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Abstract of the Dissertation

The Classification of topological four manifolds
with infinite cyclic fundamental group
by
Zhenghan Wang
Doctor of Philosophy in Mathematics
University of California, San Diego, 1993
Professor Michael H. Freedman, Chair

In this thesis, topological four manifolds with 7; = Z are classified. The
method is first used to give a new proof of the classification theorem of M. Freedman
for the 7y = 0 case.

In chapter 2 and 3, we supply details for some background materials.
In chapter 4, the complete classification is obtained. The method we used is a
mixture of the algebraic approach of M. Kreck and the geometric approach of
Freedman and Quinn. First the stable classification is obtained using the work of
M. Kreck. Then some properties of 4-manifolds with 7; = Z are derived.Finally,
the classification is completed by an explicit construction for existence, and by a
sum decomposition theorem for uniqueness. Part of the theorem in the orientable
case has been obtained by Freedman-Quinn and M. Kreck already. Our method
is different and the result is complete. The classification theorem in nonorientable
case is new. In chapter 5, we study the classification of self homeomorphisms of a
4-manifold with m; = Z up to pseudoisotopy, and some immediate corollaries are
drawn together with a discussion for an open problem in chapter 6.

The classification theorem is an analogue of the 1-connected case: the
homeomorphism type of a 4-manifold with 7; = Z is determined by w;, the inter-
section from on m; and the Kirby-Siebenmann invariant. Our method works for the

general free fundamental group case if the disk theorem is true.

X
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Chapter 1

Introduction

Our knowledge of topological four manifolds has been changed dramatically
since the breakthrough of Michael H. Freedman in 1981. He proved the Poincare
conjecture for topological four manifolds by and obtained a complete classification
of the simply connected four manifolds (a technical assumption in the original clas-
sification was later removed by F. Quinn). His classification follows the surgery
program. It says that the homeomorphism type of a simply connected closed 4-
manifolds is determined by the intersection form and the Kirby-Siebenmann invari-
ant. As a corollary, the empty intersection form is the 4-sphere. Later, a new proof
appeared in the book of Freedman-Quinn, Topology of 4-manifolds. The new proof
has the advantage that it obtained the classification directly without solving the
difficult problem of determining the homotopy type beforehand. After the work
of Freedman, Prof. M. Kreck developed a theory which generalizes the classical
surgery. They classify four manifolds by first obtaining the stable classification, i.e.
determining the homeomorphism type up to connected sum with copies of 52 x 2,
and then obtain the classification by cancellation using Freedman'’s disk embedding

theorem.
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In this way, Prof. M. Kreck and I. Hambleton obtained the complete clas-
sification for orientable four manifolds with finite cyclic fundamental group. The
nonorientable case is only obtained for fundamental group Z; by M.Kreck, 1. Ham-
bleton and P. Teichner recently. The algebra involved in the classification is very
complicated. It seems very difficult to achieve some other complete classification.
In this direction, for finite fundamental groups, a lot of partial results are obtained
by P. Teichner in his thesis. For the fundamental group Z case, the classification
for the orientable case is stated in chapter 10 of the book of Freedman-Quinn with-
out the details of proof. Actually the uniqueness part of the classification is not
completely correct. It is the problem to complete the classification that starts this
work. Part of the classification theorem for the orientable case was also obtained
by M. Kreck using a totally different method. Our method is different from both
of them. For the nonorientable case, we combine the stable classification theory of
M.Kreck with the geometric method of Freedman-Quinn. It is interesting to see
that the fundamental group Z case is really much easier than the finite fundamental
group case in general.

The obvious invariants for the classification is my, w;, 72, the intersection
form on m; and the Kirby-Siebenmann invariant. The classification is modeled
on the classification theorem of Freedman for the simply connected case. The
classification theorem says these invariants determine the the homeomorphism type
of the four manifolds with fundamental group Z.

Suppose M is a closed 4-manifold with =; = J (to distinguish the infinite
cyclic group from the coefficient ring Z, we will denote the infinite cyclic group by
J), then Hy(M; Z[J]) = .M is a free Z[J]-module. When M is orientable, then

the intersection form is a nonsingular hermitian form with respect to the group ring
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involution on this free module. We have the following:

Theorem 1 (1). Existence : Suppose (H,)) is a nonsingular hermitian form
on a finitely generated free Z[J]-module, k € Z; and if A is even, then we assume
k = (signaturel)/8,mod 2, then there ezists an oriented closed §-manifold with
m = J, intersection form A and Kirby-Siebenmann invariant k.

(2). Uniqueness: Suppose M, N are closed oriented {-manifolds with
m = J, h: Hy(M; Z[J]) — Hy(N; Z[J]) is a Z[J]-isomorphism and ks(M)=ks(N).
Then there exzists a homeomorphism f: M — N which induces the given identifi-
cation of fundamental groups, preserving orientation and such that f, = h. fis not

unique up to pseudoisolopy.

The proof of the existence (1} is almost explicit. Given the data, we
construct a 4-manifold by attaching 2-handles on a link in the solid torus. The
uniqueness is proved using the celebrated disk theorem of Freedman.

The classification theorem of the nonorientable case is analogous. In this
case, hermitian form is replaced by w;-hermitian form, where w; is the first Stiefel-
Whitney class. But the proof is quite different. The existence is not explicit.
The manifold is constructed as follows: first for each form, we realize it up to
stabilization of hyperbolic forms, then realize the original form by cancellation of
hyperbolic forms. Uniqueness is proved using a sum decomposition theorem which
is a generalization of connected sum.

Given an isometry h as in (2), we are interested in classifying the home-
omorphisms that induce the same h up to pseudoisotopy. It has been shown that
if M is even, then it is unique. But if it is odd, then there are at most two classes,

but whether it is one or two is not clear right now.
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We also use homotopy theoretic method to classify homeomorphisms be-

cause of the following:

Theorem 2 Suppose M, N are oriented closed {-manifolds withm, = Z, f, M —

N are two homeomorphisms, then they are homotopic iff they are pseudoisotopic.

The theorem is proved by surgery. By computation, it is shown the ob-
struction from homotopy to pseudoisotopy is only a Z; obstruction. Then a self
homotopy equivalence of IV x I is constructed to carry this obstruction. Therefore,
the obstruction can always be killed by choosing an appropriate homotopy.

As an application of the classifications, it is clear that the homotopy type
of a 4-manifold with m; = Z is determined by the intersection form on 7;. An-
other corollary is that some manifolds such as 5! x $3452 x S? have exotic smooth

structures.
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Chapter 2

Background Material

2.1 Notational Conventions

Most of the notation and terminology is standard. We follow closely [FQ] for
these matters whenever possible. The following ever present hypothesis is always
assumed, unless otherwise clearly stated. Manifold always means topological mani-
fold. We work in the topological category and all basic tools such as transversality,
bundle etc are available by [FQ]. All surfaces are always assumed to be oriented.
Surfaces are not neccessarily connected, but all components are compact (S? or D?,
etc.). By component of an immersed surface we mean component in the manifold
sense, and so components may intersect. All intersection of arcs, surfaces, 3-disks
in the ambient manifold are assumed to be generically positioned subject to the
constraints imposed by the hypothesis. Surfaces and 3-disks are often denoted by
A, B, C, D ... and the union of a collection such as C; is also denoted by C if no
confusion results. We are constantly moving sets like A, B, C.. etc without renam-
ing them, to keep the notations simple. A simple closed curve in a space is often
thought as representing an element in the fundamental group when the base point
are appropriately chosen. The choice of a parametrization is either unimportant

or clear from the context. All moves are performed in the interior of an ambient
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manifold.

2.2 Basic invariants

In this section, some basic invariants are discussed. The discussion is rather

incomplete. For a complete treatment, see[FQ], [Ki].

2.2.1 Symmetric bilinear forms over the integers

Let M be an oriented manifold of dimension 4. Then the intersection numbers
define a symmetric nonsingular bilinear form, denoted by S, on H;(M; Z). Recall
that S is defined as follows: for any two classes z,y € Hy(M; Z), represent them by
embeded surfaces denoted by x, y, too. Then S(z,y) is the number of intersections
between x, and y counted according to sign.

Given a symmetric nonsingular bilinear form S on a free Z-module X of
finite dimension, there are three basic invariants: rank, signature and type. The
rank is the dimension of the module X. The signature is the number of positive
entries minus the number of negative entries if the form is diagonalized over the
rationals. The type is even if S(z,z) = 0 mod 2 for all z € X, and odd otherwise.
The indefinite odd form is always a direct sum ®p(1) @ q(—1) for some intergers
p,q, and the signature of an even form is always divisible by 8[Ki].

The type, signature of a closed 4-manifold is the type, signature of its
integral intersection form.

For example by convention for $4, the intersection form is , it is even.
For CP?, the intersection form is (+1), which is odd and of signature 1. For CP?,
the intersection form is (—1), which is odd and of signature -1. For 52 x §2, the

intersection form is the standard hyperbolic form ( (l) (l) ) which is even and of
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signature 0. There is a manifold with intersection form Eg by Freedman which will

be denoted by FEjg, too.

2.2.2 The Kirby-Siebenmann invariant

Let M be a compact connected topological 4-manifold. Then there is a unique
obstruction ks(M) € H4(M;Z,;) to put a smooth structure on M§k(S5? x S?) for
some k > 0. It is an unoriented bordism invariant i.e if M U N = W, then
ks(M)=ks(N). It is additive under connected sum.

For example, there is the famous Chern manifold *C P? by Freedman

which is homotopic to CP? but has ks=1.

2.2.3 Rochlin’s theorem

One early success in smooth 4-manifold theory is the Rochlin’s theorem. It
relates the Kirby-Siebenmann invariant with the signature of a spin 4-manifold.
For a closed topological spin 4-manifold M, it says -"'L’;(Ml = ksM mod 2. For a
smooth closed spin 4-manifold M, ksM=0, therefore, the signature is divisible by
16. Recall the divisibility by 8 for the signature of even forms. In the following, ks

always denotes the Kirby-Siebenmann invariant.

