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Abstract

In this paper we study the classification of self-homeomorphisms of closed, connected, oriented
4-manifolds with infinite cyclic fundamental group up to pseudoisotopy, or equivalently up to
homotopy. We find that for manifolds with even intersection form homeomorphisms are classified
up to pseudoisotopy by their action @n, 72 and the set of spin structures on the manifold. For
manifolds with odd intersection form they are classified by the actiom@ndz, and an additional
7./27.. As a consequence we complete the classification program for closed, connected, oriented 4-
manifolds with infinite cyclic fundamental group, begun by Freedman, Quinn and Wagg00
Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to classify, up to pseudoisotopy, the self-homeomorphisms
of a closed, oriented, connected, topological 4-manifold withf = Z. This classification
was started as a “extended exercise” in [2, Chapter 10] and we follow the outline of that
proof. However there are a number of omissions in that argument, several of which effect
the conclusion. Both [2] and an earlier version of this paper did not adequately analyze the
homeomorphisms over the 1-skeleton. This misses the effect of the homeomorphism on
the spin structures. (We are grateful to the referee for pointing out this omission.) Also
if M is a closed, oriented, connected, topological 4-manifold wit = Z and odd
intersection form, then the argument in [2] misses a Kervaire—Milnor like obstruction to
building a pseudoisotopy over a characteristic class. This extra obstruction was first noted
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in [7] but does not immediately give an obstruction to the existence of a pseudoisotopy.
Proving such an obstruction exists is slightly tricky and has not been done until now. As a
result, we see that for odd intersection forms there are two pseudoisotopy classes of self-
homeomorphisms of/ which induce the identity oy M andzoM. This fact has been
generally regarded as being the case since [7] and [10] first treated the problem.

These results fill in the last detail in the classification results for closed, oriented 4-
manifolds with infinite cyclic fundamental group of [2, §10.7]; [10,11] (which includes
an extension to nonorientable manifolds.) The final classification result is the following
theorem, where the underlined statements are the required changes.

Theorem 1.

(1) Suppose&H, i) is a nonsingular hermitian form on a finitely generated f&&]-
moduleH, k € Z/2, and if 1 is even therk = (signature.)/8(mod 2. Then there
is a closed, oriented-manifold M with 71 = 7Z, intersection form. and Kirby—
Siebenmann invariarit.

(2) SupposeM and M’ are two closed, orientedl-manifolds with 7y = Z, the
same Kirby—Siebenmann invariarit; Ho(M; Z[Z]) — Ho(M'; Z[7Z]) is a Z[Z)]
isomorphism that preserves the intersection form, and if the intersection form is
even that is a spin structure o/ andz is a spin structure o/’. Then there is a
homeomorphisnf : M — M’ such thatf, = h and if M has even intersection form
f*t =o.If M has even intersection form, thehis unique up to pseudoisotopy.

If M has odd intersection form, then there are exactly two pseudoisotopy classes of
such homeomorphisms.

It should be noted that the classification has also been approached by Kreck using his
modified surgery approach [4]. This method gives essentially the same result as above, but
this method has not to the authors’ knowledge been used to study the classification up to
pseudoisotopy of the homeomorphighin the statement of the theorem.

Phrased purely in terms of self-homeomorphisms the new results in this paper can
be described as follows. Suppog¢ is a closed, oriented, connected topological 4-
manifold. Let (moM = H>(M; Z[m1M]), L) denote the intersection form aoff. Let
Aut(z1M, oM, 1) denote the group of automorphisms of the paiyM, 7oM) which
preserver. That is an element of Agt1M, oM, 1) is a pair(g, ¢) whereg:miM —
1M is a group automorphism angl: 7oM — woM is a Z[r1M] module isomorphism
if the w1 M actions are identified vig which preserves. If 71M = Z andw2M is non-
trivial we may describe this as the groupZifZ]-automorphisms and anti-automorphisms
preservingi. Let SpinM) denote the set of spin structures dhand S(Spin(M)) the
group of permutations of Spin/). (If M has odd intersection form these are trivial.)

