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We show that, for horoconvex domains in the hyperbolic space, the product of their fundamental gap with the square

of their diameter has no positive lower bound. The result follows from the study of the fundamental gap of geodesic

balls as the radius goes to infinity. In the process, we improve the lower bound for the first eigenvalue of balls in

hyperbolic space.

1 Introduction

In this article, the fundamental gap of a domain is the difference between the first two eigenvalues of the

Laplacian with zero Dirichlet boundary conditions. For convex domains in Rn or Sn, n ≥ 2, it is known from

[1, 7, 9, 13] that λ2 − λ1 ≥ 3π2/D2, where D is the diameter of the domain.

In hyperbolic space, this quantity behaves very differently from the Euclidean and spherical cases. Recently,

the authors showed [5] that for any fixed D > 0, there are convex domains with diameter D in Hn, n ≥ 2,

such that D2(λ2 − λ1) is arbitrarily small. Since convexity does not provide a lower bound, one naturally asks

if imposing a stronger notion of convexity, such as horoconvexity, would imply an estimate for D2(λ2 − λ1)

from below. Recall that for a domain with smooth boundary, convexity corresponds to nonnegative principal

curvatures of the boundary, while horoconvexity corresponds to principal curvatures greater or equal to 1. We

show that the quantity D2(λ2 − λ1) still tends to zero for all horoconvex domains in hyperbolic space when the

diameter tends to infinity.
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Theorem 1.1. For every n ≥ 2, there exists a constant C(n) such that the Dirichlet fundamental gap of every

horoconvex domain Ω with diameter D ≥ 4 ln 2 satisfies

λ2(Ω)− λ1(Ω) ≤ C(n)

D3
.

In particular, as D →∞, the quantity (λ2 − λ1)D2 tends to 0.

We prove this by first obtaining the following estimate for the fundamental gap for special horoconvex

domains, the geodesic balls in hyperbolic space.

Theorem 1.2. Let BR be the geodesic ball of radius R in Hn and λi(BR) be the i-th eigenvalue of the Laplace

operator −∆ in BR with Dirichlet boundary conditions. Then, there is a constant C(n) so that

λ2(BR)− λ1(BR) ≤ C(n)

R3
. (1)

In particular, as R→∞, the quantity (λ2 − λ1)R2 tends to 0.

In the authors’ earlier work [5], it was shown that, for any fixed D > 0, one can find a domain Ω for

which (λ2(Ω)− λ1(Ω))D2 can be made arbitrarily small. The domains Ω ⊂ Hn in [5] are convex, but not

horoconvex. Their first eigenfunction is not log-concave either. In contrast, note that the first eigenfunction

of BR is log-concave (see [10, Corollary 1.1] and Lemma 5.2). On the one hand, while the log-concavity of

the first eigenfunction plays a very important role in estimating the fundamental gap of convex domains in the

Euclidean space and sphere, Theorem 1.2 shows that the log-concavity of the first eigenfunction in the hyperbolic

case does not imply a lower bound estimate for (λ2 − λ1)D2. On the other hand, we believe that D2 is not the

appropriate factor for domains in the hyperbolic space and we conjecture that, for all horoconvex convex domains

Ω ⊂ Hn, we have λ2(Ω)− λ1(Ω) ≥ c(n,D) for some function c(n,D) depending on the dimension and diameter,

that can lead to a lower bound on the fundamental gap appropriately compared with the diameter. This is true

for balls in Hn, see (10).

Theorem 1.2 is proved by transforming the eigenvalue equation of balls to the eigenvalue equation of a

Schrödinger operator. As a result, we obtain some immediate upper and lower bound estimates on the first two

eigenvalues of balls, which improve and simplify earlier estimates on the first eigenvalues of balls. See Sections

2, 3.

To prove Theorem 1.1, we exploit the fact that all big horoconvex domains contain a large ball [4], see

Theorem 4.2. We then combine Theorem 1.2 with Benguria and Linde’s [3] comparison result for the fundamental

gap to conclude the proof, see Section 4.
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2 Basic Facts on Eigenvalues of Balls in Hn

Here, we review some basic facts about first two Dirichlet eigenvalues of balls in the hyperbolic space. By

transforming the eigenvalue equation of balls to its Schrödinger form, we obtain some immediate upper and

lower bound estimates on the first two eigenvalues which improve and simplify earlier estimates.