2.2.4 Intersection and self intersection numbers

For 1-connected 4-manifolds, the integral intersection form classifies the man-
ifolds up to ks. But for nonsimply connected manifold, this is far from enough.
The obvious invarians are the fundamental group, the second homotopy group and
the intersection form on 73. The group 73 will be treated as a Z[m;]-module or an
abelian group according to the context.

Given a closed 4-manifold M, a base point * € M. Let M be the universal
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covering and % be a point fixed over * in M. Denote Z[r] by A. The following
identification is well known: m(M) = my(M) = Hy(M;Z) = Hy(M;A) as a A-
module. The module H,(M,Z) acquires the right A-module structure via the

covering transformations.

Definition 1 Let S : Hy(M,Z)x Hy(M,Z) — Z be the usual integral intersection
form of homology classes. It is easy to check that S is m-equivariant i.e for any
2,y € Hy(M;Z) and g € m, S(zg,y9) = S(z,y). Now define A : m(M) x
m2(M) —> A as follows: for any z,y € Ta(M), Mz,¥) = Seersrr S(z:39~")g. By

compactness, this is a finite sum.

Let~be the involution on A given by 3°, Agg = X, wi1(g)A,97!, wherew, : m — Z;

is the first Stiefel-Whitney class. The following properties can be deduced directly:

Proposition 1 (1) A is Z-linear
(2) for any T € A, Az,y7) = Mz,y)7, t.e. foranyz € oM, y —
Mz,y) is a A-homomorphism from m.M — A.

(3) My, z) = Az, y).

From (1) to (3), it follows that A is wy-hermitian. The form A is called
nonsingular if the homomorphism 7gM — Homp(waM, A) is an isomorphism.

Let w, be the second Stiefel-Whitney class of the stable normal bundle.
Then w, defines a map Hy(M; Z,) —+ Z; by the mod 2 intersection numbers, i.e.
for any £ € Hy(M;2;), wa(z) = z - = mod 2, where = - mod 2 is the mod 2
intersection number. By following 7aM — Hy(M; Z) — Hy(M; Z2) — Z3, wo
defines a map moM — Z,, i.e given a class z € m2(M), wy(z) is the value of w; on
the image of x first mapped to Hz(M, Z) by the Hurewicz’s map, then to Hz(M, Z;)

by reduction modulo 2.
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If z € Hy(M, Z), then wa(z) = S(z,z) mod 2, where S is the intersection
form on H;(M, Z). For an oriented closed 4-manifold, it is spin iff w; = 0. If M
is simply connected, then it is equivalent to the intersection form being even. But
if M is not simply connected, this is not enough, even wy(z) = 0 mod 2 for any
integral class z € Hy(M; Z). For example, let X = S? x §?/Z,, where Z; acts on
(x, y) by sending it to (-x, -y). It is easy to check H2(X; Z)/torsion = 0. But the
diagonal RP? has mod 2 intersection number 1. So wy(RP?) = RP*-RP? =1
which implies wg # 0. Therefore X is not spin. In the following, we will also use

the following terminology:

Definition 2 Let M be a {-manifold, M is weakly even if wy : m1aM — Z, is

trivial. Otherwise, M is weakly odd.

Recall that a manifold being even or odd is determined by the intersection form on
H3(M; Z). In particular, M is even implies that M is weakly even , but the above
example shows that the converse is not true.

Now we define the self intersection number for spherical classes. Given
x € maM, represent x by an immersed 2-sphere, denoted also by x. Fix a path
from the base point * € M to a base point on the 2-sphere x. For each transverse
self intersection point, drawing an arc on x from the base point of x to the double
point, jumping to the other sheet, drawing another arc from the double point to
the base point of x and coming back to the base point * € M from the base point
of x along the chosen path. All the choices of paths above avoid the other double
points. This defines a closed loop in M and therefore, an element of Z[r;M]. But

there is no natural choice of the two sheets.

Definition 3 By choosing one of these loops for each double point, sum over all

intersection points and divided out by the ideal I = {a — a}. We define the self
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10

intersection number p : mM — A/I. It is only well defined on ker(w,) or into

AZ+]1.

Proposition 2 The following properties can be checked by drawing pictures:
(4) Mz, z) = u(z) + u(z) + xn(z), where xn(z) is the Euler number of z.
(5) w(z +y) = p(z) + p(y) + A=z, y) mod I
(6) if g € my, then p(zg) = gu(z)g.

From Z[m,] to Z, there are two natural homomorphisms ¢ and ¢;. The map
€: Z[m] — Z is defined by (3, A;g) = L A, and ¢ is defined by €;,(T, A,) = Ay,
i.e. the coefficient at the identity. For the selfintersection nunmber u, there is
an associated reduced self intersection nubmber i defined by gt = p — g. ie.
it € Z[m]/{Z + a — a}. The difference between x and f is that j is an homotopy
invariant as A, but g is not[FQ}. It is not difficult to give an immersed 2-sphere
with 4 = 0 which can not be regular homotopic to an embedding. For example,
the core disk of the 2-handle in the Chern manifold *C P2.

There is a relation between A on 7, M and S on H;(M, Z). On the image
of the Hurewicz map in Hy(M, Z), S is the composition of A and €. But A can not
determine S since not every class of H; is spherical, for example T, and ) is not

determined by S, for example X = §% x §%/Z; above.

2.3 Classical surgery

One central theorem in manifold theory is the surgery sequence. In this section,
we collect some facts that will be used later for convenience. In dimension 4, the new
feature is that the surgery sequence is exact with the condition that the fundamental

group is good[FQ)].
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Let (X, N) be a Poincare pair of formal dimension 4, with N a 3-manifold,

then
Li(mX,w) — Stop(X,N) — NMrop(X,N) — Li(m1 X,w:)

is exact if ;X is good. This sequence extends to the left for X x I if X is a manifold
by:
— Srop(X x I,d(X x I)) — NMrop(X x 1,8) —

= L (mX,w) — Stop(X,N) — .

The sets for X x I have natural group structures obtained by glueing in the I
coordinate. With respect to this the left part of the sequence is exact as a sequence
of groups. Recall that the Wall group L4(0) for the trivial group is Z with generator

the surgery problem Eg — S*.
Proposition 3 (1): For the orientable case,
Li(Z™+) = Li(Z"",4) & Li-a(2™7), 4)
In particular, L4y(0) = Ly(Z,+). For the nonorientable case, it is
Li(Z,-) = 23, Ls(2,-) = 0, Le(Z,-) = 22, L(Z,-) = Z,

of periodic 4. The generator of Ly(Z,—) is given by Ez @z Z|Z] i.e. L4(0) —
Ly(Z,-) is onto.
(2): If NMrop(X,N) is nonempty, then

NMrop(X,N) = H‘(X,N; Z)® HZ(X,N; Z3).

(3): Let E be a D’ bundle over S*. If N — E is a homotopy equivalence
which is a homeomrophism on the boundary, then it is homotopic rel boundary to

a homeomorphism.
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Proof: (1): The formula was proved in [Sh1]. Geometrically, it can be described
as follows: Let X*-! be a Poincare space of formal dimension k-1 with 7, X = Zn-!
with a bundle v,. Let v; be the trivial bundle over S!. Suppose f : M — X x S!
is a degree 1 map and F is a framing i.e. a trivialization of TM @ f*(15 @ 11) such
that (M, f, v @1, F') defines an element in L,(Z™). Make f transverse to X and set
N = f~1(X). Without loss of generality, assume f | N : N —s X is of degree 1 and
induces an isomorphism on ;. It induces a surgery problem (N, f | N,vo, F | N)
which defines an element in Li_;(Z"~"). Since every element in L(Z") can be
represented as above, this defines the projection of Ly(Z") onto Li_,(Z""1). If
the obstruction for the surgery problem (N, f | N,vo, F | N) vanishes, we may
assume f | N : N — X is a homotopy equivalence. So if the surgery problem
(M, [, vo®rw, F) is treated relative to N, we get an element in L;(Z"~!). Conversely,
every element of Lx(Z"~!) may be so represented. This describes the injection of
Li(Z"7") into Li(Z™). For any surgery problem (N, g, vo, o), by a product with
5! we have a new problem (N x S, g x id,vo & vy, Fo @ Fy) where F, is the trivial
framing of TS? @ v;. This defines an element in Ly(Z") and yields the splitting
homomorphism.
For the nonorientable case see [Wa.

(2): By [Su],
NMTOP(Xa N) = [X’ NtG/TOP7 *];

The 5-skeleton of G/TOP is K(Z,4) x K(Z,,2), hence it follows.
(3): We need to compute Srop(S? x D?;8) or Stop(S'xD?;8). It can
be shown in this case that NMrop — L, is an isomorphism. Therefore, Stop

contains only one point. For a general theorem, see [FQ]. O
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Chapter 3

Codimension two disk theorem

In this chapter, the main technical theorems that will be used to classify 4-
manifolds are proved. Both disk theorems are extracted from Chapter 10 of [FQ).

For the 5-dimensional case, a correction was neccesary [St1].

3.1 The Whitney move
3.1.1 Framing

Let a : §' — M?3 be an embedding, and vs1_,ps be the 2-dimensional normal
bundle of S* in' M3, Assume that it is trivial. Then a framing of a is a homotopy
class of trivialization of v. Fixing a framing of ¢, then any other framing differs
by a homotopy class of maps d : S — SO(2). Therefore, with respect to a fixed
framing, any other framing is determined by an integer.

Let a : (D?,0D%) — (M*,0M) be a proper immersion( a(intD?) C
intM and a |sp:: @D — GW is an embedding), then o determines naturally a
framing of a : 3D* — M as follows: vps_,pn is trivial because it is a bundle over
D?. Note that any trivialization 7 : ¥ =& D? x R? induces uniquely a trivialization
v |ap:= 8D? x R? on the boundary. In fact, the difference of any two induced

framings correspondes to a map d : dD* — SO(2). Since d can be extended to
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a map on D?, the difference map d is homotopic to 0. Hence the two framings
coincide. Then there is a natural framing of a |sp: in dM*( called the framing
determined by o ). The framing determined by « is characterized by the following
property: any two maps o, a” homotopic to a which differ on 8D? by pushing off
along this framing have integral intersection number 0.