Let TORM) denote the group of orientation preserving homeomorphism& ol et

N c TOP(M) be the subgroup of homeomorphisms pseudoisotopic to the identity. Since
any homomorphism oM preserves. and any element oW clearly induces the identity
map onr1 M, moM andS(Spin(M)) there is a natural homomorphism

TORM)/N — Aut(m1M, m2M, 1) x S(Spin(M)).
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In these terms we will show the following theorem.

Theorem 2. SupposeM is a closed, oriented, connected topologidamanifold with
fundamental groug.
(a) If (H2(M; Z[m1M]), ) is even, then the natural homomorphiSI®P(M)/N —
Aut(miM, oM, 1) x S(Spin(M)) is an isomorphism.
(b) If (H2(M; Z[1M]), 1) is odd, then there is a short exact sequence

0— Z/2Z — TORM)/N — Aut(m1M, moM, L) — O.

These results should be compared to results of Quinn [5] for the simply connected case.
He shows the much stronger fact that for simply connedte(tegardless of intersection
form) the natural homomorphisms give isomorphisms

mo TOR(M) = TOP(M)/N = Aut(H2(M; Z), 1.).

Thus in either case for fundamental grdipve have an extrd/27Z. It is not clear whether
there is a connection between these two extra factors/ 87, or in fact whether the exact
sequence in (b) is split.

The following proposition is an immediate corollary. It can be proved exactly as in
the smooth case as a standard consequence of the surgery exact sequence, compare,
for example, [5, Proposition 2.2] or [6, p. 350]. As a consequence the extra self-
homeomorphisms are not even homotopic to the identity Anehay also be described
as the subgroup of homeomorphisms homotopic to the identity.

Proposition 3. SupposeV is a closed, oriented, connected, topologidahanifold with
fundamental groufZ, and f, f': M — M are two homeomorphisms, thghand f’ are
pseudoisotopic if and only jf and f’ are homotopic.

This paper is organized as follows. Section 2 contains a brief review of the techniques
developed in Freedman and Quinn specialized to the relatively simple case where the
fundamental group has no 2-torsion. In Section 3 these results are used to prove Theorem 2
above.

2. Review of embedding results

The classification argument given in [2] is based on a clever use of existence and
uniqueness theorems for codimension 2 embeddings. An existence result for embeddings
in dimension 4 is used for the existence part of Theorem 1 above and an existence result
for embeddings in dimension 5 for the uniqueness part. Unfortunately the statements and
proofs of these results in [2] contain a number of minor flaws which complicate the
classification. Specialized to the case where the fundamental group contains no 2-torsion
the corrected versions read as follows.

Consider the following situation. LetW, dW) and (V, 3oV, d1V) be topological 4-
manifolds with boundary. We wish to consider the case whérwoks homotopically
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like it is built from 9oV by adding 0-handles and 2-handles. Specifically suppose
m1(V,30V) = m1(V,91V) = 1, each component of has nonempty intersection with
91V and components disjoint frorfpV are 1-connected. Suppose we are given a map
h:V — W which restricts to an embeddingV — 9 W and preserves all intersection and
self-intersection numbers, including the relative intersection and self-intersection numbers
for classes with boundary iy V. (For an abstract definition of these relative intersection
numbers see [2, §10.5].) We wish to alteto produce ari-negligible embedding o/

in W and to classify such embeddings uprtenegligible concordance. Therefore we also
need algebraic dual 2-spheresWnto the 2-handles ok (V). See [2, §10.5] for a more
algebraic statement of this condition. Call a niagatisfying all of the above conditions a
m1-negligible embedding problem: (V, dgV, 01V) — (W, aW).

