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For a simply connected nilpotent Lie group L, we construct a complete
metric with positive Ricci curvature on the product manifold L x R?, where
p is taken sufficiently large. The construction uses a warped product method
and involves subtle choices of functions. We endow L with a family of al-
most flat metrics, and the little “negativeness” of L can be compensated by
warping the euclidean R? factor. From the construction one also sees that

the isometry group of the resulting manifold contains the original group L.
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A basic consequence of this construction is that every finitely generated
torsion-free discrete nilpotent group can be realized as the fundamental group
of a complete manifold with positive Ricci curvature.

We also establish an a priori bound on the growth of the fundamental
group for a class of compact near elliptic manifolds (in the sense of Gromov)

whose volume is uniformly bounded from below.
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Introduction

One of the main themes in the development of global riemannian geometry is
to understand the interplay between geometric quantities such as curvature
and the topology of a riemannian manifold. We now have a rather satis-
factory theory of the structure of riemannian manifolds with nonnegative
sectional curvature. Among the most basic results are the Soul Theorem,
the Splitting Theorem, and the uniform bounds on the Betti numbers (see
next chapter for details). There have been major developments recently con-
cerning the question whether or not various results for sectional curvature
have analogues for Ricci curvature. Although it has been known for some
time that the Splitting Theorem remains true, it turned out that without
additional hypotheses, the other results above do not carry over to the case

of nonnegative Ricci curvature [8, 20, 21] (compare also [1, 22]).

In this thesis we construct complete riemannian manifolds with Ric > 0
such that the isometry groups contain nilpotent Lie groups. A consequence

of this construction is that every finitely generated, torsion-free, discrete



nilpotent group can be realized as the fundamental group of a complete rie-
mannian manifold with Ric > 0. Together with work of J. Milnor and M.
Gromov, this leads to a fairly good understanding of the structure of the
fundamental group of a nonnegativly Ricci curved manifold. Note that in
the nonnegative sectional curvature case, every subgroup must be abelian up

to finite index, as follows from the Soul Theorem and the Splitting Theorem.

There are several ways to construct manifolds with Ric > 0. Our con-
struction is inspired by examples given by P. Nabonnand [16] and L. Bérard-
Bergery [4]. The basic problem here is to put a positive Ricci curvature
metric on L x R?, where L is a simply connected nilpotent Lie group. L
can be endowed with a family of almost flat metrics. To achieve positivity,
we use a warped product metric on L x R” and compensate for the slight
“negativeness” of L by the R? factor. Variants of this construction will also

be discussed, yielding some examples of near elliptic manifolds.

Motivated by Gromov’s conjecture on the fundamental group of a near
elliptic manifold, we give an upper bound on the growth of the fundamental
group for a class of such manifolds with a uniform lower volume bound. The
restriction on the volume may be a strong condition. So far, we do not see

how to get around it.



Background

We refer to [5] for the basic facts in riemannian geometry that will be used
here. We will now briefly discuss the three fundamental results concerning
the topology of manifolds with nonnegative sectional curvature, which were

mentioned in the Introduction.

1) The Soul Theorem (J. Cheeger & D. Gromoll [1972], [6]) Let M be
a complete riemannian manifold with sectional curvature K > 0. Then M
contains a compact totally geodesic submanifold S without boundary which
15 also conver, 0 < dim S < dim M, and M is diffeomorphic to the normal
bundle v(S) of S in M.

This puts severe restrictions on the topology of a manifold if it is to ad-
mit a complete metric with nonnegative sectional curvature. For example,
such a space must be of finite topological type and be actually homotopic to
a closed manifold. Therefore, its cohomology must satisfy Poincaré-duality.
From this fact, D. Gromoll and W. Meyer [8] first constructed complete open

manifolds which admit metrics with nonnegative Ricci curvature but do not



carry any metric with nonnegative sectional curvature.

2) The Splitting Theorem (J. Cheeger & D. Gromoll [1972], [7] To-
ponogov [1964]) If Ky > 0 then M splits as an isometric product M x R*,
where M contains no lines and R* has its standard flat metric.