The framing is closely related to the intersection and self intersection
numbers. First we have the following formula: let x be an immersed 2 sphere in a

4-manifold whose normal bundle has Euler number x, then in A
Mz, 2') = pz) + p(z') + x.

where z’ is a section of the normal bundle. Let x be an immersed disk with a
fixed framing on the boundary. Let x be the rotation number of this framing with
respect to the normal bundle of the immersion restricted to the boundary( note

this is not the framing determined by the map), then in A

Mz, ') = p(z) + p(z') + x,

where z’ is a parallel to the fixed framing on the boundary. Taking the coefficients

at the identity, we have
AL =2 + x.

By this formula, take the framing determined by the immersion as the fixed framing
of x, by definition Ay(z,z') = 0. Therefore, the rotation number with respect to

the normal bundle of the immersion is ~2u,(z) as integers.

Example 1 The immersion of a disk with a single double point determines a fram-

ing of -2.
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Example 2 A k-framing attaching of 2-handles on a knot in S° determines its

framing of the core disk as k with respect to the normal bundle.

Example 3 Consider the Chern manifold which is built as follows: take a right
handed trefoil in 52, attach a 2-handle with framing +1, then the boundary is a
homology 3-sphere. Cap off the boundary homology $-sphere by a contractible §-
manifold, and obtain the Chern manifold. Then there is an immersed disk with one

double point which has an embedded Whitney disk with wrong framing.

In the next section, we will see there is always a framing problem for the

Whiney move, an embedding Whitney disk alone is not enough.

3.1.2 The Whitney move

The Whitney trick is a tool to introduce algebra into topology. In dimension
5 or higher, it works very well by general position. But in dimesion 4, general
position is not enough and it is very delicate.

A convenient model for this move is as follows: in the 2-disk D?, consider
two proper embedded arcs e and 8 with only two intersection points, together with
a spanning disk W in int D? with boundary on the arcs. In the 4-ball D* = D?*xIx1,
where I=[-1, +1],let A=ax I x0, B=p8x0 x I, then A and B are unknotted
2-disks in D* which intersects transversly in two points of opposite sign. They can
be isotoped to be disjoint, moving only points close to W = W x 0 x 0 in intD4,
by the Whitney move which uses W as a guideway.

Suppose in an oriented 4-manifold M one has surfaces A and B which are
connected and embedded ( for example, one has an embedded portion of immersed
surfaces having two transverse intersection points p and q of opposite sign ). Let

a and # be paths in A and B, respectively, joining p and q, and suppose W is an
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immersed disk in M whose boundary is attached to a U . Assuming everything is
generically positioned, then W may have self-intersection in its interior. We wish
to use W as a Whitney disk to remove p and q. But now we have some problems.
They are (i) the framing of W may be wrong. (ii) intW may have self-intersections.
(iii) intW may intersect AU B ( also intW may have unwanted intersection with
some other surface C ). To resolve (ii), push W off itself through A or B at the
expense of creating two additional intersection points of intA (or B ) with intW for
each selfintersection of W. To resolve (iii), we again push A off itself through A or
B at the expense of selfintersection in A or between A and B. To see the problem of
(i) needs some work. The Whitney disk determines a framing ( called the Whitney
framing ) which can be described as follows: since W is immersed, there is an
immersion 7 : D¥ — M of our model into a neighbourhood of W, carrying W
onto W ( we use " over the model disks ). Then W has the correct framing ( as
a Whitney disk ) if in addition we can make 7 carrying A into A and B into B.
Either one or the other is easily arranged, but there is a potential obstruction to
achieve both simultaneously. For example if we look at the circles 7 ~1(A)N@D* and
x~Y(B)NADA, their union is a link, but may look as a twisted Hopf link in dD* even
though both of these circles are unknotted and their algebraic intersection number
is 0. To remedy this framing problem, twist W at an arbitrary point of W —{p, ¢}.
Each twist has the effect of introducing a new intersection point between intW and
A or B. Finally notice that to resolve (ii) (iii}, we use regular homotopy, so it does
not destroy the correct framing if we have.

Another nice description of the Whitney move is as follows: if the Whitney
framing is correct, then we get an unlink in @D* which is a slice link. It bounds

two disjoint slice disks in D%. Remove everything of A and B inside D4, replace
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them by glueing in the slice disks. Since D* is contractible, we may recover all the
homotopy data.

Suppose there are additional disks Cy,Ca, -, Cy present of the form C; =
pi X I x I, where p; € intW in the standard model. Then the boundary circles
of A,B, C comprise a link which is the Borromean ring for k=1. Initially the C/s
are disjoint from A and B, but after the Whitney move there will be intersections.
Using finger moves, C can be kept free of either A or B, but not both.

There is an analogous move for accessory disks (disks passing through one
double point). If the regular neighbourhood of the disk intersects the boundary of
4-ball is a slice knot, then we say the framing is correct. Otherwise it is wrong.
As observed by Freedman,besides the unknot, the Stevedore’s knot has the coorect

framing, too.

3.2 The disk theorem for dimension 4

In[F1], M. Freedman proved the best possible disk theorem so far. There
are two restrictions in the theorem. First the fundamental group must be good;
secondly, there is the "even dual” condition. The following generalized disk theorem
of [FQ] has dealt with this condition. More or less, it is reflected in the Kirby-
Siebenmann invariant of the target manifold.

In the following, in order to distinguish from the transverse sphere, we
will use the terminology dual 2-sphere . They are the same as transverse spheres
except they might not be framed. Recall in the definition of transverse spheres,

they are framed.

Theorem 3 Let h : {A;} = A — M* be a proper immersion of 2-disks with

algebraic intersection and self intersection numbers 0 € Z[m]. Moreover, assume
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there is a family of dual 2-spheres {e;} of A. If ;| M is good and has no 2-torsion,
then there is an obstruction km(h) € Z, which vanishes iff h is regularly homotopic
reld to an imbedding. Moreover, if km(h)=1, then h is regularly homotopic reld to
an embedding in *M.

Finally, if all the dual 2-spheres can be framed, then km(h)=0.

Remarkl: for the *-operation, see chapter 4.3.

Remark2: if all the dual 2-spheres can be framed, then this is theorem
5.1B of [FQ). If km(h)=1, then w; : m2(M) — Z; can not be 0. Since 71(M) is
good, hence *M always exists.

To motivate our definition of km, we first consider the case of a single
disk. Suppose A is a single disk with selfintersection number 0 and a dual 2-sphere,
then choose immersed Whitney disks { B;} of all pairs of self intersection points for
a fixed pairing of the selfintersection points. Define km(B;) = 0 if the Whitney
framing of B; is correct, otherwise it is 1. Then define km(A) = ¥ km(B;) mod 2.
As an exercise, we can show that if km(A)=0, then A is regularly homotopic to an

embedding rel boundary.

Definition 4 Choose a family of dual 2-spheres for A;, denoted by a = {a},
choose a complete set of Whitney disks for all intersections and self intersections

among A, denoted by W = {W;;}. Define
km(Wis) = wa(eawa(es) 3 | Wis 1 A(AL) | wa(on),
%

where W;; is a Whitney disk with boundary arcs on A;, A;j, k is the indices of A..
Then let km(h) = ¥;; km(W;;) mod 2.

km(h) is well-defined [FQ]. But if there is 2-torsion in 7y M, then there is

one more case to check [St3]. It is clear that if h is homotopic reld to an embedding
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then km(h)=0. Therefore, the first part of the theorem is equivalent to if km(h)=0
then h is homotopic to an embedding.

Proof: If km(h)=0, by piping one Whitney arc to the other, we may assume
that km(h)=0 for each Whitney disk. By summing with the dual 2-sphere, {W;;}
is disjoint from A(D.). If a disk W;; is changed by an even number of sums with
spheres with w; # 0, then the normal bundle of the results differs on the boundary
by an even number of twists from the Whitney framing. Interior twists in 1.3 of
[FQ] can be used to correct this. If there are an odd number of such spheres then by
km(W;;) = 0 and the definition of km(W;;) one of the boundary arcs must be on a
disk with framed transverse sphere, say A(D;). Since A(D;) has framed transverse
sphere this intersection can be removed without disturbing the framing . Therefore,
there are Whitney disks with interior disjoint from A(D.).

Now we can prove the theorem by theorem 5.1A of [FQ]. For each such
Whitney disk, consider the linking torus of an intersection point as a transverse
capped surface. Use {a;} to get caps for these disjoint from A, and contract to
get algebraic transverse sphere for the Whitney disks, with algebraically trivial
intersection and selfintersection. Since {a;} are added to caps in a capped surface
which is then contracted, so each a; enters algebraically 0 times. This implies twists
in the normal bundle cancell out.

Denote by My the complement of an open regular neighbourhood of A
in M. Then the Whitney disks and the algebraically transverse spheres give an
immersion in M, satisfying the hypothesis of theorem 5.1A. The conclusion of
theorem 5.1A gives the required Whitney disks. Use these for Whiney moves to
produce a regular homotopy of A to an embedding.

Now consider the case km(h)=1. Let f : CP? — *C P? be the canonical
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homotopy equivalence, then fo : CP§ — *CP? restricted to the core disks can
not be homotopic to an embedding. Therefore, km(fo) = 1. Consider AU fo :
{Ai} U core disk —— Mf(*CP?). If km(h)=1, then km(h U fo) = 0. This gives
an embedding of A in the complement of CP¢ C M{(*C P?), which is (*M)o by

definition. Therefore, h is homotopic rel boundary to an embedding in *M. O

3.3 The disk theorem for dimention 5

3.3.1 Intersections of 3-disks in 5-manifold

Let A : UD} — W* be a proper map of a disjoint union of 3-disks into a 5-
manifold W in general position, and transverse to each other. Then the intersections
are circles and arcs of double points. They are disjoint from boundaries of the disks
since A is an embedding there. A is immersed except at isolated cusps occuring
at the ends of arcs of double points. The preimage of the double locus in UD; is
an oriented link. The orientation indicates how two circles or arcs of one circle
are identified in W5. Since the orietation plays no role in the following, we will
suppress it. For the double circle, the preimage is a 2-fold covering, so either two
circles trivially cover it (called Type 1I circle ) or a single circle going twice (called
type I circle ). For the double arc, a single circle 2-fold branch-covered the arc
branched over the 2 ends. Therefore, the intersections are classified into 3 types
according to the preimage.