For amri-negligible embedding problem, with some extra fundamental group assump-
tions, [2, Chapter 10] and [7] give a short list of obstructions to homotopieddoV to a
mr1-negligible embedding and a short list of obstructions to finding-aegligible concor-
dance between two such embeddings. The uniqueness part of this result can be phrased as
follows. Call ami-negligible embedding problemsycharacteristic ifwy: moW — Z/27
does not vanish but does vanish on the subspace,®f = Hy(W; Z[71W]) perpen-
dicular (in the sense of intersection pairings)ioH»(V, 9oV ; Z[mr1W]). Paraphrased,

h is s-characteristic if the universal cova¥ of W is not spin, but for some element
x € Hao(V, 80V Z[miW1), hx(x) is characteristic iV .

Theorem 4 (Freedman, Quinn and Stond@upposér: (V,dV,01V) — (W,0W) is a
1-negligible embedding problem and W is “good” and contains n@-torsion. Suppose
f1 and f> are two m1-negligible embeddings homotopieldpV to h. Fix a homotopy
HreldgV from fi to fo.

(a) If h is nots-characteristic, thenH is homologous, witl? [z, W]-coefficients, to a
m1-negligible concordance betwegh and f>.

(b) If h is s-characteristic, then there is an obstructi@m(H) € H1(W; Z/27) which
vanishes if and only ifH is homologous, withZ(z1 W)-coefficients, to arj-
negligible concordance betwegi and f>.

(c) If h is s-characteristic, f1 is fixed andae € H1(W;Z/27), then there is am1-
negligible embeddingf>, and a homotopyH reldpV from f1 to f2 such that
km(H) = a.

The proof of this theorem is contained in [2] and [7] and will not be reproduced here.
However a few of the details deserve comment. The term “good” group refers to the groups
for which topological surgery in dimension 4 works. Freedman [1] showedZlsgood
which is all we need for this paper. He in fact also showed that all the elementary amenable
groups are good. By recent results of Freedman and Teichner all groups of subexponential
growth are good [3]. It is still open whether all groups are good, but it is generally believed
that the free group on generatorsy > 2, is not good.

An exact description of the invariant km will be needed for the proof below. In
the easy case of Theorem 4 [7] contains a usable combinatorial description. Choose a
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classx € Ho(V, doV; Z[mw1W]) for which h,(x) is characteristic in . After possibly
stabilizing W and vV by adding copies o§? x $? we may choose an embedded 2-disk
(D?, 81 — (V, 80V) representinge. Then we may ViewH | p2 g1y, ; @s an immersion
G: (D3, 5% — W which is an embedding near the boundary. Put this immersion into
general position. Then the singular sBg of G forms a link in D3. The components
of this link fall into three classes. The first are pairs of circles which map uGder a
single circle inW. The other two are circles which und@rdouble cover either a circle in
W or an arc inW with cusps at the endpoints. Consider a pair of circfeand C’ which
cover the same circle iW. Then one can assign an elementthf W; Z/27) as follows.
Choose points € C andx’ € C’ which map to the same point 6f. Let y be a path in
D? from x to x’. ThenG(y) is a closed loop i which represents the desired element
of H1(W; Z/27Z). Denote this element hyc. Let Ik(C) be the number of components of
X6 — C linked by C counted mod 2. (By [7] this is the same agdk), hence the apparent
asymmetry in our definition is only apparent.) Then

km(H) = Z k(C)ac,
(c.c’

where the sum runs over all pairs of circles3ilg; which cover a single circle ifV. Note
that from this definition it is clear that kf#/) is unchanged if we stabiliz& by adding a
connected sum with a closed, 1-connected, spin 4-manifold.