A particular consequence of this theorem combined with the Soul Theo-
rem is that the fundamental group of a manifold with K > 0 must be abelian
up to finite index (having an abelian subgroup with finite index). However,
as we will see, the situation is quite different in the Ricci curvature case, thus
producing many other interesting examples of complete manifolds which ad-
mit metrics with nonnegative Ricci curvature but do not carry any metric

with nonnegative sectional curvature.

3) Theorem (M. Gromov [1981], [11]) There exists a constant C = C(n)
such that every complete n-dimensional riemannian manifold M of nonneg-

ative sectional curvature satisfies

i=0

where b; 1s the i-th Betti number.

The question of whether such a uniform bound on the Betti numbers
could also exist in the nonnegative Ricci curvature case has been studied
by J. P. Sha and D. G. Yang recently. In fact, they constructed positive
Ricci curvature metrics on the connected sums of arbitrarily many copies of

S™ x S™ (n,m > 2), showing that there is no uniform bound on the Betti
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numbers. They also showed that complete manifolds with positive Ricci

curvature could be of infinite topological type.



Chapter 1

Examples of manifolds with

positive Ricci curvature

Suppose M is a compact connected smooth manifold. For a positive number
€, a riemannian metric on M is called e-flat, as introduced by M. Gromov

[10], if its sectional curvature K and its diameter d obey the relation
|K|d® < e.

M is called almost flat if it admits such metrics for all e.

The celebrated “almost flat manifold theorem” states:

Theorem 1 (M. Gromov [10]) There exists an €(n) > 0 so that an €(n)-
flat n-dimensional manifold is covered by a nilmanifold. More precisely,
1) The fundamental group m (M) contains a torsion-free nilpotent normal

subgroup I' of rank n.



2) The quotient G = m(M)/T has order < C(n) and is isomorphic to a
subgroup of O(n).

3) The finite covering of M with the fundamental group T and deckgroup G
is diffeomorphic to a nilmanifold L/T.

4) The simply connected nilpotent Lie group L is uniquely determined by
m(M).

Later E. Ruh [19] proved a refinement of the almost flat manifold theorem.
He showed that M itself, not just a finite covering, is diffeomorphic to L/A,
where A is a uniform discrete group in the isometry group of L with respect
to some left invariant metric. Such a manifold is called infra-nil.

In general nilmanifolds L/T" can not be endowed with any left invariant
metric with nonnegative Ricci curvature. However, we will show that one
can put such a metric on L/T" x R?| or more generally on M x RP for M
almost flat, provided p is sufficiently large. Thus almost flat manifolds are

stabily diffeomorphic to complete manifolds with positive Ricci curvature.

In this chapter we shall prove the following main result:

Theorem 2 Let L be an n-dimensional simply connected nilpotent Lie group.
Then for all sufficiently large p, the product manifold MP*" = L x R? admits
complete riemannian metrics with strictly positive Ricci curvature such that

the isometry group of M contains L.

We first construct a family of almost flat left invariant metrics on L, then



we show that some warped product metrics on L x R? have strictly positive
Ricci curvature.

We will also give some examples of near elliptic manifolds.

1.1 Almost flat left invariant metrics on L

Let L be an n-dimensional simply connected nilpotent Lie group, and [ its
Lie algebra. We construct a family of almost flat left invariant metrics g, on

L, 0<r<oc.

It is well-known [23, 3.6.6] that any simply connected nilpotent analytic
group G is isomorphic to a closed unipotent subgroup of GL(V) for some
finite-dimensional vector space V. Without loss of generality, we can assume
L = U(m), the closed unipotent subgroup of upper triangular matrices in
GL(m). Consider X; = Xy, s < [, where X is the m X m-matrix such

that every entry is 0, except the s-th row and [-th column spot which is

1. Then {X;, ..., X,} forms a triangular basis for the Lie algebra [, i.e.
[X, X;] € [;_1, whenever X € [, and [; ; is spanned by X, ..., X; ;. For
X =37, 0a,X;, set
IXI? = 3 w0l (L)
i=1
where
hi(r) = (1+ 7)™, (1.2)

20 — 4o = 0B, ap = a, ai:2”_i(a+§)—§f0r1 <1 <n-—1, and



«, [ are positive constants. [ will be specified later (see below for the way
of choosing the h;(r)). The above norm gives rise to a corresponding almost

flat left invariant metric g, on L.

