\
& y_{p}^{\prime \prime}=(6 A t+2 B) e^{-2 t}-2\left(3 A t^{2}+2 B t\right) e^{-2 t}-2\left(3 A t^{2}+2 B t\right) e^{-2 t}+4\left(A t^{3}+B t^{2}\right) e^{-2 t}
\end{aligned}
$$

Substitute these values into our equation above:

$$
\begin{aligned}
y^{\prime \prime}+4 y^{\prime}+4 y= & (6 A t+2 B) e^{-2 t}-4\left(3 A t^{2}+2 B t\right) e^{-2 t}+4\left(A t^{3}+B t^{2}\right) e^{-2 t} \\
& \quad+4\left(\left(3 A t^{2}+2 B t\right) e^{-2 t}-2\left(A t^{3}+B t^{2}\right) e^{-2 t}\right)+4\left(A t^{3}+B t^{2}\right) e^{-2 t} \\
= & (6 A t+2 B) e^{-2 t}-4\left(3 A t^{2}+2 B t\right) e^{-2 t}+4\left(A t^{3}+B t^{2}\right) e^{-2 t}+4\left(3 A t^{2}+2 B t\right) e^{-2 t} \\
& \quad-8\left(A t^{3}+B t^{2}\right) e^{-2 t}+4\left(A t^{3}+B t^{2}\right) e^{-2 t} \\
= & (6 A t+2 B) e^{-2 t}
\end{aligned}
$$

Set this equal to $g(t)$:

$$
(6 A t+2 B) e^{-2 t}=(3+t) e^{-2 t}
$$

Set like terms equal to each other:

$$
\begin{aligned}
& 6 A=1 \\
& 2 B=3
\end{aligned}
$$

The solution to this system is $A=\frac{1}{6}, B=\frac{3}{2}$, therefore the particular solution is $y_{p}=\left(\frac{1}{6} t^{3}+\frac{3}{2} t^{2}\right) e^{-2 t}$. The general solution is $y=y_{h}+y_{p}$:

$$
y=c_{1} e^{-2 t}+c_{2} t e^{-2 t}+\left(\frac{1}{6} t^{3}+\frac{3}{2} t^{2}\right) e^{-2 t}
$$

Variation of Parameters: Let $y_{1}=e^{-2 t}, y_{2}=t e^{-2 t}$ (these come from y_{h} above). Then

$$
\begin{aligned}
W & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & e^{-2 t}-2 t e^{-2 t}
\end{array}\right|=e^{-2 t}\left(e^{-2 t}-2 t e^{-2 t}\right)-\left(-2 e^{-2 t}\right)\left(t e^{-2 t}\right)=e^{-4 t} \\
W_{1} & =\left|\begin{array}{cc}
0 & y_{2} \\
g & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
0 & t e^{-2 t} \\
(3+t) e^{-2 t} & e^{-2 t}-2 t e^{-2 t}
\end{array}\right|=-(3+t) e^{-2 t}\left(t e^{-2 t}\right)=-(3+t) t e^{-4 t} \\
W_{2} & =\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 t} & 0 \\
-2 e^{-2 t} & (3+t) e^{-2 t}
\end{array}\right|=e^{-2 t}(3+t) e^{-2 t}=(3+t) e^{-4 t}
\end{aligned}
$$

Find u_{1}, u_{2} :

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{W_{1}}{W}=\frac{-(3+t) t e^{-4 t}}{e^{-4 t}}=-3 t-t^{2} \quad \Rightarrow \quad u_{1}=\int\left(-3 t-t^{2}\right) d t=-\frac{3}{2} t^{2}-\frac{1}{3} t^{3} \\
& u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{(3+t) e^{-4 t}}{e^{-4 t}}=3+t \quad \Rightarrow \quad u_{2}=\int(3+t) d t=3 t+\frac{1}{2} t^{2}
\end{aligned}
$$

The particular solution is $y_{p}=u_{1} y_{1}+u_{2} y_{2}$:

$$
\begin{aligned}
y_{p} & =\left(-\frac{3}{2} t^{2}-\frac{1}{3} t^{3}\right) e^{-2 t}+\left(3 t+\frac{1}{2} t^{2}\right) t e^{-2 t} \\
& =-\frac{3}{2} t^{2} e^{-2 t}-\frac{1}{3} t^{3} e^{-2 t}+3 t e^{-2 t}+\frac{1}{2} t^{3} e^{-2 t} \\
& =\frac{3}{2} t^{2} e^{-2 t}+\frac{1}{6} t^{3} e^{-2 t}
\end{aligned}
$$

The general solution is $y=y_{h}+y_{p}$:

$$
y=c_{1} e^{-2 t}+c_{2} t e^{-2 t}+\left(\frac{1}{6} t^{3}+\frac{3}{2} t^{2}\right) e^{-2 t}
$$

We aren't finished! We need to find c_{1}, c_{2} given $y(0)=2, y^{\prime}(0)=5$. Find y^{\prime} :

$$
\begin{aligned}
y & =c_{1} e^{-2 t}+c_{2} t e^{-2 t}+\left(\frac{1}{6} t^{3}+\frac{3}{2} t^{2}\right) e^{-2 t} \\
y^{\prime} & =-2 c_{1} e^{-2 t}+c_{2}\left(e^{-2 t}-2 t e^{-2 t}\right)+\left(\frac{1}{2} t^{2}+3 t\right) e^{-2 t}-2\left(\frac{1}{6} t^{3}+\frac{3}{2} t^{2}\right) e^{-2 t}
\end{aligned}
$$

