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RELATIVE VOLUME COMPARISON WITH INTEGRAL
CURVATURE BOUNDS
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Abstract

In this paper we shall generalize the Bishop-Gromov relative volume
comparison estimate to a situation where one only has an integral
bound for the part of the Ricci curvature which lies below a given
number. This will yield several compactness and pinching theorems.

1 Introduction

In this paper we shall be concerned with proving some results related to the
work from [PeSW]. The techniques here are similar, but independent of the
developments in [PeSW], still we suggest that the reader read at least the
introduction to [PeSW]. Also our techniques are different from those used
in [G] and [Y]. This paper can therefore be read without prior knowledge of
those papers. We will present a new relative volume comparison estimate
which generalizes the classical Bishop-Gromov comparison inequality. The
consequences of this are manifold and hopefully far reaching.

To state our results we need some notation. On a Riemannian manifold
M define the function g : M → [0,∞) as g (x) = the smallest eigenvalue
for Ric : TxM → TxM. Now consider

k (λ, p) =
∫
M

(
max {−g (x) + (n− 1) · λ, 0}

)p
d vol

k̄ (λ, p) =
1

volM

∫
M

(
max {−g (x) + (n− 1) · λ, 0}

)p
d vol ,

the last quantity is the averaged amount of curvature below (n− 1)λ. This
quantity is in many ways more natural than the first. We of course have
that Ric (M) ≥ (n− 1)λ iff k̄ (λ, p) = 0.

Our main result is

The first author was supported in part by NSF and NYI grants and the second author
was supported in part by an NSF grant.



1032 P. PETERSEN AND G. WEI GAFA

Theorem 1.1. Let x ∈ M , λ ≤ 0, and p > n/2 be given, then there is a
constant C (n, p, λ,R) which is nondecreasing in R such that when r < R
we have(

volB(x,R)
v(n, λ,R)

)1/2p

−
(

volB(x, r)
v(n, λ, r)

)1/2p

≤ C(n, p, λ,R) · (k(λ, p))1/2p .

Furthermore when r = 0 we obtain

volB (x,R) ≤
(
1 + C (n, p, λ,R) · (k (λ, p))1/2p )2pv (n, λ,R) .

Note that when Ric ≥ (n− 1)λ, i.e. k (p, λ) = 0, this gives the classical
relative volume comparison estimate. Our proof of this volume estimate
does not use the setup used in Gallot and Yang’s work. In fact our proof
is somewhat different and is more inspired by some of the new estimates
obtained in [PeSW]. The absolute volume estimate is actually better than
the one in [Y], as we recover the correct volume estimates when k (λ, p) = 0.
In [Y] one only arrives at the correct volume bound when k(0, p) = 0. As
a corollary we obtain the following volume doubling result:
Corollary 1.2. Under the same conditions as the above theorem we
have that for all α < 1 there is an ε = ε(n, p, λ,D,α) > 0 such that if M
is a Riemannian manifold with diamM ≤ D and k̄ (λ, p) ≤ ε, then for all
x ∈M and r < D we have

α · v (n, λ, r)
v (n, λ,D)

≤ volB (x, r)
volM

.

As an immediate consequence we have the following extension of Gro-
mov’s precompactness result:
Corollary 1.3. Given an integer n > 1, p > n/2 and λ ≤ 0, D <∞, we
can find ε (n, p, λ,D) such that the class of closed Riemannian n-manifolds
with

diamM ≤ D ,

k̄ (λ, p) ≤ ε
is precompact in the Gromov-Hausdorff topology.

The classical relative volume comparison result has proven very useful
in many contexts. So one would expect the above inequality to give some
new results that are similar but more general. Here we shall concentrate on
compactness results. In a future paper we will show how other finiteness
result also generalize when we use our new volume estimate.

The relative volume estimate will enable us to obtain some very gen-
eral compactness and pinching results, where in addition to assuming lower
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volume bounds and upper diameter bounds one has some sort of Lp cur-
vature bounds. The reader who is unfamiliar with the standard language
of convergence theory might wish to consult [Pe] for a complete survey of
results and proofs of this area of geometry.