For each double circle or arc or a double point on the double locus, there
is an associate group element in m, W defined as follows: fixed a base point in each
3-disk D; and choose 2 points in the preimage of a point on the double locus, say
these two points are in D; and Dy, join the base point of D; to one point in the

preimage , jumping to the other one in Dy and going back by a path connecting
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the the base point of Di. Then the image of this arc under A is a closed loop in W3
which defines an element in 7;W. This element does not depends on the chosen
point of the double locus, it only depends on the double circle or arc. If we follow
the same path from Di to D; instead of from D; to Dy, then the element changes
to its inverse. Hence it is well defined up to conjugate and inverse. For the double
arc, the group element is the identity. For Type I circle, since the selfintersection
circle itself is a representative and the double cover is nullhomotopic, it follows
that the group element is always a 2-torsion. For Type II circles, we can associate
the element to the preimage circle by remembering which one is the first to define
the group element. Then if one component has group element g, then the other
component has g~?.

As usual, we want to remove these intersections as much as possible. For
the double arc, it can always be changed into Type I or II by pulling the end
together,see [FQ) for details. Another operation is a version of the Whitney move.
It will be used to change one type of circle to the other. We will call it reconnection.
This operation is introduced in [FQ), but we have to be more precise. Suppose x
and y are points of intersection between A(D;) and A(D;) which has dual 2-spheres
such that (1) the associate group element of x, y agrees to get a Whitney disk. (2)
choose band to tell which direction to thicken and the two bands glued together
give S! x R instead of the Mobius band. (3) signs of intersection is compatible if
they are on one component. (4) the framing modulo 2 is correct. Then the double
locus can be reconnected at the points x, y by a 4-dim Whitney move cross R. If
the framing is not correct, then it can be fixed by introducing twists in the bands.
Note one full twist in one band is not exactly the same as half twists in both bands.

Another fact we need is that by introducing double arcs, we can get any
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number of double circles with identity associate group element.

3.3.2 The Freedman-Quinn’s move

This is an ambient surgery to remove a double circle by cobordism. Let
h: A— Y as above and have only type Il intersections. Suppose a circle of
intersection has preimage two circles r C D; and r' C Dj, and r is unkotted and
unlink. Let C C D; be an embeded disk with boundary r and interior disjoint from
double points of A. This data will be used to construct a 4-dim handlebody with
D} at one end, and a map into Y extending A. In some cases, the boundary is a
3-disk and the double circle is removed by the surgery.

Starting with D; x I, and add a 2-handle on v x {1} C D; x {1}. Map
this to the normal disk bundle of the image of D;, restricted to the 2-disk C. This
singles out a specific framing of ' x {1} on which to attach the handle. To undo
the first handle attachment, begin with a cocore of the first handle ( a fibre of
the disk bundle over C ). By perturbing and summing with a dual 2-sphere «;, it
becomes an embedding. By extending the normal bundle of the boundary circle in
the boundary of the handlebody, we get a 2-handle. This extension is not unique.
This handlebody gives a cobordism from g on D; to a map on a 3-manifold which
has the same selfintersections and intersections with other D, as Dj;, except r U r’
has been eliminated. Since there are only 2-handles attached, the Z[r,] class has
been preserv_ed, so we can simplify the situation provided the new 3-manifold is a
3-disk. When all the dual 2-spheres can be framed, this can be achieved. See [FQ)].

Before we discuss another situation which the new 3-manifold is also a
3-disk, let us define the rotation number. If r C D; is the preimage of g(D;), then

the normal bundle of r in D; is the restriction of the normal bundle of g(D;) in
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Y. The contractibility of D; defines a trivilization of this bundle. But r is also
the boundary of an immersed disk in D;, which also gives a trivilization of the
bundle. These trivilizations differ by a rotation in 7;0(2) = Z and this is defined
to be the rotation number of r. Notice given a pair of dual circles r, r/, the rotation
numbers of them are not the same. It is also true that we can arrange that the
rotation number to be wy(a;)mod2. If wy(a) = 1, then the rotation number can
not be easily arranged to be 0. But actually, this can be changed to 0 [FQ]. Hence
without loss of generality, we way assume the rotation number is 0.

Now suppose ' C D; bounds an embeded disk ( not necessarily disjoint
from the other double points ). This disk defines a trivilization of the normal
bundle, which differs by the rotation number from the framing used to attach the
first 2-handle. If these framings agree, then the new 3-manifold is a 3-disk. But
after the cobordism, it introduces a twist into the double circles passing through r.

This is what missed in chapter 10 of [FQ).

3.3.3 The disk theorem in dimesion 5

In this section, we consider the disk theorem in dimension 5. Given a 5-
dimensional manifold Y with 7y = 7Y and a homology class 8 € Hx(Y, 8Y; Z[m,]),
we are interested in representing A by a m;-negligible embedded 3-disk. The same
argument works for 3-sphere. By the relative Hurewicz’s theorem, 3 can always be
represented by a map (D%,9) to Y. In the following, we assume that the map is

always an embedding on a neighbourhood of 9D8.

Theorem 4 Let h : D = {D3} — Y be e proper map of a union of 8-disks in
general position and transverse to each other whose intersection and selfintersection

numbers are 0 € Z[m), and with dual 2-spheres a;, and if mY® has no 2-torsion,
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then there is an obstruction km(h) € Hy(Y; Z;) such that if km(h)=0 there is a
my-negligible embedding ¥ : D — Y such that h'(D) and h(D) represents the same
homologous class in H3(Y,d; Z[mY])).

In particular, if all the dual 2-spheres of D are framed, then km(h)=0.

The obstruction will be defined in the proof and it is due to R. Stong[St1].
In most cases, we have w; = 0 on mY or w; does not vanish on the perpendicular
subspace of mY, then km(h)=0.
Proof: By the discussion above, we way assume there are no double arcs. Since
there are no 2-torsion in 7, Y except the identity, then all type I circles have associate
group element identity. By introducing this kind of intersection if necessary, we may
assume there are even number of them. By using the reconnection, they can all
be converted into Type II circles. Therefore, we may assume there are only Type
II circles. Now we will use Freedman-Quinn’s move to eliminate all double circles
if km(h)=0. Notice up to now, all the moves are regular homotopy. In this case,
each circle in the preimage is paired with another one, and they will be called dual
to each other. Therefore, the preimage of the intersection circles is an orinted link
in D;. There are immersed disks bounding the circles, whose intersections are all
clasps. The clasp can be pulled apart as [FQ]. After undo all the clasps, we get

some unknotted big circles with many small circles linked to each big one.

Lemma 1 Let A and A’ be two dual big circles, then the number of small linking

circles to A plus the number of linking circles to A’ is even.

All this circles can be simplified to a single Hopf link with group element
g. Then the image of g in H,(W, Z;) is the obstruction km(h). Actually, any

square or commutator in mY can be the associate group element for a Hopf link
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by introducing trivial intersections. km(h) is well defined [St1]. If km(h)=0, by
introducing a Hopf link with identity group element, this pair can be removed. O
Remark: It seems more than a coincidence that km is in the same group

as the ks invariants for both dimensions 4 and 5.
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Chapter 4

Classification

In this chapter, the complete classification for 4-manifolds with =, = 0,72 is
obtained. First, the stable classification is obtained using the work of M. Kreck

and P. Teichner. Then the classification theorem is proved.

4.1 Stable Classification

Before the breakthrough of M. Freedman, there is a stabilized version of 4-
manifold theory [CS]. This theory is much easier. A stabilization of M is the
manifold M§k(S? x S?), where k is an integer.

Definition 5 Let M, N be two locally oriented {-manifolds, M is called stably home-
omorphic to N if there erists natural number r, s such that Mir(S® x S?) is ho-
moemprphic to Nis(S? x §?).

Here the connected sum has to be formed compatibly with the local orientation.
The following method of M. Kreck to determine the stable homeomorphic

type of closed 4-manifolds is outlined and the stable classification of 4-manifolds

with fundamental group Z is computed. For details of the theory see [Kr], [Tel].

The basic notion of the theory is ¢-structure and normal 1-type.

26
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Definition 6 Given a fibration £ : X — BO, a €é-structure of a {-manifold M is
a lift of the stable normal Gaussian map M — BO over £, up to fiber homotopy.
The normal 1-type of a 4-manifold M is the fiber homotopy type of £ :
X — BO such that
(1): there exists a normal structure ¥ : M — X which is a 2-equivalence.
(2): € is 2-coconnected, i.e, £ : ;X — 7 BO is a monomorphism for

i=2, and an isomorphism for i > 2.

By obstruction theory, the normal 1-type exists uniquely. Now the stable
classification gbes as follows:

Step I: determing the normal 1-type of M. The normal 1-type of a 4-
manifold is completely determined by my M,wy M, w, M and w, M.

Step II: translating into a bordism problem.

Step II: computing $4(£) and the linear action of Aut(f).

The theory for smooth and topological stable classification differs by the
Kirby-Siebenmann invariant.

Now given 7, w;, we want to classify all 4-manifolds with these data up to
stable homeomorphism. First the right £ -structure is called 1-universal fibration.
A l-universal fibration is a fibration £ : X — BO such that it is 2-coconected.
The 1-universal fibrations are in 1-1 correspondence to uwy € H%*(m, Z;)U oo, where
oo denotes the case w, M # 0.

For the stable classification, we have the following theorems:

Theorem 5 (1): Two closed nonspin orientable §-manifolds with my = Z are stably
homeomorphic iff their signature and Kirby-Siebenmann tnvariants ks are the same.
(2): The stable homeomorphism type of a spin orientable closed {-manifolds

with 7y = Z are determined by the siganture only.
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Remark: for the definition of *-operation, see section 4.3.
The first part of the theorem is in {Kr] and the second part is an easy ex-

ercise for this theory. Recall that in the spin case ks is determined by the signature.

Theorem 6 Let M be a closed connected nonorientable {-manifold with m = Z,
then

(1): If M is not spin, then M is stably homoemorphic to one of the follow-
ing 4 manifolds: §'xS3JCP?, S'xS3 x CP?, §'x S3}C P*C P? or S'x S3{C P?} +
CP?% They are determined by ks and mod 2 euler number.