Proposition 1 For the metric g,, the curvature satisfies the following rela-
tions

(KL (Y, Y))| < e(1+7)77, (1.3)
< R(Y;’ YJ)Y], Yy >=0, i # k, (1'4)

where Y; = hi_l(r)Xi, c 1s a constant depending on n and the structure con-

stants.
To proof (1.3), we need the following lemma

Lemma 1 If [|[X,Y]|| < ¢[[X[[|[Y]], for any X, Y € I, ¢ > 0, then the

sectional curvature satisfies |Kp| < 6¢2.

This is elementry and is a consequence of the following basic curvature

formulas for the left invariant metric of a Lie group [5].

< RX,YV)ZW >=<xZ,7yW > = <y Z,vxW > = < gixy1Z, W >,

(1.5)
]' * *
VY = {[X Y] = (adx)"(Y) = (ady)*(X)}- (1.6)
Q.E.D.
Now the commutator of a nilpotent group satisfies
[Xi,Xj] = Z riijh (17)

k<min(,5)
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.From Lemma 1 and ( 1.7) it is clear that if we scale the norm of X; much
faster than the norm of X; when ¢ < j, then the curvature K will be very
small. This is exactly the way we choose the scale functions h;(r).

Let ¢; = max |r;jx|, then

I XP<d Y m<d w2,
! 1k<n%n:(z_]) 1( +r )ﬁ !

X, X;
e T < IS ahyhy 52

< Cl(n —1)2 3 Jashil[bjhyl /(1 + 1)

ij

No[@

8
2

< en(n — 1) lashil| |1/ (1 + ).

The norm of the Lie algebra is < ¢;n(n — 1)z /(1 + 7“2)%, therefore we have
proved (1.3).
To verify (1.4), first we calculate the Levi-Civita connection of g,. By

(1.6) and (1.7), we find

Vy;Y; =0, (1.8)
Vv Y = %hil(r)hjl(r){[Xi?Xj] — (adx;)"(X3)}, i<}, (1.9)
TyY; = %hl b X X — (ady ' (X)), i> g (110)

;From (1.5) and (1.8)
< R(Y, Y)Y}, Yy >=< Y}, Uy Y > — < Uiy Y5, Ve >

Without loss of generality, we assume i < j < k. Using (1.9) and (1.7), we

have

10



<Wv.Y;, Uy Yi >

1
< V)Y, Ye > = 5’1{1(7”)’1]2(7“)h£1(7”){< [Xi, X5), X5, X >
—< [Xian]v [vaXk] >}

J

1
= —thl(r)hﬂ(?“)hil(r) < [Xi, X5, [XG, Xi] >
Therefore,

J J

< R(Y, Y)Y, Ye >= Zhil(r)h-Z(r)hkl(r) < (X0 X, (X5 X >, i< <k
(1.11)

Similarly we can find

< R(Y, Y)Y, Ye >= %hil(r)h-2(r)hk1(r) < (X0 X, X5 X >, (112)

is ¥ j
forjg<i<k,ori<k<yjy.
Hence it suffices to show
<X, X, [X;, Xi] >=0, i # k. (1.13)
Now

< [Xij, Xua], [ Xut, Xpg] > = < 0k Xit — 01Xk, O1pXig — OgeXp1 >

J

= 0,

11



unless ¢ = j, or 2 =p and j = gq.
This yields (1.13) and proves (1.4).
Q.E.D.

Remark 1 For a given uniform discrete subgroup I' C L, the diameter

d(L/T) — 0 when r — 0.

Remark 2 In fact we will only use the partial result that

Riep(Y;) > ——o

_ 1.14
- 1472 ( )

for the construction of metrics with Ric > 0 on L x R? in the next section.

Remark 3 To simplify expressions, we had scaled each X; differently.
Actually one can just scale each level (diagonal) differently. The metric g,
constructed in this way will be invariant under A, an extension of a lattice
[' C L by a finite group H, if A C Iso(L, g) for some left invariant metric g.
This is because H preserves the levels. Note that g, is not invariant under

the whole isometry group of L with some left invariant metric.