Theorem 1.4. Given an integer n ≥ 2, and numbers p > n/2, λ ≤ 0,
v > 0, D < ∞, Λ < ∞, one can find ε = ε (n, p, λ,D) > 0 such that the
class of closed Riemannian n-manifolds with

vol (M) ≥ v
diam (M) ≤ D∫
M
‖R‖p ≤ Λ

1
volM · k (λ, p) ≤ ε (n, p, λ,D)

is precompact in the Cα, α < 2− n
p , topology.

Note that ε in the previous theorem does not depend on Λ or v. The
smallness condition on k̄ (λ, p) is inevitable as is shown by examples in both
[G] and [Y]. In fact in [Y] there are examples which have arbitrarily high
Betti numbers but satisfy

vol (M) ≥ v
diam (M) ≤ D∫
M
‖R‖p ≤ Λ

for some constants v,D,Λ.
Recall that a Riemannian metric (M,g) has constant sectional curvature

λ iff the Riemannian curvature (0, 4)-tensor R = λg ◦ g, where g ◦ g is the
Kulkarni-Nomizu product.

Corollary 1.5. Given an integer n ≥ 2, and numbers p > n/2, λ ∈ R,
v > 0, D < ∞, one can find ε = ε (n, p, λ,D) > 0 such that a closed
Riemannian n-manifold (M,g) with

vol (M) ≥ v ,
diam (M) ≤ D ,

1
volM

∫
M
‖R− λ · g ◦ g‖p ≤ ε (n, p, λ,D)

is Cα, α < 2− n
p close to a constant curvature metric on M .
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Corollary 1.6. Given an integer n ≥ 2, and numbers p > n/2, λ ∈ R,
v > 0, and Λ,D <∞, one can find ε = ε (n, p, λ,D) > 0 such that a closed
Riemannian n-manifold (M,g) with

vol (M) ≥ v ,
diam (M) ≤ D ,∫
M
‖R‖p ≤ Λ ,

1
volM

∫
M

∥∥Ric−λ · (n− 1) · g
∥∥p ≤ ε (n, p, λ,D)

is Cα, α < 2− n
p close to an Einstein metric on M .

These two pinching results, and the compactness theorem as well, are
to our knowledge the most general of their type. Namely, where, aside from
curvature conditions, one only has global diameter and volume bounds. In
section 3 we shall also discuss how one gets compactness theorems for com-
plete manifolds, and also how one can generalize the curvature condition∫
M ‖R‖

p ≤ Λ to a slightly different curvature condition. This will lead us
to a very attractive Ricci curvature pinching theorem.

Note also that we can in all of the above results replace the two condi-
tions

vol (M) ≥ v ,∫
M
‖R‖p ≤ Λ ,

by the single condition

inj (M) ≥ i0 ,
as is done in [A]. Along these lines we can also study manifolds with almost
maximal volume as is also done in [A]. Specifically we have

Theorem 1.7. Given an integer n ≥ 2, and numbers p > n/2, λ ≤ 0,
r > 0, Λ < ∞, one can find ε = ε(n, p, λ · r2) > 0 and δ = δ(n, λ · r2) > 0
such that the class of complete Riemannian n-manifolds with

volB (x, r) ≥ (1− δ) · v (n, λ, r) for all x ∈M ,∫
B(x,r)

‖Ric‖p ≤ Λ ,

k (λ, p) ≤ ε
is precompact in the Cα, α < 2− n

p , topology.
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Note that ε in the previous theorem does not depend on Λ and that δ
depends only on the dimension. As an immediate corollary we have a very
nice Lp Ricci pinching result

Corollary 1.8. Given an integer n ≥ 2, and numbers p > n/2, λ ∈ R,
r > 0 and Λ,D < ∞, one can find ε = ε (n, p, λ, r,D) > 0 and δ =
δ(n, λ ·D2) > 0 such that a closed Riemannian n-manifold (M,g) with

volB (x, r) ≥ (1− δ) · v (n, λ, r) for all x ∈M ,

diam (M) ≤ D ,∫
B(x,r)

∥∥Ric− (n− 1) · λ · g
∥∥p ≤ ε

is Cα, α < 2− n
p close to an Einstein metric on M .

In the last section of this paper we also discuss how some of the Ln/2

compactness and pinching results of Gao and Anderson fit into this new
framework.