(2): If M is spin, then M is stably homeomorphic to S'xS? or S % S° Es.

(3): If M is spin, then the Kirby-Siebenmann of M is a homotopic invari-
ant and it is the same as [A] € Ly(Z,—), where [A] is the value of the intersection
form on ma(M) as an element in Ly(Z,-).

Note that mo(M) is free and u is determined by A.

Proof: (1): In this case, the 1-universal fibration is given by { = p & n : BSO &
Bmy — BO, where 75 is a line bundle with w(y) = w(M). There is a spectral
sequence with Ej-term H,(Bm, Q?O) converging to ,4,(€), where the coefficients
are twisted by w; : m; — Z; as follows: for any abelian group A, include Z; into
Aut(A) by the map a = —a. Then it is fairly straightforward to compute.

(2): In this case, the 1-universal fibration is given by £ = p®n: BSpin @
Bm — BO, where 1) is a line bundle with w;(n) = w1 (M) and wy(n) = 0. There is
a spectral sequence with Ep-term H,,(Bvrl,ﬂg‘o;)s’”'“) converging to ,,,(£). Then
it also a spectral sequence computation.

(3): Notice that both the Kirby-Siebenmann invariant and the value of an

intersection form in L4(Z, —) is a stable invariant. So it only necesasary to check
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on the generators. Then by (2) and the fact that L4(Z,—) is generated by the

intersection form of S1xS3j Eg, they agree on generators. O

4.2 Elementary properties

In this section, we collect some elementary properties for 4-manifolds with free
fundamental group. Denote the free group with k generators by F for k& = 0,1.
For k=0, it is the trivial group, and k=1 it is J. These properties will be used later

to prove the classification theorem.

Proposition 4 Let M4 be a closed connected §-manifolds with m = J, then

(1) m(M) — Hi(M,Z) is surjective for i=0, 1, 2, 3. In particular, all
classes of Hy(M, Z), H3(M, Z) are spherical.

(2) m3(M) is a free Z[J]-module.

(8) The intersection form on m(M) is nonsingular.

(4) M* is weakly even or weakly odd iff M* is even or odd.

Proof: (1) for i=0, 1,2, it is trivial by Hurewicz’s theorem.

For i=3, using Serre’s spectral sequence for M — M — S!, thus
Hs(M;Z) — Hi(M; Z) is onto. On the other hand, by Hurewicz’s theorem for
M, m3M = maM — Hs(M; Z) is onto.

(3) As a corollary of Seshadr’s theorem [Ba], a Z[F}]-module is free if and
only if it is projective. Since stably freeness implies projectiveness, it is sufficient to
prove stably freeness. For any 4-manifold, by connecting sum with CP? or *C P?,
we may assume it is smooth, odd up to stabilization by connecting sum with 52 x 52,
It follows that up to stabilization with CP?, *C P? any 4-manifold with my = J is

stably diffeomorphic to §! x S2 or S'xS® which obviously have free .
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(3) We have the following exact sequence which comes from the spectral

sequence of the universal covering with A = Z[r,] coefficients
0 — H2(m,A) — H*(M,A) == Homp(maM,A) — H3(m,A) — 0
For my free, H*(m,A) = 0, H3(m1,A) = 0, hence
b: H}(M,A) — Homp(maM, A)

is an isomorphism. Since the intersection form A is the composition of the inverse

of Poincare duality with A-coefficient
m(M) = Hy(M;A) — H*(M;A)

and b, hence it is nonsingular.
(4) One direction is always true. The other follows from definition.

O

4.3 *-operation

By Rochlin’s theorem, for closed topological spin 4-manifolds,
the Kirby-Siebenmann invariant is a homotopy invariant. But there are homo-
topic 4-manifolds with different Kirby-Siebenmann invariant. The famous pair is
the CP? and the Chern manifold *C P2, In chapter 10 of [FQ], an operaton is

defined to change the Kirby-Siebenmann invariant while preserving the homotopy
type.
Definition 7 Suppose W is a {-manifold, if w, : oW — 2, is trivial, then define

*W=W. If w, : ;W — Z; is nontrivial, the *W is determined by the following

construction: (*W)YCP? is homeomorphic to Wl*C P? by a homeomorphism which
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preserves the decomposition of w3, where *CP? is the Chern manifold which is

homotopic to C P? but has ks=1.

Note that if *W is different from W, then it has opposite Kirby-Siebenmann
invariant because Kirby-Siebenmann invariant is additive under connected sum.
Also there is a canonical homotopy equivalence from *W, to W, which is an iso-
morphism on the boundary.

If ;W is good, then the *-operation exists [FQ] and is well-defined [St3].

Rem: For the case wy : mgW — Z; trivial, there are also manifolds which
has the same homotopy type but different ks. Unfortunately, this is not unique.
The following example is due to P. Teichner [Te2]: let E be the one point com-
pactification of the tangent bundle of RP?, then there is a E’ which is homotopic
equivalent to E but has different ks. The manifolds E4E and E'§E’ are both * man-
ifolds ( homotopic but has different ks ) for E§E’, and they are not homoemorphic.

Actually they are even not stably homeomorphic.

4.4 Classification for n; =0

If M is a compact oriented 4-manifold, then the intersection numbers define
a symmetric bilinear form A : Ho(M; Z) x Hy(M;Z) — Z. f M = B, then by
Poincare duality, the adjoint H2(M; Z) — H2(M; Z)* = Homz(H:(M; Z)) is an
isomorphism. Therefore, it is nonsingular. For the classification another additional
piece of infomation is given by the Kirby-Sienbenmann invariant, which is in genaral
not a homotopy invariant. The first complete classification is the following result

by Freedman [F1]. Here we offer a new proof.

Theorem 7 (1).Existence: Suppose (H, )\) is a nonsingular symmetric bilinear

form on a finitly generated free Z-module, k € Z;, and if A is even, then assume
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k= L"-VB"—", then there ts a closed oriented 1-connected manifold with form A and
Kirby-Siebenmann invariant k.

(2).Uniqueness: Suppose M, N are closed and 1-connected {-manifolds,
h : Hy(M;Z) — Hy(N;Z) is an isomorphism which preserves the intersection
form and ksM=ksN, then there is a homeomorphism f : M — N such that f, = h.

Proof: First, we prove the existence. Let B* be a 0-handle. Find a framed link L
such that the linking matrix of L in % = @B* represents the form; adding 2-handles
to B4 according to the framing of L, then the resulted 4-manifold M} is a simply
connected, smooth 4-manifold with boundary. Since H;(My, Z) = 0, by the exact

sequence of the pair (My,d), we have
0 — Hy(0;Z) — Hy(Mp; Z2) — Hy(M,0;Z) — H,(0;Z) — 0.

Since the form is nonsingular, by Poincare duality the map
Hy(My; Z) — H3(My,8; Z) is an isomorphism. Hence the boundary 3-manifold
is a homology 3-sphere. Every homology 3-sphere bounds a contratible 4-manifold
[FQ). Therefore, add such a contractible 4-manifold with the homology 3-sphere as
boundary, we have a simply connected closed topological 4-manifolds. It is easy to
check that the 4-manifold has the right intersection form A.

By the above construction, for each form one model 4-manifold is con-
structed. If the form is odd, another 4-maniold with opposite Kirby-Siebennmann
invariant can be obtained by the *-operation.

Now we prove the uniqueness. Without loss of generality, assume M is the
model we built above: M = B4 U, 2-handlesUC = M U C, where C is the con-
tractible 4-manifold. In M, there is a canonical basis for H,(M; Z). It is represented

by the cores of the 2-handles with the boundary circle capped off by a singular disk
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in B4. The manifold My, is homotopically a wedges of 2-spheres. Choose the basis
of Hy(N; Z) as the image of the canonical basis of Hz(M_) under h, then h is the
identity matrix and the intersection form of N is the same as that of M. Define a
continuous map from My, to N by sending the canonical basis to the corresponding
basis of Hz(N; Z). Now we want to make this into an m;-negligible imbedding.

By a homotopy and general position, we way assume that b : My — N
is an embedding on the 0-handle. Delete the 0-handle and denote the complement
by My, similiarly delete the image of 0-handle in N denoted by Ny. Denote the
core disks of the 2-handles by {D;} = D. The boundaries of D are on the bound-
ary of the 0-handle with a fixed framing determined by the attaching of 2-handles.
Approximate the map on D by an immersion f using lemma 1.3 [FQ]. Then there
might be some rotations rel boundary with respect to the fixed framing of bound-
aries. Let x; be the rotation numberof the disk D; with respect to the fixed framing,

let A; be the immersed 2-sphere D; U f(D;) in Mp Us Np, then we have
2p + xi = A(A1, Av).

Since f preserves intersection numbers, hence A(A;, A;} is even. It follows that the
rotation number x; is even. Therefore remedy this by interior twist if necessary,
the framing is correct. By the nonsingularity of the intersection from on H3(M; Z),
there are dual 2-spheres for D. By the disk thereom 3.2 , there is an obstruction
km(f) € Z; to homotope f to a 7 -negligible embedding.

If km(f)=0 ( e.g. if the form is even ) , then f is homotopic to a ;-
negligible embedding f’ rel boundary. By thickening the core disks, it follows that
there is an embedding of My in Ny. Filling in the 0-handle, we get an embedding
of My in N. By m;—neglibility, and isomorphism on H;, the complement of M in

M is simply connected, no homology, therefore it is a contractible 4-manifold with
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the same boundary as C. But such 4-manifolds are unique{FQ), so the embedding
can be extended to an embedding of M. By construction it induces h on H,.

If km(f)=1, then there is an embedding in *N # N, but this implies
that M is homeomorphic to *N. Again this implies ksM#ksN which contradicts the
assumption. Therefore, ks(f)=0 if ksM=ksN which ends the proof as above. O

Rem: note that the final embedding produced might not be homotopic
to h. The embedding in the last step is extended to the contractible piece by

uniqueness of such manifold, this is not a homotopy in general.