2.1 The First Eigenvalue

In this section, let λi be the i-th eigenvalue of the Laplacian, with Dirichlet boundary conditions, of geodesic

balls with radius r in Hn.

By [3, 6], the first eigenvalue λ1 is the first eigenvalue of the 1-dimensional problem on [0, r]

u′′ +
n− 1

tanh t
u′ + λu = 0, u(r) = 0, u′(0) = 0. (2)

With the change of variable u(t) = (sinh t)
1−n

2 ū(t), we have the associated Schrödinger equation

− d2

dt2
ū+

n− 1

4

(
n− 1 +

n− 3

sinh2 t

)
ū = λū (3)

with Dirichlet boundary conditions at 0 and r, and λ1 is the first eigenvalue of (3). Note that the nonconstant

potential term changes sign at n = 3. We immediately notice that, when n = 3, λ1 = 1 + π2

r2 .

Recall that for any Schrödinger operator −∆ + V , by the min-max principle, the first Dirichlet eigenvalue

is

λV1 = inf
06≡ū∈H1

∫
|∇ū|2 + V ū2∫

ū2
, (4)

where the infimum is among all non-identically zero functions ū satisfying the Dirichlet boundary conditions.

Hence if V ≥W , then λV1 ≥ λW1 .

Since sinh−2 t ≥ sinh−2 r on (0, r], we have:

Lemma 2.1. For n > 3,

λ1 >
(n− 1)2

4
+
π2

r2
+

(n− 1)(n− 3)

4 sinh2 r
. (5)

For n = 2,

λ1 ≤
1

4
+
π2

r2
− 1

4 sinh2 r
.

The lower bound is sharper than the one of [2, (1.7)], which followed the earlier estimate of McKean [11].

It is also an improvement over [12, Theorem 5.6] and an earlier estimate in [8, Theorem 5.2] when r is large and

n > 3. The upper bound in the case n = 2 is that found by Gage [8, Theorem 5.2].
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The bounds in the other direction do not follow directly from the Schrödinger equation (3). In [12, Theorem

5.6] the following uniform upper and lower bounds for the first eigenvalue λ1 are obtained for all n ≥ 2:

(n− 1)2

4
+
π2

r2
− 4π2

(n− 1)r3
≤ λ1 ≤

(n− 1)2

4
+
π2

r2
+
C

r3
, (6)

with C = π2(n2−1)
2

∫∞
0

t2

sinh2 t
dt = π4(n2−1)

12 .

We will use this lower bound and improve the upper bound in Section 3.

2.2 The Second Eigenvalue

The second eigenvalue λ2 is studied in [3, Lemma 3.1], where it is shown that it is the first eigenvalue of the

following equation (see also (17) with k = 1, l = 1):

u′′ +
n− 1

tanh t
u′ − n− 1

sinh2 t
u+ λu = 0, u(r) = 0, u(t) ∼ t as t→ 0. (7)

Again with the change of variable u(t) = (sinh t)
1−n

2 ū(t), we have the associated Schrödinger equation

− d2

dt2
ū+

n− 1

4

(
n− 1 +

n+ 1

sinh2 t

)
ū = λū (8)

with Dirichlet boundary conditions at 0 and r, where the second eigenvalue λ2 is the first eigenvalue of (8).

Once more we use that sinh−2 t ≥ sinh−2 r, on (0, r], to obtain

λ2 ≥
(n− 1)2

4
+
π2

r2
+

n2 − 1

4 sinh2 r
. (9)

To find an upper bound estimate for λ2, we will seek in the next section an upper bound for the first eigenvalue

of a more general Schrödinger equation and, as such, we will simultaneously obtain an upper bound for λ1,

slightly improving the one in (6).