When $t=0, y=2, y^{\prime}=5$:

$$
\begin{aligned}
& 2=c_{1} \\
& 5=-2 c_{1}+c_{2}
\end{aligned}
$$

The solution to this system is $c_{1}=2, c_{2}=9$, therefore the general solution is

$$
y=2 e^{-2 t}+9 t e^{-2 t}+\left(\frac{1}{6} t^{3}+\frac{3}{2} t^{2}\right) e^{-2 t}
$$

8. Find the general solution of the given differential equation using variation of parameters.

$$
y^{\prime \prime}+y=\tan t
$$

Solution. We first find the homogeneous solution:

$$
y^{\prime \prime}+y=0
$$

has the characteristic equation

$$
r^{2}+1=0 \quad \Rightarrow \quad r= \pm i
$$

therefore the homogeneous solution is $y=c_{1} \cos t+c_{2} \sin t$.
Let $y_{1}=\cos t, y_{2}=\sin t$. Then

$$
\begin{aligned}
W & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right|=\cos ^{2} t+\sin ^{2} t=1 \\
W_{1} & =\left|\begin{array}{ll}
0 & y_{2} \\
g & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
0 & \sin t \\
\tan t & \cos t
\end{array}\right|=-\sin t \tan t=-\frac{\sin ^{2} t}{\cos t} \\
W_{2} & =\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|=\left|\begin{array}{cc}
\cos t & 0 \\
-\sin t & \tan t
\end{array}\right|=\cos t \tan t=\sin t
\end{aligned}
$$

Find u_{1} and u_{2} :

$$
\begin{aligned}
u_{1}^{\prime} & =\frac{W_{1}}{W}=-\frac{\sin ^{2} t}{\cos t} \\
& \Rightarrow u_{1}=-\int \frac{\sin ^{2} t}{\cos t} d t=-\int \frac{1-\cos ^{2} t}{\cos t} d t=-\int(\sec t-\cos t) d t=-\ln |\sec t+\tan t|+\sin t \\
u_{2}^{\prime} & =\frac{W_{2}}{W}=\sin t \\
& \Rightarrow u_{2}=\int \sin t d t=-\cos t
\end{aligned}
$$

The particular solution is $y_{p}=u_{1} y_{1}+u_{2} y_{2}$:

$$
y_{p}=(-\ln |\sec t+\tan t|+\sin t) \cos t+\sin t \cos t=-\cos t \ln |\sec t+\tan t|
$$

The general solution is $y=y_{h}+y_{p}$:

$$
y=c_{1} \cos t+c_{2} \sin t-\cos t \ln |\sec t+\tan t|
$$

9. $y_{1}=\cos (\ln t), y_{2}=\sin (\ln t)$ are independent solutions of the equation $t^{2} y^{\prime \prime}+t y^{\prime}+y=0$. Find the general solution of the equation

$$
t^{2} y^{\prime \prime}+t y^{\prime}+y=\sec (\ln t)
$$

Solution. Use variation of parameters to solve. Write the equation in standard form:

$$
y^{\prime \prime}+\frac{1}{t} y^{\prime}+\frac{1}{t^{2}} y=\frac{\sec (\ln t)}{t^{2}}
$$

We are given that the homogeneous solution is

$$
y_{h}=c_{1} \cos (\ln t)+c_{2} \sin (\ln t) .
$$

Let $y_{1}=\cos (\ln t), y_{2}=\sin (\ln t)$. Then

$$
\begin{aligned}
& W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos (\ln t) & \sin (\ln t) \\
-\frac{\sin (\ln t)}{t} & \frac{\cos (\ln t)}{t}
\end{array}\right|=\frac{\cos ^{2}(\ln t)}{t}+\frac{\sin ^{2}(\ln t)}{t}=\frac{1}{t} \\
& W_{1}=\left|\begin{array}{ll}
0 & y_{2} \\
g & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
0 & \sin (\ln t) \\
\frac{\sec (\ln t)}{t^{2}} & \frac{\cos (\ln t)}{t}
\end{array}\right|=-\frac{\sin (\ln t) \sec (\ln t)}{t^{2}}=-\frac{\tan (\ln t)}{t^{2}} \\
& W_{2}=\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & g
\end{array}\right|=\left|\begin{array}{cc}
\cos (\ln t) & 0 \\
-\frac{\sin (\ln t)}{t} & \frac{\sec (\ln t)}{t^{2}}
\end{array}\right|=\frac{1}{t^{2}}
\end{aligned}
$$

Find u_{1} and u_{2} :

$$
\begin{aligned}
u_{1}^{\prime} & =\frac{W_{1}}{W}=\frac{-\frac{\tan (\ln t)}{t^{2}}}{\frac{1}{t}}=-\frac{\tan (\ln t)}{t} \\
& \Rightarrow u_{1}=-\int \frac{\tan (\ln t)}{t} d t=-\int \tan a d a=-\int \frac{\sin a}{\cos a} d a=\int \frac{1}{b} d b=\ln |b|=\ln |\cos (\ln t)| \\
u_{2}^{\prime} & =\frac{W_{2}}{W}=\frac{\frac{1}{t^{2}}}{\frac{1}{t}}=\frac{1}{t} \\
& \Rightarrow u_{2}=\int \frac{1}{t} d t=\ln |t|
\end{aligned}
$$

For u_{1} we used the substitutions $a=\ln t, d a=\frac{1}{t} d t$, and $b=\cos a, d b=-\sin a d a$. The particular solution is $y_{p}=u_{1} y_{1}+u_{2} y_{2}$:

$$
y=\ln |\cos (\ln t)|(\cos (\ln t))+\ln |t|(\sin (\ln t)) .
$$

The general solution is $y=y_{h}+y_{p}$:

$$
y=c_{1} \cos (\ln t)+c_{2} \sin (\ln t)+\ln |\cos (\ln t)|(\cos (\ln t))+\ln |t|(\sin (\ln t)) .
$$