4.5 Classification for orientable 7 = Z

Suppose M is a closed oriented 4-manifold with m; = Z. To distinguish from
the coefficient Z in the group ring, we will use J to denote Z. It has been shown
that w3(M) is a free Z[J]-module. When M is orientable, the intersection form is a

nonsingular hermitian form on 7;. The analogue of section 4.4 is the following

Theorem 8 (1). Existence: Suppose (H, A) is a nonsingular hermitian form on
a finitely generated free Z[J]-module, k € Z; and if A is even, assume k & ’—"9‘;‘—'\,
then there is an oriented closed manifold with m = Z, intersection form A and
Kirby-Siebenmann invariant k.

(2). Uniqueness: Suppose M, N are closed oriented §-manifolds with
m =2, h:mM — mN is a Z[J] isomorphism which preserves the intersection
form and ks(M)=ks(N), then there is a homeomorphism inducing the identification

of w1, preserves the orientation and f, = h.

Remark: In our situation, A is weakly even or odd is the same as the
even or odd for the integral intersection form S. So by sign) we really means the

signature of S.
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Before the proof, we discuss the link theory in the solid torus. To build a
standard model for 4-manifolds with m; = Z, we will attach 2-handles on a link in
a solid torus. Let’s define the linking matrix for links in the solid torus.

Denote the standard solid torus by T' = S' x D?. Qur link in T always
satisfies the following conditions: L is oriented, each component of L is homotopi-
cally trivial, equivalently, each component as a map from S! to T has degree 0.
Given such a link in T, the linking matrix is defined as follows: fix a base point
of T and a base point on each component of the link, and a path from the base
point of the solid torus to the base point on each component of the link. The link-
ing number of two components as an elements in Z[J] is defined in the following
way. Bound one component with an immersed disk and put it in general position
with the other component, list all intersection points of the bounding disk with the
other component. For each intersection point, follow the path from the base point
of the solid torus to the base point of the bounding component, then join the base
point of this bounding component with the intersection point with an arc on the
disk. Follow the other component along the positive direction to the base point of
this component. Finally, follow the path from the nonboundng component to the
base point of the solid torus T. This closed loop defines an element in 74(T') = Z.
Adding all together for each intersection point, this is the linking number for two
components. The linking matrix for a link in S! x D? is the hermitian matrix for
all pair of different components.

A framed link in S! x D? is an oriented link with a framing on each
component. A framing is just an integer. The self-linking number of a component
of a framed link is the linking number of this component with a push off according

to the framing. Hence the linking matrix of a framed link is a hermitian matrix
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with diagonal element is an element in Z[Z] invariant under the involution i.e. an
element of the general form ap + ¥ ai(t' + ¢%).

Of course, the linking matrix depends on the choice of paths from the base
point of the solid torus to base point of each component. But it does not depend

on the bounding disks and which component one bounds.

Proposition 5 Up to isomorphism, the linking matriz of a framed link is well

defined.

Proof: Think of S x D? as part of the boundary of §? x D3, then attach 2-handles
to the framed link according to the framing. Then we have a 4-manifold with
boundary and m; = Z. The linking matrix of the fremed link is the intersection
form on my of this manifold in some basis. Therefore, this is well-defined up to

isomorphism. O
tﬂ

=m0 ), where n is any

For example, the Hopf link gives matrices (

integer.

Lemma 2 Given any hermitian matriz, there is a framed link with linking mairiz

as it.

Proof: Given an n X n hermitian matrix, choose n embedded disjoint disks D; in
T = 5! x D?. If we modify the D; by pushing a piece of D; around a loop g and
introduce a clasp with D;, this changes the linking matrix by the symmetrization of
the matrix with +g in the i,j place if ¢ # j. Any hermitian matrix over Z[J] can be
realized by this operation except the diagonal elements. For the diagonal elements,
frame the i-th component with ao of the i-th diagonal element ap + T ai(t' + t~%).

Then introduce homotopically trivial clasps of D; with itself by pushing around t
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many times according to a;. It is left as an exercise to check this gives the right
linking matrix. O

Now we prove the classification theorem.
Proof: Let S! x D? be a standard 1-handle. The boundary is S? x S§2. Think
of S! x S? as 2 copies of the standard solid torus. Fix one copy T and a base
point. Given the nonsingular hermitian form A, let L be a link in T with linking
matrix A. Attaching 2-handles on the link according to the framing, we get a
smooth, connected 4-manifold M, with boundary. By nonsingularity of the form
and Poincare duality, the boundary is a Z[J] homology S x S%. By [FQ), there
is a 4-manifold homotopic to S? with boundary of this 3-manifold. Fill in such a
4-manifold to get a closed manifold. Let us check that the manifold built has the
right properties: first it has 7y = Z by Van Kampen’s theorem. To see it has the
right intersection form, notice that there is a canonical basis for 7,M by capping
off the core disks of the 2-handles with the bounding disks of the attaching circles.

For the weakly odd form, use the *-operation, we can get another one with
opposite ks.

For the Uniqueness. Without loss of generality, assume M is the standard
model built above. Let L be the link representing the hermitian form. Let S — N
be a circlerepresenting the generator of 7; N. By general position, it is homotopic to
an embedding. A neighbourhood of S! is a D*-bundle over S*. Since N is oriented,
it is the trivial S x D®. Now define a continous map from Mj to N as follows:
identify S! x D® in My, with the regular neighbourhood of S? in N above. Note for
the basis of Hy(My, Z[J]), there is a canonical choice. It consists of the immersed
2-spheres obtained by capping off the cores of the 2-handles with bounding disks

for the attaching circles. Since My, is homotopy equivalent to a wedge of one circle
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and some 2-spheres, choose a basis of H3(N, Z[J]) and sending the basis to the
basis according to h. This determines a map from My, to N which is an embedding
on S! x D3,

Remove the S! x D3 from M and its image in N, denote the manifolds
left by Mg and Np. This gives a map from Mg to Ny. There are two components of
the boundary of My. Let 8 be the boundary of the secondly removed S x D?, and
8, be the boundary of the 4-manifold homotopic to S? in the construction of the
model. If the above map can homotoped rel gy to a m-negligible embedding, then
the theorem can be finished as follows: fill in the 1-handle, we have an embedding
from My, to N. By m;-negligibility, the completment of M, in N must has m; = Z,
Z[J]-homology 0. Therefore, it is a 4-manifold homotopic to S* with boundary the
same as Mp. Extend the homeomorphism to M, we have a homoemorphism as
desired.

Now it is sufficient to homotope the map to a m-negligible embedding
f. Let {D;} be the core disks of the 2-handles in the model manifold, restrict the
map to the cores, we have a map fp : {D;} — No. Approximate this map by an
immersion and resolve the framing problem as in the simply connected case. Then
repeat the argument for the simply connected case exatly, we have a 7;-negligible

embedding f: Mg — N. O

4.6 Sum Decomposition

In this section, we will prove a sum decomposition theorem. This will be
used in the next section to prove the uniqueness for nonorientable 4-manifolds with
T = Z.

A map §' — M* is always homotopic to an embedding by general posi-
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tion. The neighbourhood of it is a D?-bundle over $7, so it is either S? x D3 or a
Mobius band times D?, depending on if the loop is orientable or not. Now suppose

there are embeddings of S! in both M and W on which w,; takes the same value.

Definition 8 M§s: W is the {-manifold obtained by deleting the interior of the disk

bundle neighbourhood and identifying the boundary.

Rem: This sum is not well-defined as claimed in [FQ] by giving local
orientation. Actually, in Dif f(S! x §%) = Z3, and Dif f(S'xS?) = Z? [KR],
one Z; can not be controlled by local orientation. For example, it gives different
manifolds for RP4}s1 RP*.

Suppose M has 1 = Z and S' C M represents the generator, assume the

inclusion S C W is injective on .

Proposition 6 (i) m(MisW)=mW, denote it by =.
(ii) Hy(MissW; Z[x]) = Ha(M; Z[J]) @z Z[7] & Ha2(W; Z[r])
(1ii) The intersection form of the sum is the form on M tensored up to

Z{r], plus the form on W.
Now we have the following

Theorem 9 Suppose M is a closed locally oriented §-manifold with my = J, W has
good fundamental group m and no 2-torsion, J — = is injective, and w, of the two

manifolds agrees on J, suppose that
Hy(M; Z[J]) @z Z[7] — Hx(W; Z)

is a Z[x] monomorphism which preserves A and i, and either w; = 0 or w; does not
vanish on the subspace perpendicular to the image, then there is a decomposition
W = M1 W' realizing the given homomorphism to moW. If ws # 0 does vanish on

the perpendicular subspace, then exactly one of W or *W decomposes.
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Before we prove the theorem, we need two more lemmas.

Lemma 3 Suppose that W = M{W, & M{W, induce the same decomposition of
W and W is compact and mW is good, if M is a closed 1-connected even manifold,

then W = Wi

Proof: Define W by connected sum with a copy of -M, so W = MW, = MW,
with M = M}(—~M). The form of M is even, indefinite, and has signature 0, so
] (1) ) for some k. Hence M = k(S? x §?). Denote the
2-spheres of two factors by {A;}, and {B;}.

it is isomorphic to k ( 0

Let &; : W = M{W; for j=1, 2 denote the given homeomorphism, so that
hih3! preserves the decomposition of the form and is identity on the part coming
from M. Construct a 5-manifold Z by starting with W x I, adding 3-handles on
the sphere A71A; € W x {0}, and 3-handles on the sphere h;'B; C W x {1}.
The boundary of Z is the union of three pieces: W, connected sum the manifold
obtained by surgery on W;A; C M, W, connected sum the manifold obtained by
surgery on U;B; C M and 8W x I. Since M is reduced to a homotopy sphere (thus
a sphere) by surgery on either A; or B;, the first two pieces are W, and W,. Then Z
is an s-cobordism rel 8 from W, to W;. Since 7, W is good, the s-cobordism implies

the two ends are homoemorphic. O

Lemma 4 Let W be a compact cobordism between connected boundaries Gy and 0y,
and 7 (W, 8o) = 0, m(W, 8,) = 0, then after connected sum with closed 1-connected
even 4-manifolds, (W, &) has a handlebody structures with only 2-handles.

Proof: If W is not smooth, by connected sum with Eg, we may assume that ks=0.
Then by connected sum with $2? x S?’s, we may assume it is smooth, hence there

is a handlebody structure. Since 8, and &, are connected, there is a handlebody
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structure of W without 0- and 4-handles. Now we will show that 1- and 3-handles
can be changed into 2-handles by connected sum with S? x §%’s.