Acknowledgments. The second author would like to thank UCLA for
their hospitality during her stay there. The first author would like to thank
Robert Brooks for the many discussions we have had on volume comparison
with integral curvature bounds. The authors would also like to thank the
referee for making several useful suggestions and corrections.

2 The Volume Estimate

We suppose that we are given a complete Riemannian n-manifold M and
x ∈M . Around x use exponential polar coordinates and write the volume
element as d vol = ωdt∧dθn−1, where dθn−1 is the standard volume element
on the unit sphere Sn−1 (1). As t increases ω becomes undefined but we
can just declare it to be zero for those t. We know that ω′ = hω, where h
is the mean curvature of the distance spheres around x, and h satisfies the
differential inequality

h′ +
h2

n− 1
≤ −Ric (∂t, ∂t) .

Here ∂t is the unit gradient of the distance function d (·, x).
In the n-dimensional space form Snλ of constant curvature λ, we can

similarly choose y ∈ Snλ and write the volume element as d vol = ωλdt ∧
dθn−1. We use λ ≤ 0 in order that the polar coordinates are defined on all
of Snλ − {y} and also so that hλ is non-negative everywhere. Now we have
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again ω′λ = hλωλ where this time the mean curvature satisfies

h′λ +
h2
λ

n− 1
= − (n− 1)λ .

Thus we get that

hλ (t) = hλ (t, ·) = (n− 1) · sn′λ (t)
snλ (t)

,

ωλ (t) = ωλ (t, ·) = snn−1
λ (t) ,

where snλ is the unique solution to
ϕ′′ + λϕ = 0 ,
ϕ (0) = 0 ,
ϕ′ (0) = 1 .

Having similar coordinate systems on M and Snλ allows us to compare
their volume forms and mean curvatures. Let us define ψ = ψ (t, ·) =
max {0, h (t, ·)− hλ (t, ·)} and declare that ψ is 0 whenever it becomes un-
defined.
Lemma 2.1. For the volume ratio volB(x,r)

v(n,λ,r) we have that

d

dr

volB (x, r)
v (n, λ, r)

≤ C1 (n, λ, r)
(

volB (x, r)
v (n, λ, r)

)1− 1
2p
(∫

B(x,r)
ψ2pd vol

) 1
2p

(v (n, λ, r))
− 1

2p
,

where

C1 (n, λ, r) = max
t∈[0,r]

t · ωλ (t)∫ t
0 ωλ (s) ds

,

C1 (n, λ, 0) = n .

Proof. First observe that the fraction ω/ωλ satisfies
d

dt

ω

ωλ
≤ (h− hλ)

ω

ωλ

≤ ψ ω

ωλ
.

Note that away from the cut locus the first inequality is actually an equality.
At the cut locus the singular part of the derivative of ω has negative mea-
sure, hence when the derivative is interpreted correctly we get inequality.
This implies

d

dr

∫
Sn−1 ω (r, ·) dθn−1∫
Sn−1 ωλ (r) dθn−1

=
1

volSn−1

∫
Sn−1

d

dr

ω (r, ·)
ωλ (r)

dθn−1
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≤ 1
volSn−1

∫
Sn−1

ψ
ω

ωλ
dθn−1 .

Thus for t ≤ r we have∫
Sn−1 ω (r, ·) dθn−1∫
Sn−1 ωλ (r, ·) dθn−1

−
∫
Sn−1 ω (t, ·) dθn−1∫
Sn−1 ωλ (t, ·) dθn−1

≤ 1
volSn−1

∫ r

t

∫
Sn−1

ψ
ω

ωλ
dθn−1 ∧ ds ,

which implies∫
Sn−1

ω(r, ·)dθn−1 ·
∫
Sn−1

ωλ(t)dθn−1 −
∫
Sn−1

ωλ(r)dθn−1 ·
∫
Sn−1

ω(t, ·)dθn−1

≤ 1
volSn−1

(∫
Sn−1

ωλ (r) dθn−1

)(∫
Sn−1

ωλ (t) dθn−1

)
·
∫ r

t

∫
Sn−1

ψ
ω

ωλ
dθn−1 ∧ ds

≤
(∫

Sn−1
ωλ (r) dθn−1

)∫ r

t

∫
Sn−1

ψωdθn−1 ∧ ds

≤ ωλ (r) volSn−1
∫ r

0

∫
Sn−1

ψωdθn−1 ∧ ds

≤ ωλ (r) volSn−1
(∫ r

0

∫
Sn−1

ψ2pωdθn−1 ∧ ds
)1/2p

·
(∫ r

0

∫
Sn−1

ωdθn−1 ∧ ds
)1− 1

2p

≤ volSn−1ωλ (r) (volB (x, r))1− 1
2p

(∫
M
ψ2pd vol

)1/2p

.

