Section 10

The Real Numbers

In this chapter we present in some detail many of the important properties of
the set R of real numbers. The real numbers form the background for
virtually all the analysis we do in this text. Our approach will be axiomatic,
but not constructive. That is, we shall not construct the real numbers from
some simpler (?) set such as the natural numbers, Instead, we shall assume
the existence of R and postulate the properties that characterize it.”

We begin in Section 10 by looking at the natural numbers and mathe-
matical induction. In Section 11 we consider the field and order axioms that
begin to characterize R. The completeness axiom in Section 12 is the final
axiom and deserves special attention because of its central role in the rest of
analysis. In Sections 13 and 14 we develop some of the topological
properties of the reals that will be useful in describing the behavior of
sequences and functions. In Section 15 (an optional section) we look af these
properties in the more general context of a metric space.

NATURAL NUMBERS AND INDUCTION |

In Section 5 we agreed to let N denote the set of positive integers, also called
the natural numbers. Thus

N={1,2,3,4,.).

f For a constructive approach to developing the reals from the rationals, the rationals
from the natural numbers, and the natural numbers from basic set theory, see Henkin and
others (196Z), Stewart and Tall (1977), or Hamilton (1982). See also Exercises 10.21,
11.12, and 11.13. ’ ‘
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10.1 AXIOM

10.2 THEOREM

Tt is possible to develop all the properties (and even the existence) of the
natural numbers in a rigorous way from set theory-and a few additional
axioms. But since our discussion of set theory was not entirely rigorous,
there is little to be gained by going through the steps of that development
here. Rather, we shall assume that the reader is familiar with the usual
arithmetic operations of addition and multiplication and with the notion of
what it means for one natural number to be less than another.

There i one additional property of N that we shall assume as an axiom.
{That is, we accept it as true without proof.) 1t expresses in a precise way the
intuitive idea that each nonempty subset of N must have a least element.

(Well-Ordering Property of N) If S is a nonempty subset of ™, then there
exists an element m € S such thatm <kforall k € S.

One important tool to be used when proving theorems about the natural
numbers is the principle of mathematical induction. It enables us to conclude
that a given statement about natural numbers is true for all the natural
numbers without having to verify it for each number one at a time (which

would be an impossible task!).

(Principle of Mathematical Induction) Let P(n) be a statement that is either
true ot false for cach # € N. Then P(n) is true forall n € N, provided that

- {a) P(l)is true, and
(b) for each k e N, if P(k) is true, then P(k+1) is true.

Proof: The strategy of our argument will be a proof by contradiction
using tautology (g) in Example 3.12. That is, we suppose that (a} and (b)
hold but that P(n) is false for some n € N. Let

§ ={neN:P(n)is false}.

Then S is not empty and the well-ordering property guaramtees the
existence of an element m € S that is a least element of . Since (1) is
true by hypothesis (a), 1 ¢ S, so that m > 1. It follows that m — [ is also a
natural number, and since m is the least element in S, we must have
m—1¢gS.

But since m — 1 # S, it must be that P(m — 1) is true. We now apply
hypothesis (b) with k = m — 1 to conclude that P(k + 1) = P(m) is true.
This implies that m ¢ S, which contradicts our original choice of m. ¢

It is customary to refer to the verification of part (a) of Theorem 10.2 as
the basis for induction and part (b) as the induction step. The assumption




10.3 EXAMPLE

10.4 EXAMPLE
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that P(k) is true in verifying part (b) is known as the induction hypothesis.
Tt is essential that both parts be verified to bave a valid proof using
mathematical induction. In practice, it is usually the induction step that is the

more difficult part.

Prove that 1+2+3+ -+ +n = Ln(n+1) for every natural number ».

Proof: Lct P(n) be the statement

14243+ < +n = Ta(n+1).

Then P(1) asserts that 1=2(0(1+1), P(2) asserts that 1 +2 = 122 +1),

and so on. In particular, we see that P(1) is true, and this establishes the

basis for induction.
To verify the induction step, we suppose that P(k) is true, where

k = N. That is, we assume

14243+ +k = Tk(k+1).