Consider a 1-handle, attached to 8. Since (W, d,) = 0, so the core of
the 1-handle is homotopic relative to the ends into d;. Approximate the homotopy
by a framed immersed 2-disk which is standard near the core of the handles, and
push selfintersections off by finger move. This gives a framed embeded disk whose
boundary is the union of the handle core and an arc on &. Let B denote a 3-
disk neighbourhood of the arc in Gy, then a collar on B union with the 1-handle is
isomorphic to §' x D3, The connected sum operation with §? x S? is the same as
surgery on the S, therefore by such a connected sum we can replace the 1-handle
on B x I with a copy of D? x §2. This can be regarded as a 2-handle added on
B x I, so the original 1-handle has been replaced by a 2-handle. A 3-handle can
be considered as a 1-handle attached to &, so the same argument can be used to
convert all 3-handles into 2-handles. O
Proof: Denote by Ms the complement of the open disk bundle of the embedding
S1 C M, then Ms is homotopically equivalent to a wedge of 2-spheres on a circle.
Since Hy(M; Z[J]) is free, so the above data define a map f : Ms — W. Since
71 (Ms) = Z,let S C Mg be a generating circle with disk bundle E. Approximate f
by an immersion, by general position, f(S!) is an embedding and misses the image
of the wedge of 2-spheres in W. Hence we may assume that f is homotopic to a
map which is a homeomorphism on E and takes Ms\intE into the complement
of the image of E. Let Msg = Ms\intE, Wg = W\int(imE), denote this map
(Msg,0E) — (Wg, 8(imE)) by f, too. Now if we can homotope f reldF to a
m;—negligible embedding, then fill in a D3®—bundle over S! for E, it follows that
W = MiaW and mW' =mW.
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By the lemma above, it is sufficient to find an embedding for the stabilized
manifolds rel @E. Let V be a closed even 1-connected 4-manifold, and assume the
map obtained by connected sum with the identity VMg g — V{WEg is homotopic
to a m-negiligible embedding rel dE. This gives a second embedding of V; in
ViiWE, and therefore a decomposition ViWg = VW with V represents the same
summand of the form. The the above lemma shows that the canonical homotopy
equivalence Wi & W, is homotopic rel 3imE to a homeomorphism. But W} has
Mg;s g embeded 7-negligibly in it, therefore we get an embedding of Mg in Wg.
After addition of a closed 1-connected manifolds with even form, we may assume
that (Ms,g,0F) has a handlebody structure with only 2-handles.

Denote the core two disks of the handles by D = {D;}, by lemma 1.3
[FQ], f is homotopic to an immersion which differs by rotations from the given
one on the attaching region of handles. Let y; be the rotation on D; N @F, and
A; = D; U f(D;). Then A; defines an immersed 2-sphere with possibly nontrivial
normal bundle, The coeflicients of 1 (with Z[7;W] coefficient ) of the selfintersection

form of those immersions satisfy
21 (Ai) + xi = M(Ai, Ag).

But since that f preserves A and j implies that A;(A;, A;) are even, so x; are even.
Now this can be changed by twisting inside f(D;), so we can arrange it to be
0. This gives an immersion of M5 g extending the embeddind of GE. Since the
intersection form of M is nonsingular, therefore all D; has a dual class ¢; such that
A D;, ;) = &;;.

By section 3.2, there is an obstruction km(f) for this to be homotopic to
an embedding. If w; = 0, then all dual 2-spheres can be framed, hence km(f)=0. If

wyq is not 0 on the perpendicular subspace of the image, by adding one class to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

dual, we can arrange km(f)=0. Therefore, in both cases we have an embedding. If

w; does vanish on the perpendicular subspace, then there is embedding in one of

Wor xW. DO

4.7 Classification for nonorientable 7, = Z

In this section, we carry out the classification in the nonorientable case. As in
the orientable case, 7 is still free. But the intersection form is defined using a local
orientation at the base point. Therefore, the intersection form is a w,-hermitian
nonsingular form. The classification is not as explicit as in the orientable case. The

method in this section works as well for the orientable case.

Theorem 10 (/). Existence: Suppose (H, \) is a nonsingular w,-hermitian form
on a finitely generated free Z{J]-module, k € Z,, and if ) is even, assume k = [)] €
L4(Z,-), then there is a nonorientable closed §-manfold with m = J, intersection
form X\ and Kirby-Siebenmann invariant k.

(2). Uniqueness: Suppose M, N both are closed, not orientable but ori-
ented locally, h : Hy(M, Z[J]) — H,(N, Z[J]) is an isomorphism preserving the
intersection form and ksM=ksN, then there is a homeomorphism f : M — N
which induces the identification of fundamental group, preserves the local orienta-

tion and f, = h.

Proof: For the existence, if A is even it admits a unique quadratic refinement.
By [Wa], Ly(1) = Z — L4(Z~) = Z; is onto. Then it follows that A is stably
isomorphic to (Es @z A)B - @(Es ®z A). The latter is the intersection form of
W = 5'%xS*Es- - {Es. Thus there are r, s such that A@® H(A)" is the intersection

form of Ws(S5%x 5?), where H(A) is the hyperbolic form ( (1) [1) ) . However H(A)"
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can be realized in Wis(S? x §2) by a topological embedding of §,(5% x $?)\ D*. By
surgering this out, A can be realized by a closed 4-manifold.

Assume A is odd. By [MR], it follows that L%(1}) = Z — L%(2-) = Z,
is onto. Thus A is stably isomorphic to ®p(1) @ g(—1). But in this stablization,
metabolic forms are used instead of hyperbolic forms. But for odd forms, stabi-
lization with metabolic forms is the same as hyperbolic forms ( see the following
lemma ), therefore there are r, s such that A @ H(A)" is the intersection form of
W = §'xS3pC P*qC P?. But again, H(A)" can be realized by a topological em-
bedding of §,(52% x §?)\ D4. By surgering this out, the desired manifold is obtained.

Uniqueness: Givenh as in (2). Regarding & : Hy(M, Z[J]) — Ha(N, Z[J))
as an injective. By section 4.6, there is a decomposition of N = MfsiP or
*N = M{gs P realizing the injection. Ps is a manifold with m; = Z and homo-
topy type of S'x D3. By [FQ}], it is homeomorphic to it. Therefore, either N = M
or *x/N = M. Since * changes the ks if it is a different manifold, we conclude there
is homoemorphism to induce h. O

To tie the loose end in the existence part, let us prove the following

Lemma 5 If )\ is odd, then stabilization with ( 3 2 ) is the same as ( ? é )

Proof: BywritingA=B+B+D,whereD=(g S),e:(g (}),weha.ve

the following identity:

(5 7)-(74)-(a77)- (5 b)

Hence it is sufficient to prove that stably

01) . 01
(8 )uro(0})
Since X is odd, we can find an element v such that A(v,v) = z + % + 1 for some

x. But after stabilization, there is some wLlv such that A(w,w) = —z — . Hence
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there is some element u such that A(u,u) = 1. Take the orthogonal complement of

uasC,thenAGa([l) (1)

0 1), 01
<1>®(1 0)—<1>$(I 1).

Geometrically, this is the identity: C P?§(S2% x $%) = C P?§C P?jC P?. Now

01 01\ . 01
,\@(1 l)e(l 0)=C@<1>®(1 1)

1
gcaa<1>ea(? é)z,\@(? 0)@(‘1’ (1))

Then the lemma follows. O

) =< 1> &C. But

The existence part of the nonorientable theorem can also be proved by a
construction similiar to the orientable case. We have the following theorem which

is a generalization of theorem 11.6 in [FQ).

Theorem 11 If N is a Z{J]-homology S' % S2, then there is a {-manifold homotopic
to S with boundary N.

Proof: As in the proof of theoren 11.6 [FQ), it is sufficient to find a normal
map to a Poincare pair (X,N), where X is a Poincare complex with homotopy type

S, Passing the infinite cyclic cover, the manifolds are orientable with boundary.

Then we can find normal maps there rel boundary.
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Chapter 5

Classification of self
homeomorphism

In this chapter we study the classification of homeomorphisms of a 4-manifold
with fundamental group Z up to pseudoisotopy. An automorphism of the intersec-
tion form on w, which preserves the intersection form will be called an isometry on
72. Given an isometry on 73, there is a homeomorphism to induce this isometry.
It has been shown [Q1] that for simply connected 4-manifolds, it is unique up to

isotopy.

5.1 Uniqueness of sum decompositions

In chapter 4, it has been shown that under some conditions, an algebraic
decomposition of m; correspondes to a sum decomposition. In this section, the

uniqueness of such a decomposition is studied.

Theorem 12 Suppose M is a closed §-manifold with fundamental group Z, and W
has good fundamental group. Suppose by : W =2 MiaW; and hy : W = MiaW,
are lwo decompositions inducing the same decomposition of m;. If ;W is good, and
has no 2-torsion, and W is weakly even,

then the decomposition are pseudoisotopic.

46
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Rem: For the simply connected case, the above theorem appears in [FQ).

Two decompositions are pseudoisotopic if there is a pseudoisotopy H :
W x I — W x I of W from identity to a homeomorphsim g so that koghy! is the
identity on Mg = M\N(S5?).
Proof: Let Mg and Mgk as in section 4.6. Then h,;, h; determine maps from
Ms to W. Since the homomorphism on 73 determines the map up to homotopy,
so if the decomposition induce the same decomposition of 73W, then the maps are
homotopic rel 3E.

Let the homotopy be

g: (Mg,g X ],MS.E X {O,I}UBEX I) —_ (WE x I,Wg x {0,1} UadimE x I)

Let (X,00X) = (MsgxI, Msgx{0,1}UGE xI). Now if we can prove that thereis a
m;—negligible embedding ¢’ wich agree with g on 8 X , then this is the pseudoisitopy
we need. By filling in F x I, we have an embedding of Mg x I — W x I. The
my-negligibility and duality imply that the conplement of the interior of g'(Ms x I)
is an s-cobordism. Since W has good my, then the s-cobordism implies this has a
product structure. So there is a pseudoisotopy.