3. Applications to self-homeomorphisms

We now turn to the proof of Theorem 2 above. l)étbe a closed, oriented, connected
topological 4-manifold with fundamental grodp First we will show surjectivity of the
natural map TORM)/N — Aut(ziM, moM, L) x S(Spin(M)). Suppose we are given a
group automorphisng :m1M — m1M and aZ(w1M) module isomorphisng : moM —
oM. If M is even, fix a spin structure on M and letr be another spin structure d
(possible the same one). Choose an embedding giréfeM representing the generator
of 71M. Then a closed regular neighborhoddof y is homeomorphism ts® x D3. If
M is even, choose this trivialization to agree with the one givew lytherwise fix any
trivialization. We wish to start building our homeomorphigfrwith a homeomorphism
flv:N — N. If g is the identity makef|y the identity on the cores!, otherwise
make it the reverse. IM is odd extend it toN arbitrarily. If M is even, then the spin
structurer gives another trivialization oN. Use this trivialization to buildf|y. Let Mg
be M —int(N). Choose another embedded cirglen int(Ms) representing the generator
of myMs = 1M and letE be a closed regular neighborhoodydflet V be Mg — int(E)
and letdgV = Mg = ON. Then¢ oM — moM determines, up to homotopy, a map
h:(V,90V) — (Mg, d9V) extendingf|yn. One easily checks that homotopically (in fact
geometrically after stabilization by connected sum withand S? x §2) V is built from
doV by adding 2-handles. Also for any isomorphism

¢:Hz(V,00V; ZIZ]) — H2(Ms, dMs; Z[Z])
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Poincaré duality guarantees the existence of dual 2-spheres. Therefore by Theorem 10.5
of [2] h is homotopic to ari-negligible embedding. Use this to exterfdover V to

a map f|y—intcg): M — Int(E) — M. Fix a trivialization of E. ThenM — f(M — E)

is a homotopys! with a fixed identification of its boundary witls* x §2. By [2,
Proposition 11.6A] there is a homeomorphisthx D3 — M — f(M — E) extending

the given one on the boundary. This exterfdso a homeomorphisnf : M — M. Note

that f induces the given mapsand¢ on 1 andxz and in the even case takedo .

Now we wish to apply Theorem 4 above to study the kernel of the homomorphism. Let
M,y,N,y’, E andV be as above. Further suppose tfiatll — M is a homeomorphism
which induces the identity onq, 72 and in the even case on the spin structuresvon
We want to start building a pseudoisotopyfrom the identity to f. However applying
Theorem 4 to classify self-hnomeomorphisms up to pseudoisotopy is slightly subtle for two
reasons. That theorem essentially describes what happens to the 2-skeleton. However it is
not clear that obstructions to extending a pseudoisotopy defined over the 1-skeleton to one
defined over the 2-skeleton actually give obstructions to finding a pseudoisotopy. Further
the obstruction krgH) to uniqueness of embeddings depend (weakly) on the choice of a
homotopyH between the two embeddings. The purpose of this section is to resolve these
issues.

Clearly to showf is pseudoisotopic to the identity, it suffices to build a pseudoisotopy
F:M x I — M x I from id to any homeomorphism homotopic fo Thus we are free
to changef by an isotopy whenever we desire. We will continue to denote this modified
map by f. By a first isotopy we may assumgis the identity ony. For such anf we
may takeF to be idx I ony x I. We have a trivialization ofV x {0} as S x D3
and applyingf gives a trivialization of N x {1}. In the even case, sincg preserves
spin structures this is the isotopic to the trivialization 8nx {0} and after isotopingf
we can extendF to be the identity onV x I. If M is odd, thenM is not spin and we
may isotopf so thatf induces the same trivialization &f as the identity. Hence in this
case we may also extend over N x I to be the identity. Next we wish to externfd
over (Mg — int(E)) x I. The problem of extending’ over (Mg — int(E)) x I is exactly
the problem solved by Theorem 4. Afis even, there is no obstruction to extendifg
by Theorem 4(a). If is odd and if one fixes a homotogy between iths,—_int(z) and
fms—int(£), then by Theorem 4(b) there is an obstruction ke H1(M; Z/27) = 7./ 27
to finding arr1-negligible concordance between jd —int(z) and f | y4—int(ey homologous
(with Z[r1 M] coefficients) toH . If this obstruction vanishes (for some choicefdf, then
we can extend” over (Mg — int(E)) x I. In either of the cases where we can extéhd
we have defined”: (M —int(E)) x I — M x I. The complement of itF | p—£)x1) 1S
homeomorphic té x D* and has a fixed identification of its boundary with x $2. By
[2, Theorem 11.555% x D* is unique up to homeomorphism rel boundary. Therefre
extends to a pseudoisotopy from id fo