Since we wish to conclude that P(k + 1) is true, we add & + 1 to both
sides 1o obtain

14243+ 4 k+{k+1) = Th(k+ 1)+ (k+1)
= L[k(k+ 1)+ 20k +1)]
= Lk +D(k+2)
= L+ DIk +1) +1]
f

Thus P(k+ 1) is true whenever P(k) is true, and by the principle of
mathematical induction, we conclude that P(x) is true for all n ¢

Since the format of a proof using mathematical induction always consists
of the same two steps (establishing the basis for induction and verifying the
induction step), it is common practice to reduce some of the formalism by
omitting explicit reference to the statement P(7). It is also acceptable to omit
identifying the steps by name, but we must be certain that they are both

actually there. i

Prove by induction that 7" — 4" is a multiple of 3, for all # € N.

Proof: Clearly, thlS is 1:1‘118 when n = 1, since 7' 41 =3 Nowletke N
and suppose that 7% — 4% i a multiple of 3. That is, 7% - 4* = 3 for some
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10.5 PRACTICE

10,6 THEOREM

m e N. Tt follows that’

7k+1 _4k+1 — 7r'c+1 _7.4k +7_4k _4.4k

= 7(7F 4%y +3.4F
= 7(3m)+3-4°
=3(Tm +45).

Since m and k are natural numbers, SO is 7m + 4" Thus TE _4F s

also a multiple of 3, and by induction we conclude that 7° —~ 4" is a
multiple of 3 foralln € N. ¢ ' '

Observe that
1 =1
1+3=12°
14345 =3

1+3+5+7 = 4

Figure out a general formmila and prove your answer using mathematical
induction.

There is a generalization of the principle of mathematical induction that
enables us to conclude that a given statement is true for all natural nunbers
sufficiently large. More precisely, we have the following:

Let m e N and let P(n) be a statement that is either true or false for each
n > m. Then P(n) is true for all n = m, provided that

(a) P(m)istrue, and
(b) foreachk=m, if P(k) is true, then P(k + 1) is true.

T In the proof we have added and subtracted the tetm 7- 4% Where did it come from?
We want somehow to use the induction hypothesis that 7k _ 4% = 3m, so we break PARE
apart into 7- 7% We would like to have 7% 4% g5 a factor instead of just 7% but to do this
we must subtract (and add) the term 7- 4k,

Alternatively, we could have broken 4%*1 apart into 4- 4%, This time fo replace 4% by
7% 4F we must add (and subtract) 4 75 ‘

7k+1 _4ic+l — 7.t+1 _4'7.& +4(7k ”__4)':)
=TT -4+ HT -4
= 75,3+ 4(3m) = 3(T* + 4m).

Once again we see that 77! — 4% {5 a multiple of 3.
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Proof: The proof will use the original principle of induction (Theorem
10.2). For each r & N, let O(r) be the statement “P{r +m — 1) is true.”
Then from (a) we know that (}(1) holds. Now let j ¢ N and suppose that
O(/) holds. Thatis, P(j +m - 1) is true. Since j € N,

Jrm-l=m+(j-1)2m,

so by (b), P(j+ m) must be true, Thus Q(; + 1) holds and the mduction
step is verified. We conclude that Q(r) holds for all » € N.

Now if nzm, letr =n—m+ 1, so that » € N. Since ()(r) holds,
P(r+m—1)is true. But P(r +m— 1)is the same as P(n), so P(n) is true
forallnzm. ¢

Review of Key Terms in Section 10

Well-ordering property of N Induction step
Principle of mathernatical induction Induction hypothesis
Basis for induction

ANSWERS TO PRACTICE PROBLEMS

10.5  The general formula is
14345+ +(2n-1) = #°,
and we have already seen that this is true for n = 1. Tor the induction
step, suppose that 1 +3 + 5+ -+ (2k— 1) = ¥°. Then
143+5+ - +(2k—D+(2k+1) = k> + 2k +1)
= (k+1).

Since this is the formula for » = k& + 1, we conclude by induction that the
formula holds forallz « M. ¢

EXERCISES

Exercises marked with * are used in later sections and exercises marked with Y& have
hints or solutions in the back of the book.

0.1 Mark each statement True or False. Justify each answer.

() If §is a nonempty subset of IN, then there exists an element m € §
such thatm = kforallk e S
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10.2

#1103
*10.4

10.5
*10.6

*10.7

*10.8

16.9
10.10
10.11

10.12

10.13
10.14
16.15

(b) The principle of mathematical induction enables us to prove that a
statement is true for all namral numbers without directly verifying it

for each number.

Mark each statement True or False. Justify each answer.