Using the volume elements from above we can write
volB (x, r)
v (n, λ, r)

=

∫ r
0

∫
Sn−1 ω ∧ dt∫ r

0

∫
Sn−1 ωλdθn−1 ∧ dt

.

Thus we have
d

dr

volB (x, r)
v (n, λ, r)

=

(∫
Sn−1 ω (r, ·) dθn−1

)
·
(∫ r

0

∫
Sn−1 ωλ (t) dθn−1 ∧ dt

)
(v (n, λ, r))2

−
(∫
Sn−1 ωλ (r) dθn−1

)
·
(∫ r

0

∫
Sn−1 ω (t, ·) dθn−1 ∧ dt

)
(v (n, λ, r))2 .

Now observe that the numerator can be written as∫ r

0

(∫
Sn−1

ω (r, ·) dθn−1 ·
∫
Sn−1

ωλ (t) dθn−1

)
dt
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−
∫ r

0

(∫
Sn−1

ωλ (r) dθn−1 ·
∫
Sn−1

ω (t, ·) dθn−1

)
dt

≤
∫ r

0

(
volSn−1 · ωλ (r) · (volB (x, r))1− 1

2p ·
(∫

M
ψ2pd vol

)1/2p)
dt

= volSn−1 · r · ωλ (r) · (volB (x, r))1− 1
2p ·
(∫

M
ψ2pd vol

)1/2p

.

Thus we have

d

dr

volB (x, r)
v (n, λ, r)

≤
volSn−1 · r · ωλ (r) · (volB (x, r))1− 1

2p ·
(∫
M ψ2pd vol

) 1
2p

(v (n, λ, r))2

≤ C1 (n, λ, r) ·
(

volB (x, r)
v (n, λ, r)

)1− 1
2p
(∫

M
ψ2pd vol

) 1
2p

(v (n, λ, r))−
1
2p .

Here we used that
volSn−1 · r · ωλ (r)

v (n, λ, r)
=

r · ωλ (r)∫ r
0 ωλ (s) ds

converges to n as r → 0 and can therefore be estimated by its maximum
value C1 (n, λ, r) on [0, r]. Note that when λ < 0 the constant C1 → ∞
if either r → ∞ or λ → ∞. On the other hand when λ = 0 we can use
C1 = n for all r. �

We must now estimate
∫
M ψ2pd vol in terms of k (p, λ). This estimate

is inspired by our similar estimates in [PeSW, Section 3]. To reduce the
problem first write∫

B(x,r)
ψ2pd vol =

∫
Sn−1

∫ r

0
ψ2pωdt ∧ dθn−1 .

Thus it suffices to estimate
∫ r

0 ψ
2pωdt. Now define ρ = ρ(t, ·) =

max{0, (n − 1)λ − Ric(∂t, ∂t)}. If we are beyond where the coordinate
system is defined then we use the default that ρ is zero. Also define

k (p, λ, r) =
∫
B(x,r)

ρpd vol =
∫
Sn−1

∫ r

0
(ρ (t, ·))p ωdt ∧ dθn−1

k̄ (p, λ, r) = sup
x∈M

k (p, λ, r)
volB (x, r)

.

With this notation behind us it is now clear that
d

dr

volB (x, r)
v (n, λ, r)

≤ C3 (n, p, λ, r) ·
(

volB (x, r)
v (n, λ, r)

)1− 1
2p

(k (p, λ, r))
1
2p (v (n, λ, r))−

1
2p .
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provided we can prove
Lemma 2.2. There is a constant C2 (n, p) such that when p > n/2 we have∫ r

0
ψ2pωdt ≤ C2 (n, p)

∫ r

0
ρpωdt .