12



1.2 Construction of metrics with Ric > 0

We define a warped product metric g on M = L x R? by
g =g, +dr* + f*(r)ds?, (1.15)

where g, is the metric defined as before on L with 8 = 1, ds? is the canonical

euclidean metric on the sphere SP~! C R”, and
flr)=r(1 457 (1.16)

g is a complete metric on M, since f(0) =0, f'(0) =1, f"(0) =0, f(r) >0
for r > 0, hy(r) >0 forr >0, h(0) =0 for 1 <i<mn.
It is clear that the isometry group of g contains L.

Now we will calculate the Ricci curvature of this metric and show Ricy, >

Let H=0/0r,U; = f(r) 'V, where 1 <j<p-—1land Vi, ..., V1 is
an orthonormal basis of SP~! with cononical metric. Let

/ / !

Woy Wi, «eey Why Whyls +ovs Wngpo1
be dual to the basis H, X;, ..., X,, Vi, ..., V1 of M. Denote by
w; = hi(r)w; (1 <i<n),

wnyj = fi(Mwny;,  (L<ji<p-—1).

Then, (1.15) becomes the following,



By the Cartan structure equations, we have

dw; = hi(r)we AW+ hi(r)dw!

= Zwik/\wk—l—wio/\wg (]_SZSTL), (]_]_7)

k=1

dwny; = f(r)woAw,,j+ f(r)dw,,;

p—1
= Y Wntjktn AWkin Wi Awe (1<7<p—1), (1.18)

k=1

n+p—1
doy = 0= > wop Awy. (1.19)
k=1

From (1.17), (1.18) and (1.19) we find

__hi(r) :
wip = _hi(r)wi (1 <i<n), (1.20)
Wntjo = _%Wn-i-j (1<ji<p-1), (1.21)
Wntjntk = w7,1+jn+k (1 <Jsk<p- 1) (122)
Therefore,
< R(Y;,Y])Y], Yp> =0 (i # k), (1.23)
<R(Y,HHY;> = 0 (i # 7), (1.24)
< RY,U)U;Yi> = 0 (i#k), (1.25)
h.(r)h'(r
KOLY) = Kuiy) - O 1< <), (120
Kwm) = ) a<iz), (1.27)
k) = L a<isp-n, (1.28)



) = IZAGIY <
K(U;,Uj) = )2 (f(r)) (1<j<p-1), (1.29)
K(Y;,U;) = —];((7;))"}((:)) (I1<i<n, 1<j<p-1). (1.30)

The Ricci curvature is the following:

Ric(Y;, H) = Ric(Y;,U;) =0 (1<i<n, 1<j<p-—1),

RZC(Y;,Y}) 0 (Z 7&]?1 <i,] < n)a
1o BRI 00V (o P 51110
) = =5y~ O Dhre) ) 2
(1<i<n), (1.31)
Ric(H,H) = —f;}]i((:))_(p_l)g '(Sf"){ (1.32)

: S"(r)  p=2 J'(r) e <= hir) ] (r)
Ric(U;,U;) = — + —(p—2 - :
U = =g Ty ) &
(1 S j<p-—1). (1.33)
Since 1—(f'(r))?> >0, f"(r) <0, f'(r) > 0, '(r) < 0, we have Ric(U;,U;) >
0 in (1.34). For the positivity of the Ricci curvature in the equations (1.32)
and (1.33), we insert the functions f(r) of (1.16), h; of (1.2), and use the

estimate in (1.14). We obtain
Ric(Yy,Y:) > {=20[(20 + 1)r* = 1] + (p — D) (2 + 7°)

c(1+7%) = dajayr®} /(14 1r7)?, (1.34)
i7£]

Ric(H,H) = {- znj2a,~[(2a,~ +1)r? — 1]

=1

+p—1)

T+6

H@+r?)2 (1.35)

15



Positivity of the Ricci curvature in the equations (1.35) and (1.36) is equiv-

alent to the following two inequalities,

(p— Doy > 4> ooy + 20+, (1.36)
i#]

p—1 > 4 (40} +2a;). (1.37)
=1

Recall that o; = (2 + 1)2"7"! — L for @ > 0. Clearly (1.37) and (1.38)
hold for p sufficiently large. This completes the proof of Theorem 2.