(a) A proof using mathematical induction consists of two parts:
establishing the basis for induction and verifying the induction

hypothests.
(b) Suppose m is a natural number greater than 1. To prove P(k) is true
for all k > m, we must first show that P(k) is false for ali & such that

1<k<m.
Prove that 17 + 22 + -+ +n° :%n(n+1)(2n+1) foralln e ™.
Prove that 13+23+v--+n3:%n2(n+1)2 foralln € N,
Prove that 1* +2° + - +1° =(1+2+--+n)’ foralln € N3k
Prove that

1 1 1

— et
1.2 2.3 3-4

Provethat Lar+ e+ - + 7 = 1 =r""H/(1-rforalln N, when
rel Y

! "—-mﬁ-—, foralln e M.
nn+l)  ntl

Prove that
l+_l_ L+...+;= " forallme N
315 33 At -1 2n+1

Prove that | +2+2%+ - +2"7t = 2"~ 1, foralln e N.

Prove that 1(11) + 2(2D) + -~ +n(n!) = (r+ DI-1, foralln e N.
Prove that

-L+-2—+--'+ LN ! ,foralln e M.

pARNCH (n+1)! {(r+1)!

Prove that 14+2-2+3-2% +-+n2"" = (n-1)2" +1, foralln e N.

Prove that 52" — 1 is a multiple of 8 for all n e N.7%
Prove that 9" — 4" is a multipie of 5 for all n & N.
Indicate what is wrong with each of the following induction “proofs.”

(a) Theorem: For cach n e N, let P(n) be the statement “Any ’
collection of # marbles consists of marbles of the same color.” Then

P(r)istrue foralln € N.




10.16
10.17

10.18

10.19

10.20

10.21

*10,22
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Proof: Clearly, P(1) is a true statermnent. Now suppose that P(k) is
a true statement for some k£ € N. Let S be a collection of £+1
marbles. If one marble, call it x, is removed, then the induction
hypothesis applied to the remaining & marbles implies that these &
marbles all have the same color. Call this color C. Now if x is
returned to the set § and a different matble is removed, then again
the remaining k& marbles must all be of the saine color . But one
of these marbles is x, so in fact afl £+ 1 marbles have the same
color C. Thus P(k+1) is true, and by induction we conclude that
P(n)istrueforalln e N. ¢

(b) Theorem: For each n € N, let P(n) be the statement “w+Tn+3is
an even integer.” Then P(n) is true foralla e N.

Proof: Suppose that P(k) is true for some ke N. That is,
K+ 7k + 3 is an even integer. But then

R+ +T(k+D+3 = (A +2k+ 1)+ Tk+T7+3
= (K +Th+)+2(k+4),

and this number is even, since it is the sum of two even numbers.
Thus P(k+ 1) is true. We conclude by induction that P(n) is true
foralln e N. ¢

Provethat 2+5+8+ - +(3n—1) = Ln(3n+1) foralln e N.

Conjecture a formula for the sum 5 + 9 ++ 13 + -+ + (4n + 1), and prove
your conjecture using mathematical induction. v

Prove that

@E004)--(@n-2) = ZL forallne .
i

Prove that [IM%J@;}E— I—%J---(lﬁ—l;) = n—tl, forallm e N
2 3 4 n 2n

withn > 2.

Prove that (cos x + isin x)* = cos (mx) + isin(nx), for all n € N, where {
= /~1. You may use the identities cos{a + b) = cosa cosh —sina sinb
and sin(a + b) = sina cos & + cos a sin b,

Indicate for which natural numbers # the given inequality is true. Prove
your answers by induction.

(a) n*<nl¥

(b) n®< 2"

{¢) 2" < n!

Use induction to prove Bemoulli’s inequality: If 1 + x> 0, then (1 +x)" 2
1-+npxforalln e N
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10.23

10.24

Prove that for all integers x > 8, x can be written in the form 3m + 5n,
where m and #n are non-negative integers. ¥%

Consider the statement; “For all integers x > &, x can be written in the
form 5m + 7n, where m and n are non-negative integers.”

(a) Find the smallest value of k that makes the staterent true.
(b) Prove the statement is true with k as in part ().

Prove the principle of strong induction: Let P(x) be a statemnent that is
either true or false for each n & N. Then P(n) is true for all # € N
provided that
(2) P(1}is true, and
(b) for each ke N, if P(j} is true for all integers j such that
1< j< k then P(k+ 1) is true. ¥

Prove that for every n & N there exists k = N such that n < K< 2n.