Proof. We have that ψ is absolutely continuous and satisfies

ψ′ +
ψ2

n− 1
+ 2

ψ · hλ
n− 1

≤ ρ .

Multiply through by ψ2p−2ω and integrate to get∫ r

0
ψ′ψ2p−2ωdt+

1
n−1

∫ r

0
ψ2pωdt+

2
n−1

∫ r

0
hλψ

2p−1ωdt ≤
∫ r

0
ρ · ψ2p−2ωdt .

Integration by parts yields∫ r

0
ψ′ψ2p−2ωdt

=
1

2p− 1
ψ2p−1ω

∣∣∣∣r
0
− 1

2p− 1

∫ r

0
ψ2p−1hωdt

≥ − 1
2p− 1

∫ r

0
ψ2p−1hωdt

≥ − 1
2p− 1

∫ r

0
ψ2pωdt− 1

2p− 1

∫ r

0
ψ2p−1hλωdt .

Inserting this in the above inequality we obtain(
1

n− 1
− 1

2p− 1

)∫ r

0
ψ2pωdt+

(
2

n− 1
− 1

2p− 1

)∫ r

0
hλψ

2p−1ωdt

≤
∫ r

0
ρ · ψ2p−2ωdt .

When p > n/2 we therefore obtain(
1

n− 1
− 1

2p− 1

)∫ r

0
ψ2pωdt ≤

∫ r

0
ρ · ψ2p−2ωdt

≤
(∫ r

0
ρpωdt

) 1
p

·
(∫ r

0
ψ2pωdt

)1− 1
p

.

By dividing through by
( ∫ r

0 ψ
2pωdt

)1− 1
p we then get(

1
n− 1

− 1
2p− 1

)(∫ r

0
ψ2pωdt

)1/p

≤
(∫ r

0
ρpωdt

)1/p

.

Or in other words(∫ r

0
ψ2pωdt

)
≤
(

1
n− 1

− 1
2p− 1

)−p(∫ r

0
ρpωdt

)
,
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with C2(n, p) =
( 1
n−1−

1
2p−1

)−p. We therefore arrive at the desired inequal-
ity. �

We can now prove

Lemma 2.3. There is a constant C(n, p, λ,R) which is nondecreasing in R
such that when r < R we have(

volB (x,R)
v (n, λ,R)

)1/2p

−
(

volB (x, r)
v (n, λ, r)

)1/2p

≤ C (n, p, λ,R) · (k (p, λ,R))1/2p .

Furthermore, when r = 0 we obtain

volB (x,R) ≤
(
1 + C(n, p, λ,R) · (k (p, λ,R))1/2p )2pv (n, λ,R) .

Proof. From Lemma 2.1 we have a differential inequality of the type

y′ ≤ α · y1− 1
2p · f(x) ,

y (0) = 1 and y > 0 .

Separation of variables and integration yields

2p · y1/2p (R)− 2p · y1/2p (r) ≤ α
∫ R

r
f (x) dx .

So we can simply use

C =
1
2p
C3

∫ R

0
(v (n, λ, t))−1/2p dt .

Furthermore, we can use the initial condition y (0) = 1 to get

y1/2p (R) ≤ 1 +
α

2p

∫ R

0
f (x) dx .

The final observation to be made is that the integral∫ R

0
(v (n, λ, t))−1/2p dt

indeed converges when p > n/2. To see this recall that v (n, λ, t) ≈ tn as
t → 0. So the integrand looks like t−n/2p as t → 0. And this function is
integrable when −n/2p > −1, or in other words when p > n/2. �

Observe that the condition p > n/2 is necessary both to get the estimate
for

∫
ψ2pωdt and for the integrability of (v (n, λ, t))−1/2p. It seems lucky

indeed that those two different conditions are the same.
Finally we can use the inequality k (p, λ, r) ≤ k (p, λ) to obtain the

relative volume comparison estimate mentioned in the introduction.
Another remark is in order at this point. We never really seriously use

that λ ≤ 0, and indeed one can extend the estimates to hold for λ > 0.
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However, if R or r becomes larger than π
/√

λ then we will run into trouble.
Also there are a few things to worry about when r > π

/
2
√
λ as hλ becomes

negative there.
We can now show

Corollary 2.4. Given an integer n > 1 and p > n/2, λ ≤ 0, and D > 0,
we can for all α < 1 find ε = ε (n, p, λ,D, α) > 0 such that any complete
Riemannian n-manifold M with diamM ≤ D and k̄(p, λ) ≤ ε satisfies for
all x ∈M and r < D

α · v (n, λ, r)
v (n, λ,D)

≤ volB (x, r)
volM

.