Q.E.D.

Note there is no metric on L x R” invariant under L with K > 0 for any

p, simply because the fundamental group of a complete manifold with K > 0

is abelian up to finite index (see the previous chapter).

Remark 4 The smallest p that yields positive Ricci curvature on MP™" =
L x R? by means of our construction is quite large in general. For example,
in the case of the three-dimensional Heisenberg group L = H?, we have to
choose p > 673. (With a slightly refined choice of functions, p > 26 will
already work, see the example below.) We do not known whether or not p
can be chosen much smaller. However, by [2], no finitely generated subgroup
ofry (M) is of polynomial growth of order > n—2 if M™ is a complete rieman-
nian manifold of bounded geometry with Ricy; > 0. Therefore necessarily

p > 4 when L = H3.

16



Example. If

1 = 2

_ 3 _
L=H"=]0 1y
0 01

is the three-dimensional Heisenberg group. Define a warped product metric
g on H? x R? by

g = h*(r)(dae® + dy®) + ¢*(r)(dz — xdy)? + dr® + f*(r)ds,
where ds? is the cononical metric on SP~! C R”, and g, h > 0, ¢'(0) =

h'(0) =0, f(0) =0, f(0) =1, f"(0) =0 and f(r) >0 forr > 0. gisa

complete metric on H? x RP.

Denote by
X, = hr)9/ox,
X, = h7Nr)(0/0y + 0/0z),
X5 = ¢7'(r)9/0z,
X4 = 8/87",
X5 = (W,
where V' is an orthonormal basis of SP~! with cononical metric. Now X, ..., X5

is an orthonormal basis of H? x R? with respect to g.

Calculations as before yield

Ric(X;, X;) = 0 (i #]),
h” flhl 92 hl

Ric(X;, X;) = — (p—1) TR (E)Q ¥

17



RiC(X3’X3) = —;—(p—l) g +ﬁ_ hg’
Rie(Xo, X)) = _2% _ % _(p- 1)f7,
) f _9 f! fH g
Rie(Xo, Xo) = ~p 4B — (=205 2 =
Now let
T
J(r) = ETOra
1

where «, € are positive constants satisfying 2a—e = 1. And functions f, g, h
satisfy the initial conditions.

When choosing € = 1/2, a = 3/4, it can be easily checked that Ric > 0
if p > 26.

Let M denote a complete n-diemensional riemannian manifold. By virtue
of Ruh’s refinement of Gromov’s almost flat manifold theorem (see the begin-
ning of this chapter), the following result is therefore a corollary of Theorem 2

and Remark 3.

Theorem 3 If M is é(n)-flat, then M x RP carries a complete metric with

Ric > 0 for p sufficiently large.

Theorem 2 also shows that the double of X, where X is a compact manifold

with boundary which carries a metric such that both the Ricci curvature of

18



X and the mean curvature of its boundary are positive, need not carry a
metric with nonnegative Ricci curvature, as it would have in case of positive
scalar curvature [13]. We just take X = L/I" x D", where I', L as defined
before, and D™ is the unit disk. It has positive Ricci curvature by Theorem 2,
and it can also be easily checked that the mean curvature of its boundary is
positive. But the double of X is L/T" x S™ which does not carry any metric
with Ric > 0, since it is compact and the fundamental group of a compact
manifold with Ric > 0 is abelian up to finite index by the Splitting Theorem
of J. Cheeger and D. Gromoll [7].

19



1.3 Examples of near elliptic manifolds

Using a construction of J. Nash [17] concerning the existence of metric with
Ric > 0 on principal bundles and results of Section 1.1, we can construct a
large class of near elliptic manifods. We call a compact manifold near elliptic
(weak near elliptic) if it admits a metric with K d*> > —e (Ric d* > —¢) for

any € > 0.

Proposition 2 Let 7 : P — M" be a principal L™ -bundle over a compact
manifold M. If M admits a metric <, >y with Ky > 0 (Ricpyy > 0), then
P/T is a near elliptic (weak near elliptic) manifold for any uniform discrete

subgroup I' C L.