Let ū be a normalized first eigenfunction of (8) with
∫ r

0
ū2 = 1, then

λ2 =

∫ r

0

[
|∇ū|2 +

n− 1

4

(
n− 1 +

n+ 1

sinh2 t

)
ū2

]
dt

=

∫ r

0

[
|∇ū|2 +

n− 1

4

(
n− 1 +

n− 3

sinh2 t

)
ū2

]
dt+

∫ r

0

n− 1

sinh2 t
ū2dt

≥ λ1 +
n− 1

sinh2 r
,

where, in the last inequality, we have used (4) and (3). Therefore, we have the following lower bound on the

fundamental gap of the ball BR ⊂ Hn, for all n ≥ 2,

λ2 − λ1 ≥
n− 1

sinh2R
. (10)
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3 First Eigenvalue Upper Bound for Schrödinger Equation

Let λα1 be the first eigenvalue of the following equation

− d2

dt2
u+

n− 1

4

(
n− 1 +

α

sinh2 t

)
u = λu (11)

with Dirichlet boundary conditions at 0 and r.

Proposition 3.1. For α ≥ 0, we have

λα1 <
(n− 1)2

4
+
π2

r2
+

(n− 1)α

12r3
π4. (12)

In particular, the first two eigenvalues of the geodesic ball of radius r in Hn satisfy

λ1 <
(n− 1)2

4
+
π2

r2
+

(n− 1)(n− 3)

12r3
π4, for n ≥ 3, (13)

λ2 <
(n− 1)2

4
+
π2

r2
+

(n− 1)(n+ 1)

12r3
π4, for n ≥ 2. (14)

The upper bound (13) improves the upper bound in [12, Theorem 5.6], see (6).

Proof . Recall that the first Dirichlet eigenvalue of a Schrödinger operator −u′′ + V u is a minimizer of the

Rayleigh quotient

R[u] =

∫
|u′|2 + V u2∫

u2
,

among all non-constant u with u(0) = u(r) = 0.

The equation (11) with α = 0 has its first eigenfunction equal to v =
√

2
r sin(πt/r). It is normalized so that∫ r

0
v2dt = 1. Therefore, by inserting v into the Rayleigh quotient associated to (11), we find

λα1 ≤
(n− 1)2

4
+

∫ r

0

(
dv

dt

)2

dt+

∫ r

0

(n− 1)α

4(sinh t)2
v2 dt

=
(n− 1)2

4
+
π2

r2
+

(n− 1)α

4

∫ r

0

v2

(sinh t)2
dt.

Using sin |x| ≤ |x|, we have

r2

∫ r

0

(
sin (πt/r)

sinh t

)2

dt ≤ π2

∫ r

0

(
t

sinh t

)2

dt < π2

∫ ∞
0

(
t

sinh t

)2

dt =
π4

6
.

This gives
∫ r

0
v2

(sinh t)2 dt <
π4

3r3 , hence (12).

Combining the lower bound in (6) with (14) gives the estimate (1) in Theorem 1.2.
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4 Horoconvex Domains in Hn

A stronger definition of convexity in the hyperbolic space considers horospheres as natural analogues of Euclidean

hyperplanes supporting a convex domain:

Definition 4.1. A set Ω ⊂ Hn is called horoconvex if, for every point p ∈ ∂Ω, there exists a horosphere H

through p such that Ω lies in the horoball bounded by H.

Recall that a horosphere is a sphere with center on the ideal boundary of Hn and that a horoball is a domain

whose boundary is a horosphere.

When Ω is a compact domain with smooth boundary in the hyperbolic space of constant negative curvature

−1, the domain Ω is horoconvex if and only if all principal curvatures of the boundary hypersurface are greater

or equal to one. As a special case, BR, the geodesic sphere of radius R, is horoconvex as each of the principal

curvatures of its boundary is equal to cothR, and cothR > 1 for all R > 0.

Finally, for any compact domain, recall that its inradius is the radius of the largest ball contained in the

domain, and that its circumradius is the radius of the smallest ball containing the domain. Part of a result of

Borisenko-Miquel [4, Theorem 1] states the following:

Theorem 4.2. [4] Let Ω be a compact horoconvex domain in Hn with inradius r and circumradius R. Denoting

τ = tanh r
2 , then

R− r ≤ ln
(1 +

√
τ)2

1 + τ
< ln 2, (15)

and this bound is sharp.

An immediate consequence of (15) is that the diameter of the domain satisfies D ≤ 2R ≤ 2r + 2 ln 2. We

are now ready to prove Theorem 1.1.

Proof . Let Ω ⊂ Hn be a horoconvex domain of diameter D. Choose RΩ such that the ball of radius RΩ

satisfies λ1(BRΩ
) = λ1(Ω). Theorem 4.2 implies that Ω contains a ball of radius r with r ≥ D

2 − ln 2. By domain

monotonicity of the first eigenvalue, RΩ ≥ D
2 − ln 2, hence

RΩ ≥
D

4
, (16)

when D ≥ 4 ln 2.