In the song “The Twelve Days of Christmas,” gifts are sent on successive
days according to the following pattern:
First day. A partridge in a pear iree.
Second day: Two turtledoves and another partridge.
Third day: Three French hens, two turtledoves, and a partndge
Andsoon,

For each i = 1,..., 12, let g; be the number of gifts sent on the ith day.
Then g, =1, and for i=2,..., 12 we have

&= g1 +i

Now let #, be the total number of gifts sent during the first » days of
Christmas. Find a formoula for £, in the form
_ n{n+a)n+b)

"

c
where a, b, ¢ € N3

Define the binomial coefficient (’:J by

!
[n] - forr=0,1,2,...,m

r riin—r)!

(a) Show that

(n)_{ r ):(n-'_l] forr=0,1,2,....n
r) \r-t r

*(b) Use part (a) and mathematical induction to prove the binomial
theorem:
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("Ja" +[”)a”‘1b+ +(”’Ja-’”b' SIS +[”)b"
o) -\ r nj.

=g" +na""1b—£--;—n.(r.¢~I)a"*2b2 + o +nab™ 4B

11

{a+b)"

10.29 Prove Theorem 10.6 by usihg the well-ordering property of N instead of
the principle of mathematical induction. ¢

10.30 Use the principle of mathematical induction to prove the well-ordering
property of N. Thus we could have taken Theorem 10.2 as an axiom and
derived 10.1 as a theorem.

Exercise 10.31 illustrates how the basic properties of addition of natural
numbers can be derived from a few simple axipms. These axioms are called
‘the Peano axioms in honor of the. Italian mathematician Giuseppe Peano, who
developed this approach in the late nineteenth century. We suppose that there
exist a set P whose elements are called natural rumbers and & relation of
saccessor with the following properties: '

P1. There exists a natural number, denoted by 1, that is not the successor of
any other natural number.
P2. Every natural number has a unique successor. Ifm € P, then we let m’
denote the successor of m.
P3. Bvery natural number except 1 is the successor of exactly one natural
number.
P4. I M is a set of natural numbers such that
(i) 1€ M and
(ii) foreachk e P, if k « M, then k’ e M,
then Af = P,

Axioms P1 to P3 express the intuitive notion that 1 is the first natural number and
that we can progress through the natural numbers in succession one at g time.
Axiom P4 ig the equivalent of the principle of mathematical induction. Using
these axioms, we can define what addmon means. We begin by defining what it
means to add 1.

Di. Foreveryn e P, definen+ 1= #n"

That is, #+ 1 is the unique successor of n whose existence is guaranteed by
axiom P2. Following this pattern, it is clear that we want to define n+2 =
(n+1)+1, n+3=[(n+1)+1]+1, and so on. To define n+m forallm e P,
we uge a recursive definition: '

D2 Letn meP. Ifm= and n+ k is defined, then define n +m to be
(n+k).

That is, 7 + & = (n + k)’ or, equivalently, n + (k+ 1) = (n + k) + 1. Note that if
m # |, then the existence of & is assured by axiom P3. Now for the exercise. ¥
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Section 11

1031 (a) Prove thatn + m is defined for all n, m < P.
(b) Prove that n+1=1 +nforalln e P,
{c) Prove thatm’ + n= (m-+n) forallm,n e p.
(d) Prove that addition is commutative. That is, prove that z + m = m +n
forall m,n e P.
{(e) Prove that addition is associative. That is, prove that (m + n) + p =
m+(n+p)f0rallm,n,p e P

For the sake of completeness, we indicate how multiplication can be
defined using the Peano axioms, As you would expect by now, the definition is
recursive.

D3. Forevery n & P, define 1 x 1=pn,
D4 letmnep Iftm=p and n x k is defined, then define n X m to be
{(nxk)+n Thatis, n X(k+1)=mxk)+n.
The reader is fnvited to prove some of the basic properties of multiplication using

D3 and D4. Fora complete discussion of the development of N from the Peano
axioms, see Henkin and others (1962).