Proof. For a fixed connection w on P, define a family of metrics <, >,

on P, r >0, by
<X,V >, =<n(X),n(Y) >y +(14+1rH)2g,, (1.38)

for X, Y € T,P. Here g, is the metric defined as before on L with 3 = 3.
The map 7 : P — M" becomes a riemannian submersion for <, >,. These
metrics are invariant under L, and the fibers in P are totally geodesic with
respect to <, >,.

We will show that K, (Ric,) is almost nonnegative when r — 400, and
the diameter of P/T" is bounded independent of r. Actually P/T collapses
to the base manifold M (in the sense of Cheeger-Gromov).Let Hy, ..., H,

be an orthonormal basis of the horizontal subspace. We will denote various

20



quantities associated to <, >, with a subscript or superscript. For r = 1, the
r will usually be deleted. Recall that Y7, ..., Y}, is an orthonormal basis of
[ with respect to g,.

For X € T,P, | X||, = 1, without loss of generality, we can assume

X =aY (1 +r?) + bH, for some a, b satisfying a® + b*> = 1. Then
X, 0Y1 (1472 —aHy, Yo(1+7%), ..., V(1 +7?), Hy, ..., H,

is an orthonormal basis of T, P. Hence

Ric,(X) = K, (X,0Y1(1+7%) —aH:) + > K, (X, Yi(1+7%) + > K. (X, Hy).
i=2 j=2

(1.39)
We find (see [17] for detail)

K. (X, bY1(1+7%) —aH,) = (14+7)7%|Ag,Y1]* >0,  (1.40)
K (X Yi(147%) > a®(1417)°KL(Y1,Y)), (1.41)
K.(X,Hj) > U[Ky(r(H),7(H;))] = 36 (1 + %) 72| An, H 1,
+2ab(1 +1*)~' < R(Hy, H;)H;, Y1 >,, . (1.42)
Here the (1,2)-tensor A is defined by
AxY = (Ux,Yo)n + (Vx, Yn)o

for any C'* vector field X,Y on P, where X = X;, 4+ X, is the docomposition
into horizontal and vertical components. The terms < R(Hy, H;)H;, Y1 >,

and || Ay, Hj||? have bounds independent of Y; and H;. Thus

Ric,(X) = b*Ricy (w(Hy)) + a*(1 + 7*)? Ricr, (Y1) + O(

).

1472
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With Proposition 1, we have

c
K, >———
N
if Ky >0, or
1
(X)) > a2(14+12)? (———— .
Ric,(X) > a*(1+7°)" - ( (1+r2)3)+0(1+r2)
C//
> -
- 1472

if Ricyy > 0, for some constants ¢, ¢’. The diameter of P/T" is clearly
bounded independently of r. Therefore P/I" is a near elliptic (weak near
elliptic) manifold.

Q.E.D.

A corollary of Theorem 2 and Proposition 2 is

Theorem 4 Let P — M be a principal L-bundle over a compact manifold
M. If M admits a metric with Ricy > 0, then P x RP admits a complete

metric which is invariant under L and with Ric > 0 for p sufficiently large.

On the basis of these results, we believe that M x R? would still adimts
a complete metric with Ric > 0 for p sufficiently large, if M is a weak near
elliptic manifold. This would give an affirmative answer to a generalized
conjecture of M. Gromov [10] (see the end of Section 2.2). But it looks
difficult to construct the metric without knowing more about the structure

of such manifolds. It seems possible that all weak near elliptic manifolds

22



are somewhat like principal L-bundles over base manifolds admitting metrics
with Ric > 0. Recently T. Yamaguchi developed some structure theory about
weak near elliptic manifolds with an additonal condition that the sectional

curvature is bounded from below [24].
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Chapter 2

Ricci curvature and the

fundamental group

2.1 The case Ric >0

The first result about the fundamental group of a complete manifold M with
Ric > 0 is due to S.B. Myers [15]. It says that if M is compact and Ricy, > 0
then 7y (M) is finite. This can not be extended to complete non-compact
manifolds as in the case of positive sectional curvature. P. Nabonnand [16]
constructed a metric on S* x R?® with positive Ricci curvature, showing that

the fundamental group could be infinite. In fact we have

Corollary 1 Every finitely generated torsion-free nilpotent group can be real-
ized as the fundamental group of a complete riemannian manifold with strictly

positive Ricci curvature.
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This follows immediately from Theorem 2 and the following classical re-

sult [18, p 40].