Proof. Consider the inequality(
volM

v (n, λ,D)

)1/2p

−
(

volB (x, r)
v (n, λ, r)

)1/2p

≤ C (n, p, λ,D) · (k (p, λ))1/2p

and then cross multiply to get(
v (n, λ, r)
v (n, λ,D)

)1/2p

−
(

volB(x, r)
volM

)1/2p

≤ C (n, p, λ,D) · (v (n, λ, r))1/2p ·
(
k (p, λ)
volM

)1/2p

.

Now choose ε so that

(C (n, p, λ,D))2p · ε ≤ (1− α) · 1
v (n, λ,D)

.

Then we have that(
v (n, λ, r)
v (n, λ,D)

)1/2p

−
(

volB (x, r)
volM

)1/2p

≤ (1− α) ·
(
v (n, λ, r)
v (n, λ,D)

)1/2p

as long as

k̄ (p, λ) =
k (p, λ)
volM

≤ ε .
This is the desired estimate. �

3 Pinching and Compactness

In the survey article [Pe] it is proven that all the corollaries in the introduc-
tion are immediate consequences of the compactness theorems we mention
there. Observe that the compactness theorems can be applied after one
gets smallness for k̄ (p, λ) from

k̄ (p,− |λ|) ≤ 1
volM

∫
M

∥∥Ric−λ · (n− 1) · g
∥∥p .
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The compactness theorems are also almost immediate consequences of the
results in [A], [Y] and [Pe]. Namely, from the last two sources it follows
that for any v, r0,D,Λ ∈ (0,∞) the class satisfying

volB (x, r) ≥ v · rn for r ≤ r0 ,

diam (M) ≤ D ,∫
M
‖R‖p ≤ Λ

is precompact in the Cα, α < 2− n
p , topology. Thus we must establish this

local volume growth condition from the conditions

volM ≥ v ,
diamM ≤ D ,

k̄ (p, λ) ≤ ε .

Using α = 1/2 in Corollary 2.4 we can clearly find ε (n, p, λ,D) such that
the condition k̄ (p, λ) ≤ ε implies

1
2
· v (n, λ, r)
v (n, λ,D)

≤ volB (x, r)
volM

.

Using the volume estimate volM ≥ v we then obtain

volB (x, r) ≥ 1
2
· v (n, λ, r) · v

v (n, λ,D)
≥ C (n, p, λ, v,D) · rn for r ≤ D.

It should be observed that we also get a compactness theorem for com-
plete manifolds (see e.g. [Pe]).

Theorem 3.1. Given an integer n ≥ 2, and numbers p > n/2, λ ≤ 0,
r > 0, v > 0, Λ <∞, one can find ε = ε (n, p, λ, r) > 0 such that the class
of complete Riemannian n-manifolds with

volB (x, r) ≥ v for all x ∈M ,∫
B(x,r)

‖R‖p ≤ Λ for all x ∈M ,

k̄ (λ, p, r) ≤ ε (n, p, λ, r)

is precompact in the Cα, α < 2− n
p , topology as well.

In [Pe] it is discussed how one can replace the
∫
B(x,r) ‖R‖

p ≤ Λ by the
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two conditions ∫
B(x,r)

‖Ric‖p ≤ Λ ,∫
B(x,r)

‖R‖n/2 ≤ ε ,

where ε is some small number depending on dimension r and the lower
volume bound v for the balls B (x, r). These are actually the conditions
used in Yang’s work. Using this we can re-state all of the above compactness
and pinching theorems with the condition∫

B(x,r)
‖Ric‖p ≤ Λ ,∫

B(x,r)
‖R‖n/2 ≤ ε .

replacing
∫
B(x,r) ‖R‖

p ≤ Λ. This gives us a particularly nice pinching result.