ORDERED FIELDS

The set IR of real numbers can be described as a “complete ordered field.” In
this section we present the axioms of an ordered field and in the next section
we give the completeness axiom. The purpose of this development is to
identify the basic properties that characterize the real numbers. After stating
the axioms of an ordered field, we derive some of the basic algebraic
properties that the reader no doubt has used for years without question. It is
not our intent to derive a// these properties, but simply to illustrate how this
might be done by giving a few examples. Other properties are left for the
reader to prove as exercises. Having done this, we shall subsequently assume
familiarity with all the basic algebraic properties (whether we have proved
them specifically or not.

We begin by assuming the existence of a set R, called the set of real

numbers, and two operations + and -, called addition and multiplication, such
that the following properties apply:

Al. Forallx, y R, x+y e R and ifx=wandy=z thenx+y =
w2z,

Forallx,y e R, ty=yp+x

A2
A3, ForaIIx,y,ze]R,x+(y+z)=(x+y)+z.
A4, Thercisa unique real number  such that x+0=x forallx e B.




Section 11 « Ordered Fields 109

AS5. TFor cach x € R there is a unique real number —x such that x + (—x)
=0,
MI1. Forallx,yeR, x-yeR, andifx=wandy=z,thenx-y =w-z. ;
M2, Forallx,yeR, x-y=yp-x
M3 Torallx,y,zeR, x-(y-z)=(x-y) =
M4. There is 2 unique real namber 1 such that 1 # O and x- 1 = x for all
- xe R , .
MS35. For each x € R with x # 0, there is a unique real number 1/x such i i
thatx - (1/x) = 1. We also write x ' in place of 1/x.
DL. Yorallx,y,zeR, x-G+2)=x-y+x-z

These first 11 axioms are called the field axioms because they describe a
system known as a field in the study of abstract algebra. Axioms A2 and M2
are called the commutative Iaws arid axioms A3 and M3 are the associative
laws. Axiom DL is the distributive law that shows how addition and
multiplication relate to each other. Because of axioms Al and M1, we can
think of addition and multiplication as functions that map R xR into R.
When writing multiplication we often. omit the raised dot and write xy instead
of x-y. .

In addition to the field axioms, the real numbers also satisfy four order
axioms. These axioms identify the properties of the relation “<”. As is
common practice, we may write y > x instead of x < y, and x < y is an
abbreviation for “x < y or x = . The notation “>” is defined analogously.
A real number x is called nonnegative if x = 0 and positive if x > 0. A pair of
simultaneous inequalities such as “x < y and y < z” is often written in the
shorter form “x < y < z.”

The relation “<” satisfies the following properties:

O1. For alix, y € R, exactly one of the relations x =p, x>y, orx <y
helds (trichotomy law).

O2. Forallx,y,zeR,ifx<yand y<z then x <z F

O3. Forallx,y,ze R, ifx<y, then x+z<y+z H

04, Forallx,y,zeR,ifx<yand z>0, thenxz <yz. I

To illustrate how the axioms may be used to derive familiar algebraic
properties, we inchude the following: i

11.1 THEOREM Let x, y, and z be real numbers.
(a) fx+z=y+z thenx=y.

(by x-0=0.

() 1)-x=-x
(d) xy=0iff x=00r y=0. o l
(8) x<yiff —y<—x
) Ux<yand z<0; then xz > yz.
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Proof: (a) If x+z=y+z, then
(x+2)+(~2) = (y+z)+(-z) byASand Al,
mw  xt[z+(=2)] = y+[z+(-2)] byAs3,
x+0=y+0 by AS,
x = y byA4.

{b) Forany x € R we have
x-0=x-(0+0) by A4,
¥0=x0+x-0 byDL,
O+x-0=x-0+x-0 by A4 and A2,
0=x-0 by part (a).

(¢) For any x € R we have
XH(=Dx=x+x-(~1)  byM2,
X 1+x(-1) by M4,
x-fl+(-1)1 byDL,
=x-0 by A3,
= by part (b).
Thus (=1) - x = —x by the uniqueness of -x in AS.

‘(d) See Practice 11.2.

(¢) Suppose that x < y. Then

2+ [(=2)+ (9] < y+[(-x)+(-»)] by O3,
L)+ 0] < y +{(—3)+(~x)] by A2,
[x+(=]+ (=) <[y + (-} +(-x) by A3,
0+ (=) < 0+ (-x) by AS,
-y <-x by A2 and A4.
The converse is similar.