Theorem 5 (A. I. Malcev) A group I is isomorphic to a lattice in a sim-
ply connected nilpotent Lie group if and only if

1) T is finitely generated,

2) T is nilpotent, and

3) T has no torsion.

On the other hand, J. Milnor [14] studied the growth of finitely generated
subgroups of the fundamental group of a manifold admitting a complete
metric of nonnegative Ricci curvature. Let us recall the definition of the
growth of a finitely generated group I'. Choose a finite set of generators, say
g1, ---, gi- Then every element of [ can be expressed as a word in gy, ..., g.

Now define the growth function as
#r(N) = the number of distinct words in I" of length < N.

[ is said to be of polynomial growth if there exists an integer k£ and a constant
C' such that
#r(N) < CN*,

By employing volume comparison, J. Milnor proved the following basic result.

Theorem 6 (J. Milnor [14]) If M is complete and Ricy > 0, then every

finitely generated subgroup of w (M) is of polynomial growth.
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This combined with the following remarkable result shows that every such

subgroup of 71 (M) is nilpotent up to finite index.

Theorem 7 (M. Gromov [9]) A finitely generated group is of polynomial

growth iff there is a nilpotent subgroup of finite index.

Therefore, the structure of the torsion-free part of the fundamental group
of a manifold with Ric > 0 is now more or less clear. However, the question

whether or not it is finitely generated still remains open.
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2.2 The case of almost nonnegative Ricci cur-
vature

In this section we shall prove

Theorem 8 For any constant v > 0, there exists € = €(n,v) > 0 such
that if a complete manifold M™ admits a metric satisfying the conditions
Ricyr > —e, diam(M) =1, and Vol(M) > v, then the fundamental group of

M s of polynomial growth with degree < n.

Essential to our proof is a recent finiteness result of M. Anderson [3] for
the fundamental groups of the class of compact n-dimensional riemannian

manifolds M such that

Ricyr > (n—1)H, vol(M) > v, d(M) < D. (2.1)

Actually we need the following more precise description of the fundamen-

tal group.

Theorem 9 (M. Anderson [3]) Given M satisfying the bounds (2.1), then
m1 (M) has a presentation which obeys the following:

1) The number of generators ¢, ..., gy s uniformly bounded with
N < N(v/D", HD?),

2) d(gi(%o), T0) < 2D + ¢, for any € > 0,

3) every relation is of the form g;g; = gx.
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The proof of Theorem 9 is closely related and useful to our proof of
Theorem 8, so we will give the arguments. However, before going into the
proof, let us mention a general lemma of M. Gromov which was pointed out

in [12, 5.28].

Lemma 2 (M. Gromov) Let M be a riemannian manifold with diameter
D. There is a system of generators {g;} of m (M) = m(M,zo), and rep-
resentatives 7y; of g; such that l(v;) < 2D + € and all relations among the

generators are of the form g;g; = gi.

Proof of Lemma 2. First note that (M, ) is generated by geodesic
loops of length < 2D + ¢, since any curve 7y closed at xy can be subdivided
into arcs of lengths < e. Thus 7 is represented as a product of closed curves of
lengths < 2D + ¢, which then are deformed via length decreasing homotopies
to geodesic loops.

To show that all the relations can be reduced to the form g;g; = g,
notice that if v(s) (0 < s < 1) is nullhomotopic in M, and I(y) < e. Join
7(£) by a minimizing geodesic g; to 2, 0 < i < 2. Then each closed curve
gt U’Y|[%"H-Tl] Ugis1 is of length < 2D + ¢ and homotopic to a geodesic loop ¥;
where i take values in Zs. We have 5,9, = 7, ' representing the contractible
loop 7(s).