First we arrange the (X,3,X) to have a handlebody structure with only
3-handles. Then construct dual 2-spheres for the image of the 3-handles. If the core
disks of the handles are denoted by D = {D?}, approximate them to be in general
position and transverse to each other. Then the intersection are circles and arcs of
double points. By theorem 3.3, we have the result since the obstruction vanishes

in this case. O
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5.2 Classification for homeomorphisms

Using the uniqueness of sum decomposition, we are able to classify homeomor-

phisms that induce the same isometry on 3.

Theorem 13 Let M4 be a closed 4-manifolds with m = Z, and f, g be two homoe-
morphisms that induce the same isometry on 73, if M is weakly even, then they are
pseudoisotopic. If it is weakly odd, then there are al most two equivalent classes

under pseudoisotopy.

Proof: Regarding M as Msi(S? x S3), if M is weakly even, then by
theorem 5.1, there is a pseudoisotopy of the identity of M to a homeomorphism h
so that f-h.g-! is the identity on Ms. Now this pseudoisotopy can be extended
to M x I by the uniqueness of S x D4,

If M is weakly odd, then do the same thing as in section 5.1. Now we have
an obstruction. But by section 3.3, this is a Z; obstruction. If the obstruction does
not vanishes, then stack any two together, the obstruction vanishes. Hence there
are at most two classes.

Remark: In [Q1], F. Quinn proved that pseudoisotopy and isotopy are the
same for the simply connected 4-manifolds. But in general there is an obstruction

for the pseudoisotopy to be isotopy for m, = Z.

5.3 Obstruction for pseudoisotopy

In this section, we will try to produce two homeomorphisms that induces the
same isometry on 7, and are not pseudoisotopic. It is clear that it is sufficient to
consider that if g : M — M is a homeomorphism such that g. = id, whether

or not that g is pseudoisotopic to identity. Since if f. = g., then let h = f~1. g,
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then &k, = id. If h is pseudoisotopic to identity, by composing with f X id, f is
pseudoisotopic to g.

Given M, we are interested to find a homeomorphism of M such that
g« = id, but g is not pseudoisotopic to identity. If M is simply connected, or
7 = Z and weakly even, this is impossible. Hence, we asssume M is weakly odd.
Remove 2 solid tori S! x D? as in section 4.6, denote the manifold left by Mgg.
Let Id x I : Mgg x I — Mg x I. Let {D?} = D? be the core 2-disks of Mg
after stabilization, and {D?} = {D? x I}. In the following, we will use Mg, and
Mg to denote the stabilized manifolds, too. We are going to change the identity
Msg C Mg to an embedding ¢ : Msg — Mg such that g. = id, but g is not
pseudoisotopic to identity.

Without loss of generality, assume there is only one disk. Do a finger move
to introduce 2 Hopf link self intersections with group element 1. Do another finger
move to introduce 2 unkotted and unlinked circles H and H’ with group element 1.
Arrange the second finger move to be carried out along an arc in Mg x {1/2} and
is symmetric about this slice. Choosing bounding disks for H and H’ which has
two clasps which is also done symmetrically about Mg x {1/2}, one clasp above
and one clasp below. Choose a band that will be used to split H and H’ lying in
Mg x {1/2} and thickened in the I direction. The bounding disks for H and H’
are not standard. Hence, it is not the reverse of the finger move used to create
H and H’. By the lemma 1, the framing is correct. Since 7, M is good, there is
a m-negiligible embeded Whitney disk in Mg x {1/2}. Using this Whitney disk
we obtain an embedding that is symmetric with respect to the slice Mg x {1/2}
( with one Hopf link above and one below representing 1 ) and in the slice it is

an embeded 2-disk. Restricted to D? x {0,1/2] — M x [0,1/2] producing an
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embedding g with km(g) = 1 € Hi(M; Z;). Note the Whitney disk construction
above is supported in a neighbourhood of M x {1/2} and it is exactly a 4-manifold
Whitney disk problem crossed with R. It is also clear that the embedding produced
is homotopic to identity on the 2-skeleton.

Now there is an embedding g : Msg — Mg. Fill in E, we have an
embedding of Ms to M. By the homotopy condition, what left is S* x D*. Extend
the embedding to this piece, obtain the embedding g as desired. Since it identifies
7, and is identity on =g, therefore, it is identity on H3(M, A) [LP]. Hence g. = id.

Now we have a map from M x I to itself which are identity and g on the
two ends. This map can not be a homotopy beween identity and g by the follow-
ing theorem. The obstruction to change this map to an embedding rel boundary
depends on the map itself and H;(M; Z[J]). The homeomorphism g above is built
in 3-stages. Over the 1-skeleton, it is by general position. Over the 2-skeleton, the
obstruction was produced. Finally, an extension over a solid torus by the unique-
ness of solid torus. The last extension did not affect the obstruction, but the first
stage may change something. Therefore, in this construction, we have to analyze
if the obstruction can be changed by th first filling in. This is a rather untractible
problem.

Conjecture: There is a homeomorphism g : C P*§S x §3 — C P25 x 53
such that g, = ¢d and g is not pseudoisotopic to identity.

While it is very difficult to prove this geometrically, we will reduce this to

a purely homotopy theoretical problem.

Theorem 14 Two homeomorphisms of a closed orientable {-manifold M with 7, =

Z are homotopic iff they are pseudoisotopic.

Proof: It is only neccesaary to prove the "only if” part.
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Let H : M xI — M x I be a homotopy between f and g, then H defines an
element of the structur set Stop(M x I, 8). To show that f and g are pseudoisotopic,
it is sufficient to show there is a homotopy which is 0 in Stop(M x I,8).

Given a closed orientable 4-manifold M* with m, = Z, there is an exact

sequence
0 — Stop(M x I;8) — NMrop(M x I;8) — Ls(2).

The left 0 is because of Lg(Z) acts nontrivially on Spop(M x I;0). Ls(Z) = Z and
NMrop(M x 1,0) = Z & Z,. The Z-factor in NMrop cancells the one in Ls(Z).
Therefore,

0 — Stop(M x 1,0) = Z, — 0

gives Srop(M x I,3) = Z;. And the map 5 is a homomorphism.

Proposition 7 There is a homotopy equivalence h : M x I — M x I such that
h [mxar is identity and (k) # 0.

Proof: In [Sh2], such a homotopy equivalence was constructed for the
smooth case. This also gives an element for the topological case.

To finish the proof of the theorem, if n(H) = 0, it is done. If n(H) # 0,
let H' = h- H, then 5(H') = 0 which gives us a pseudoisotopy. ’

By the above theorem, it is possible to study along the line [CH] by ho-

motopy method.

Definition 9 (Pinching operation) Letc: M — MV S* be the map which pinches
off a top cell, and let 7 : S* — M be @ map. Define < T > to be the composition
(1,7)-c: M — MV S* — M. This is a map of M which is homotopic to identity
on the 2-skeleton.
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This construction defines a map from m(M to the maps that induces the identity

on homology with Z[m] coefficients.
Lemma 6 This homomorphism is onlo.

Proof: Analogous to [Q1].

The next step in this approach is to determine which map is homotopic to
identity. This is in general very complicated. In the following, we will only study
the manifold C'P?§S? x S® again. Let o : 3 — M be the identity map of S3 into
the boundary of the 4-ball deleted for the connected sum. 3+ : 54 — $3 be the

suspension of the Hopf map. Then 8 = a - ¥ -5 defines an element in 74 M.
Lemma 7 « is not homotopically trivial. Actually, it is not even stably trivial.

Proof: Using the stable homotopy theory.

Lemma 8 Let < 8 >: M — MV §% — M be the pinching map corresponding

to B. If M is odd, then the normal invariant of this map is trivial.

Proof: Using the characteristic variety theorem of [Su].

If we can prove this map < f > is not homotopic to identity, then this
will provide us the g as follows: since the normal invariant of < 8 > is 0, hence
there is a homeomorphism g such that < § > g-id = g. < f# >.= id imply that
g« = id. But if < 8 > is not homotopic to identity, neither is g. Unfortunately, it

is still unkown if < 8 > is homotopic to identity or not.
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Chapter 6

Applications and Questions

6.1 Homotopy type

From chapter 4, it follows

Corollary 1 The homotopy type of a closed {-manifold with fundamental group 0

or Z is determined by the intersection form on ms.

In general, it is difficult to find a complete set of invariants to easily determine the
homotopy type. For the simply connected case, this is obtained earlier by J.H.C
Whitehead. For the fundamental group Z, Peter Teichner proved this directly[Te2).

6.2 Exotic smooth structures

For a smooth 4-manifold, we can use the classification to determine if there
is an exotic smooth structure. The following observation is obvious: if there is an
automorphism of the intersection form that can not be induced by a diffeomorphism,
but can be induced by a homeomorphism, then the smooth structure is not unique.
By the classification theorem in chapter 4, for 4-manifolds with m; = 0,Z any
automorphism of the intersection form on ;3 can be induced by a homeomorphism.

By [Sh2], there are such automorphism for ! x S3§52? x 52 which are not induced

53
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by diffeomorphisms. It follows
Corollary 2 There are ezotic smooth structures on S' x S3§5? x 2,

In [Sh2], a general method is described to determined when an automor-
phism can be induced by a diffeomorphism. Here we are interested in when an
automorphism can not induced by a diffeomorphism. For m; = 0, some are known
by S. Donaldson. In [Sh2], there are more examples for the m; = Z case. But we

do not know in general how well this works.

6.3 A final question

The classification of chapter 4 was based on the intersection form on m,. It
would be much better if this can be replaced by the intersection form on H,. Since
any free Z[J]-module comes from a Z-module by tensoring with Z[J], it is only a
question for the hermitian form. Using the determinant invariant, it is not difficult
to see that not any quadratic form on a free Z{J]-module comes from an integral
form, but it seems difficult for hermitian forms. If every hermitian form on a Z[J]-
module is an extension of an integral form, then 4-manifolds with 7; = Z are much
easier to understand. They will be always a connected sum of a simply connected
4-manifold with S x $3 or S xS% Somehow, we believe that this should be true.
Up to now, we are not aware of any 4-manifold with m; = Z that can not be written

as such a connected sum.
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