(f) See Practice 11.3. ¢

11.2 PRACTICE  Fill ini the blanks in the following proof of Theorem 1 LI(d).
Theorem: xy =0 iffx =0 or y = 0. _
Proof: If x =0 ory =0, then xy = 0 by 11.1(b) and M2. Conversely,

suppose that xy = 0 and x = 0. By tautology 3.12(p), it suffices to show
that y = 0. Sincex = 0, 1 /x exists by (a) . Thus




¢
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0-L.0 by (b)
X
1 .
O0=—-(xy) since xy =0,
X
1
0:(—-ny by
P ,
1
0:(«?*}}/ by,
X
0=1-y byley
D=y by (f) b

11.3 PRACTICE Fill in the bianks in the following proof of Theorem 11.1(f).

Theorem: If x< y and z < 0, then xz > yz.

Proof: If x <y and z <0, then —z > 0 by 11.1(e). Thus x{(—z) < y{-z)
by (a) . But i ‘

x(—z)=x[(-1)(z)] by () ,
=[x(-Dlz by},
={-D&x)]z by ___
=(-Dxz) byle____
=Xz by ()

Similarly, y(—z) = -yz. Thus -—xz < -yz. But then yz<xz by
@__ . .

We have listed the field axioms and the order axioms as properties of the
real numbers. But in fact they are of interest in their own right. Any mathe-
matical system that satisfies these 15 axioms is called an ordered field. Thus
the real numbers are an example of an ordered field. But there are other
examples as well. In particular, the rational numbers ) are also an ordered
field. Recall that

Qz{ﬁl—: m,n e Z and n;tO},
n
where Z = {0,1,-1,2,-2,3,-3,...}. Since the rational numbers are a subset

of the reals, the commutative and associative laws and the order axioms are
automatically satisfied.” Since 0 and 1 are rational numbers, axioms A4 and

f We have not proved that Q@ € R, but this refationship should come as no surprise to the
reader. A rigorous preof may be found in Stewart and Tall {1977).
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11.4 PRACTICE

11.5 EXAMPLE

11.6 PRACTICE

M4 apply. Since —(m/n) = (-m)/n and (m /myt=n /m, axioms AS and M5
hold. It remains to show that the sum and product of two rationals are also
rational,

Let a/b and ¢/d be rational numbers with «, b, c,d € Z. Show that

a C a c
—+— and —-—
b b d

are rational,

For a more unusual example of an ordered field, let IF be the set of all rational
functions. That is, F is the set of all quotients of polynomials. A typical
element of F looks like

a,x" + o+ ax+ ag
»
bkxk"‘ "‘+blx+b0

where the coefficients are real numbers and by # 0. Using the usual rules for
adding, subtracting, multiplying, and dividing polynomials, it is not difficult
to verify that T is a field.

We can define an order on F by saying that a quotient such as above is
positive iff a, and &, have the same sign; that is, a,- b, > 0. For example,

3xt +4x -1

> 0,
70 +5

since 3-7>0. If p/q and f/g are rational tunctions, then we say that

S
4 & g &

PoL w2 L 4

That is,

2L iy p8fa 4
qg g qg
The verification that “>” satisfies the order axioms is left to the reader

(Exercise 11.11). Tt tums out that the ordered field F has a number of
interesting properties, as we shall see later.

Consider the field F of rational functions defined in Example 11.5.

(a) Which is larger, x° or 3 /x ?
{b} Which is larger, x/(x + 2) or x/(x+1)?
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There is one more algebraic property of the real numbers to which we
give special attention because of its frequent use in proofs in analysis, and

because it may not be familiar to the reader.

11.7 THEOREM Letx, y € R such that x < y+eforevery £>0. Then x < y.

11.8 DEFINITION

11.9 THEOREM

Proof: We shall establish the contrapositive. By axiom O1, the negation

of x<y isx >y Thus we suppose that x > y and we must show that
there exists an £ > 0 such that x >y+te Lete=(x-y)/2. Sincex>y,
£ > 0. Furthermore,

x~y=x+y<x+x:x

+E=y+ ,
7 ¢ 2 2 2

as required. ¢

Many of the proofs in analysis involve manipulating inequalities, and one
useful tool in working with inequalities is the concept of absolute value. The

- defimition of absolute value was mentioned in Section 4, but we repeat it here

for reference.

Ifx € R, then the absolute value of x, denoted by | x|, is defined by

x, ifxz0,
|x]= .
—x, ifx<Q

The basic properties of absolute value are summarized in the following
theorem.