Using [3], Benguria-Linde’s upper bound on the second eigenvalue, we have that

λ2(Ω)− λ1(Ω) ≤ λ2(BRΩ
)− λ1(BRΩ

).

Applying the estimates (1) and (16) concludes the proof of Theorem 1.1.
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5 APPENDIX: Small Balls and Log-concavity of Eigenfunctions of Geodesics Balls in

Mn
K

To round up the discussion on the fundamental gap of balls in the hyperbolic space, we thought to include

here an observation on the fundamental gap of balls of small radii, as well as a simple argument proving the

log-concavity of the first eigenfunction of geodesic balls in simply connected Riemannian manifolds with constant

negative sectional curvature.

5.1 The Gap of Small Balls in Negatively Curved Manifolds

Let Mn
K be the simply connected Riemannian manifold with constant sectional curvature K. Here, we assume

that K is negative and write K = −k2, (k > 0). Denote by λi(n, k, r) the eigenvalues of the Laplacian for geodesic

balls with radius r in Mn
K with Dirichlet boundary condition.

By separation of variables, see [3, 6], the eigenvalues λi(n, k, r) are eigenvalues of

u′′ +
(n− 1)k

tanh(kt)
u′ − l(l + n− 2)k2

sinh2(kt)
u+ λu = 0, (17)

where l = 0, 1, 2, · · · , with boundary condition u′(0) = 0 for l = 0, u(t) ∼ tl as t→ 0 for l > 0, and u(r) = 0.

By scaling, this immediately gives [3, Lemma 4.1], for c > 0,

λi(n,
1

c
k, cr) = c−2λi(n, k, r). (18)

Hence

λi(n, 1, r) = r−2λi(n, r, 1). (19)

Therefore, for small balls in Hn, the value r2λi(n, 1, r) is close to the corresponding one in the Euclidean space,

as one would expect. Namely,

Lemma 5.1.

lim
r→0

r2λi(n, 1, r) = λi(n, 0, 1) = r2λi(n, 0, r),

and

lim
r→0

r2 (λ2(n, 1, r)− λ2(n, 1, r)) = r2(λ2(n, 0, r)− λ1(n, 0, r)) = j2
n
2 ,1
− j2

n
2−1,1, (20)

where jp,k is the k-th positive zero of the Bessel function Jp(x).

5.2 The First Eigenfunction for Balls

The first eigenfunction of balls is purely radial, so it is not difficult to show that it is log-concave, as in the

Euclidean and spherical case.
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Lemma 5.2. The first eigenfunction u1 of (2) is strictly log-concave.

This is in [10, Corollary 1.1], where more general elliptic equations with power are considered. For

convenience, we give a simple and direct proof here.

Proof . First we show u1 is strictly decreasing. Multiplying both sides of (2) by sinhn−1 t, we have

(u′1 sinhn−1 t)′ = −λ1u1 sinhn−1 t < 0.

Since u′1(0) = 0, we have u′1(t) < 0 for t ∈ (0, r).

Let ϕ = (log u1)′. Then ϕ(0) = 0, ϕ < 0 on (0, r), and

ϕ′ =
u′′1
u1
−
(
u′1
u1

)2

= − n− 1

tanh t
ϕ− λ1 − ϕ2.

Taking the limit as t→ 0 gives ϕ′(0) = −λ1 − (n− 1) limt→0
ϕ

tanh t = −λ1 − (n− 1)ϕ′(0). Hence, ϕ′(0) < 0.

Now, we claim that ϕ′(t) < 0 on [0, r). Otherwise, there exists t1 ∈ (0, r) such that ϕ′ < 0 on [0, t1), ϕ′(t1) = 0

and ϕ′′(t1) ≥ 0. Note that ϕ′′ satisfies

ϕ′′ =
n− 1

sinh2 t
ϕ− n− 1

tanh t
ϕ′ − 2ϕϕ′.

Evaluating the two sides of the equation at t1 gives

0 ≤ ϕ′′(t1) =
n− 1

sinh2 t1
ϕ(t1) < 0.

This is a contradiction.
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