Theorem 3.2. Given an integer n ≥ 2 and numbers p > n/2, λ ∈ R,
r > 0, v > 0, D < ∞, we can find ε (n, p, λ,D) > 0 and ε (n, λ, r, v) > 0
such that any closed Riemannian manifold (M,g) satisfying

diam (M) ≤ D ,

volB (x, r) ≥ v for all x ∈M ,∫
B(x,r)

‖R‖n/2 ≤ ε for all x ∈M ,

1
volM

∫
B(x,r)

‖Ric− (n− 1) · λ · g‖p ≤ ε for all x ∈M

is Cα, α < 2− n
p close to an Einstein metric on M .

In [A, Theorem 2.6] and [AC] the authors study the situation when∫
M ‖R‖

n/2 is merely bounded rather than small. The convergence and
finiteness results obtained there clearly also admit generalization to the
situation where, instead of having |Ric| ≤ Λ, we assume

∫
B(x,r) ‖Ric‖p ≤ Λ

and smallness of k̄ (p, λ, r).
The compactness and pinching results that use almost maximal volume

hypotheses rest on the following key result proved in [A, Gap Lemma 3.1].

Theorem 3.3. There is an η (n) > 0 such if M is a complete Ricci flat
Riemannian n-manifold with the property that

volB (p, r) ≥ (1− η) · v (n, 0, r) for all r > 0
and some p ∈M , then M is isometric to Rn.
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We now need to observe that if we rescale manifolds in the class
volB (x, r) ≥ (1− δ) · v (n, λ, r) for all x ∈M ,∫

B(x,r)
‖Ric‖p ≤ Λ ,

k (λ, p, r) ≤ ε (n, p, λ, r) ,
then we get complete Ricci flat manifolds. The needed volume growth
condition comes from our volume assumption together with the smallness
of k (p, λ) in the following way. We have assumed that

volB (x, r) ≥ (1− δ) · v (n, λ, r) for all x ∈M ,

k (λ, p, r) ≤ ε (n, p, λ, r)
for some fixed r. If s < r then our relative volume comparison result tells
us that

1− δ ≤ volB (x, r)
v (n, λ, r)

≤
((

volB (x, s)
v (n, λ, s)

)1/2p

+ C (n, p, λ, r) · ε1/2p
)2p

≤ volB (x, s)
v (n, λ, s)

+
(

1 +
(

volB (x, s)
v (n, λ, s)

)1/2p)2p

· C(n, p, λ, r) · ε1/2p

≤ volB (x, s)
v (n, λ, s)

+ 32p · C (n, p, λ, r) · ε1/2p ,

where we assumed that C (n, p, λ, r) ·ε1/2p ≤ 1 for the penultimate inequal-
ity and that (

volB (x, s)
v (n, λ, s)

)1/2p

≤ 1 + C (n, p, λ, r) · ε1/2p ≤ 2

for the last inequality. We can now choose

δ (n) =
η (n)

2
and in addition ε = ε (n, p, λ, r) such that

32p · C (n, p, λ, r) · ε1/2p ≤ η (n)
2

.

With these choices for ε and δ we get that, for all s ≤ r,

1− η ≤ volB(x, s)
v(n, λ, s)

.

Therefore, if we rescale the metrics in the class by constants which go to
infinity we obtain metrics that satisfy the hypotheses in Anderson’s Gap
Lemma.
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We also get some new results on Sobolev constants. Recall that if we
have an n-dimensional Riemannian manifold (M,g) then for q ∈ [n,∞] we
can define

Cq (M) = inf
voln−1H

(voln Ω)1− 1
q

,

where H runs over all closed hypersurfaces in M dividing M into two pieces
and Ω is the piece with the smallest volume. In [G] it was shown that when
q > n one can bound Cq (M) in terms volM , diamM , and k(q/2, λ). We
obviously can’t improve this to cover the case where q = n, however using
the method in [Y] we obtain bounds for the classical Sobolev constant
Cn (M) in terms of volM,diamM , and k (p, λ), p > n/2. One should
compare this to the Sobolev constant estimates obtained in [BPPe] where
the authors instead of assuming a diameter bound consider the spectrum.
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