Letx,y € Randleta>0. Then

(a) |x] =0,

(b) x| <aiff-a<x<a,
©) lxey|= x|y,

@ |x+y] <|x|+]y]

Proof: (a) There are two cases. Ifx > 0, then |x| =x 2 0. On the other
hand, if x < 0, then |xj=-x>0. Tnboth cases [x] = 0.

(b} Since x=|x|orx = —|x|, it follows that—|x|<x <|x|. Now if
[x] < a, then we have

—a<-|x|<x<x|<a

Conversely, suppose that ~a S x < a. Ifx > 0, then x| =x £ q. Andif
x <0, then [x| = —x < a. In both cases, [x] < a

{c) See Exercise 11.5.

(d) Asin part (b), we have

113
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=[x <x< x| and -ly| <y <yl

Adding the inequalities together, we obtain

=(x|+|yD < x+y < |x]+]y],

which implies that |x + y| < |x] + | y| by part (b). ¢

Part (d) of Theorem 11.9 is referred to as the triangle inequality:
lx+y] < |x[+]y].

It is also useful in other forms. For example, lettingx=g ~cand y=c¢ — b,
" we obtain

la~b| <|a—c|+|c—h].

If we think of the real numbers as being points on a line, then |a — b|
represents the distance from g to 5. Thus the distance from a to b is less than
or equal to the sum of the distances from a to ¢ and ¢ to b. It is possible to
generalize this to higher dimensions, where &, b, and ¢ are the vertices of a
triangle. Tt is this more general setting that gives rise to the name “friangle
mequality.” [See Section 15.] ‘ :

Field axioms Order axioms Absolute value

J— Review of Key Terms in Section 11

ANSWERS TO PRACTICE PROBLEMS

1.2 (a) Mf; (b) Theorem 11.1(b); (c) M3; (d) M2; {e) M5; (f) M2 and M4.

113 (a) O4; (b) Theorem 11.1(c); (c) M3; (d) M2; (&) M3;
(£) Theorem 11.1(c); (g) Theorem 11.1(e).

11.4 From the usual rales of arithmetic we have

a ¢ ad+bc a
—+—= and —- .
b d bd b d bd

[ ac

Since sums and products of integers are always integers,

ad +be ac

and -
bd bd
are both rational,
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2 3. .
-3
116 (a) 3Cv~f§~=)C >0, s0 x> > .
1 x x x
() X o 0, 50— < —
x+2 x+1  x?43x+2 x+2  x+1.

Exercises marked with * are used in later sections and exercises mavked with Y& have
hints or solutions in the back of the book.

11.1  Mark edch staiement True or False. Justify each answer.

{a) Axioms Al to A5, M1 to M5, and DL describe an algebraic system
known as a field. -
(b) The property that x +y = y +x for all x, y € R is called an
associative law. _
(¢) Ifx,y,z € Rand x <y, then xz <yz.

11.2  Mark each statement True or Fa_ise. Justify each answer.
(a) Axioms Al to A5, Ml to M5, DL; and 01 to 04 describe an alge-
braic system known as an ordered field.
(by Ifx,y e Randx <y + ¢ for évery £ > 0, thenx < y.
fc) Ifx,y e B, then|x +y| = [x|+]|¥].
11.3  Letx, y, and z be real numbers. Prove the following.
{a) —(-x)=x. ¥
(b) (—x)-y=~Cxy)and (—x)-{=y) = xy.
(¢) Ifx#0,then{l/x)#0and 1/(1/x)=x.
() fx-z=y-zand z+ 0, thenx = y.
(¢) Ifx#0,thenx’> 0. ¥
 0<l. %
{(g) Ifx> 1, then x> x.
(h) If0<x<l,thenx’ <1.
(i) Ifx>0,then1/x>0. Ifx<0,then 1/x <0.
(i) f0<x<y then 0 <1/y <1/x
(k) Hxy> 0, theneither (i)x>0andy>0,or (ii)x <O and y < 0.
(1) Foreachn e N,if 0 <x <y, thenx"< "
m) If0 <x < y, then 0<Vx <4fy. %

*11.4 Prove: If x> 0 and x < & for eili g3 0; then x=0.
11.5  Prove Theorem 11.9(c): |xy| = |x| | ¥]. &

*11.6 (a) Prove: [|x|-|y]| < |x=yl.
{b) Prove: If |x ~y| <c, then|x| < |y| +o.
(¢} Prove: If|x-y|<¢ forall £ >0, thenx=y.
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*11.7  Suppose that X015 ¥z, ..., X, are real numbers. Prove that

11.8

11.9

]xi ‘X +JC”I < fxlf +fx21+--° +]x,,l. i

Let? = {x € R:x>0). Show that P satisfies the following:
(a) Ifx,y e P, thenx +yelp.
) fxyep, thenx -y e P.