Now let v(t,s),0 < t < 1, be a piecewise differential homotopy from

v =7(0,5s) to {xo} = (1, s). By uniform continuity we can choose N and
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subdivide [0, 1] x [0, 1] into small squares such that the curves

. i j 1
Lot (. 2), 0<t< —
77,‘] fY(N—i_,N), — _N?
- i 1
Yij 85— ’Y(N,N"‘S)aoﬁsﬁﬁa
St — (i+ti+t) 0<t<—
Tij NN THEN T VRSN

have lengths < ie. Again join the points (%, %) by minimizing geodesics

gij to zo. Then each curve
—1 1 2 31
9i; Ui Ui U (05) " U gig

13 1 -1 2 -1
97 Y U Gizrje) Y (V1) U gij
is of the form discussed before and represents a relation as in form 3) of

Theorem 9. The product of these relations represents the contractible loop

v(s).
Q.E.D.

Therefore we are only left to prove 1) of Theorem 9. Let
[' = {homotopically distinct loops of length < 2D + €},

N = #TI'. Choose a base point Z, in the universal covering M -2 M, and
let 9y = p(Zy), and F a fundamental domain for the action of 7 (M) on
M which contains 7,. For example, one may choose F' to be the Dirichlet

fundamental domain, i.e.
F = Nyenanii € M;dist(&, 7o) < dist(Z,vio)}. (2.2)
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Let B(io,r) (respectively B(xo, 7)) be the ball of radius r in M (respectively
M). Then it is easily verified that B(Zq, )N F is mapped isometrically onto
B(zg, r) under the covering map , modulo a set of measure zero corresponding
to OF. In particular, vol(B(Zo,r) N F) = vol(B(xg,r)). Taking r = d to be
the diameter of M one has vol(F') = vol(M), since it is clear from ( 2.2) that
F C B(#,d).
Now observe that
UyerY(F) C Bspie(Zo),

or

Nvol(M) < vol(Bspye(Zo)).

By volume comparison and (2.1), N < N(v/D", HD?). This proves Theo-

rem 9.

Proof of Theorem 8. Choose a base point Z, in the universal covering
M 25 M, and let 2o = p(&), and gi,...,g, a set of generators of the
fundamental group (M) viewed as deck transformations in the isometry
group of M. Denote by I'(s) = { distinct words in m; (M) of length < s },
v(s) = #I'(s), and | = max;<;<,{d(Z, gi(Z0))}-

Choose a fundamental domain F' of 7y (M) which contains &, then

UgeF(s)g(F) - le+d(i0)a
where d = d(M) = 1. Therefore,
v(s) - vol (M) < vol(Bgi11(Zo))- (2.3)
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Now suppose on the contrary, for any € > 0, there is a manifold M™
with a metric satisfying Ricy > —e, d(M) = 1, vol(M) > v, and m (M) is
not of polynomial growth with degree < n. In particular, when taking the

generators of Theorem 9, we can find real numbers s; for all ¢ such that
v(s;) > isy, (2.4)

where s; is independent of €, since by Theorem 9 there are only finite many

types of presentations for
{m (M), M satisfying the bounds(2.1)},

if we choose the generators of Theorem 9. This is a crucial point here.

On the other hand, by ( 2.3) and volume comparison theorem we have

1 f3s+1 sinh /et _
o<t [

v
For any fixed sufficiently large sq, there is €y = €(sq) such that for all s <

S0, € < €g,

v(s) < %s”. (2.5)

Now take iy > 6"/nv. Then for € < €(s;,), using ( 2.4) and ( 2.5), we get a
contradiction.

Q.E.D.

A conjecture of M. Gromov states that the fundamental group of a com-

pact manifold with almost nonnegative sectional curvature (i.e. there exists
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a metric such that K d*> > —e for any € > 0) is of polynomial growth [10].
One would have proved Gromov’s conjecture if the hypothesis of a lower vol-
ume bound in Theorem 8 could be removed. However this is not trivial at
all. In fact the degree of the growth of the fundamental group of a com-
pact manifold with almost nonnegative sectional curvature is not necassary
bounded by the dimension (eg. nilmanifolds). Still, the following conjecture

looks reasonable.

Conjecture 1 The fundamental group of a weak near elliptic manifold is of

polynomial growth.
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