(¢) Foreachx e R, exactly one of the following three statements is true:
xeP, x=0, -x e P,

Let # be a field and suppose that P is a subset of F that satisfies the three
properties in Exercise 11.8. Define ¥<yiffy—x € P. Prove that “<”
satisfies axioms 01, 02, and 03. Thus in defining an ordered field,
either we can begin with the properties of “<” as in the text, or we can
begin by identifying a certain subset as “positive.”

11.10 Prove that in any ordered field F,d+1>0forallg e F. Conclude from

11.11

1112

11.13

this that if the equation ¥* + 1 = has a solution in a field, then that field
cammot be ordered. (Thus it is not possible to define an order relation on
the set of all complex nurbers that will make it an ordered field.)

Let F be the. field of rational tunctions described in Example 11.5. v

{(a) Show that the ordering given there satisfies the order axioms 01, 02,
and O3, '

(b) Write the following polynomials in order of increasing size:

x%, -x°, 5, x+2, 3-x

(c) Write the following functions in order of increasing size:

x*+2 ¥2 -2 x+1 x+2

x=1" x+1° =27 P

Let 5= {a,b} and define two operations @ and ® on § by the following
charts:

Dla b ®la b
ala b ala a
bbb a bla b

(@) Verify that § together with @ and ® satisty the axioms of a field,
(b) Identify the elements of § that are “0,” “1,” and «-1.”

To actually construct the rationals @ from the integers Z, let § =
{(@.b)ya,becZandb = 0}. Define an equivalence relation “.” on § by
{(@,8) ~ (c,d) iff ad = bc. We then define the set ( of rational mumbers
to be the set of equivalence classes corresponding to ~,

The equivalence
class determined by the ordered pair (a,5) we denote by [a/B]. Then
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la/b] is what we usually think of as the fraction a/b. Fora, b, c,d e 7
with b # 0 and d # 0, we define addition and multiplication in Q by

[a/b]+[c/d] = [(ad +be)/bd],
[a/2]-[c/d] = [(ac)/ (b)),

We say that [a/b] is positive if ab e N. Since a, b € Z with b # 0, this is
equivalent to requiring ab > 0. The set of positive rationals is denoted by
@', and we define an order “<” on (¢ by

x<y iff y-xeQ’.

(a) Verify that ~ is an equivalence relation on S,

(b) Show that addition and multiplication are well-defined. That is,
suppose [a/b] = [p/q) and [¢/d] = [r/s]. Show that [(ad + bc)/bd

=[(ps +gr)/qs] and [ac/bd}= [pr/qs].

(¢) Forany b € Z\ {0}, show that {0/6] = [0/1] and [5/B] =[1/1].

(d) For any a, b € Z with b # 0, show that [a/b] + [0/1] = [a/b] and
[a/b)-[1/1] = [a/b]. Thus [0/1] corresponds to zero and [1/1] cor-
responds to 1.

(e} Foranya, b € Z with b # O show that [a/b] + [(-a)/b] = [0/1] and
[a/b)[b/a] = [1/1] |

() Verify that the set (¥ with addition, multiplication, and order as given
above satisfies the axioms of an ordered field.

Construct the integers 7 from the natural numbers N in a method similar
to that used in Exercise 11.13 by defining an ‘appropriate equivalence
relation on M = N,

THE COMPLETENESS AXIOM

In the preceding section we presented the field and order axioms of the real
numbers. Although these axioms are certainly basic to the real numbers, by

- themselves they do not characterize R. That is, we have seen that there are

other mathematical systems that also satisfy these 15 axioms. In particular,
the set () of rational numbers is an ordered field. The one additional axiom
that distinguishes R from Q (and from other ordered fields) is called the
completeness axiom. Before presenting this axiom, let us look briefly at why
it is needed—at why the rational numbers by themselves are madequate for

analysis.