This completes the proof in the case whafds even. In the odd case, the obstruction
km(H) is additive under disjoint unions in the following senseHifis a homotopy from
f1to foandH' is a homotopy fromyfs to f3, then we may regaré U H' as a homotopy
from f1 to f3. Since kmis calculated by adding up contributions from the self-intersections
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of the homotopy one clearly has ki U H') = km(H)km(H’). Therefore in the odd
case we have two possibilities for the kernel of T®B/N — Aut(ziM, w2M, L), either
7./27 or 1. The former case occurs if and only if km is actually independent of the choice
of homotopy and some homeomorphism realizes the nonzero value of km.

In the case wherg is odd, it is possible to find a self-homeomorphighof M which
is the identity onN and induces the identity onoM and for which some homotopy
realizes the nontrivial value of this obstruction km. For this alter the construction of self-
homeomorphism o#/ given above to exploit Theorem 4(c). When it comes time to extend
the homeomorphisi overV instead of using the identity, we argue that by Theorem 4(c)
there is an embedding: V — Mg and a homotopy reldpV from id|y to f with km(H)
nonzero. To extengt over E we proceed as abov&fs — int(f(V)) is a homotopy circle
with boundary identified witts? x $2. Hencef extends to a homeomorphistn M — M.

It only remains to show that k(#) is independent of the choice of the homotopy
H. First assume that/ = ST x S3#N where N is a closed, oriented, 1-connected,
topological 4-manifold with odd intersection form. Suppose furtiiéras a characteristic
class represented by an locally flat, topologically embedded 2-sgherev. Suppose
H:8%2 x I — M x I is the homotopy fromS to f(S). Up to homotopy any other
homotopyH’ from S to f(S) differs from H by forming an ambient connected sum with
an element ofr3(M x I). Since the invariant kiiH’) depend only on the homology class
of H’, we need only calculate kiq®’) for one element ofr3(M x I) in each class in
H3(M x I; Z[m1M]). But

H3(M x I; Z[miM)) = H3(M; Z[miM]) = Z

and is generated by the cof® in S x $3. Thus it suffices to show that kif) is
unchanged if we form an ambient connected sunHofvith a copy of this 3-sphere.
We may assumé is a productS x [0, ¢) inside M x [0, e) and we may choose our
3-sphere to be the obvious one M x {¢/2} which is embedded disjoint from i¢#/).
Perform the ambient connected sum in a neighborhood of an arc fr@#)ino this 3-
sphere with interior disjoint from both. Then the resulting homotéfiyhas exactly the
same self-intersections &5. Since kniH') is computed entirely from linking numbers of
self-intersection components we must have ki) = km(H).

For the general case it does not seem to be possible to compute the effect of changing the
homotopyH directly. This difficulty is easy to get around by stabilization. The invariantkm
is unchanged if one takes a connected sum Atk S2. Therefore it suffices to show that
one can get to the case above by such stabilizations. Supgpaseny closed, oriented,
connected, topological 4-manifold witty = 7Z and odd intersection form. Then by the
stable classification of such manifolds [4,10] there is some positive infegarch that
M#k(S? x §?) is homeomorphic tas* x S3#N for someN. (By a recent example of
Teichner's [9] there are exampl@$ which are not of the forns® x $3#N.) If necessary
adding another copy df? x §2, we may assum#’ has an indivisible, characteristic class
a with

o -a =sign(N) + 8K S(N)(mod 16.
By [2, 810.8]« is represented by a locally flat embedded 2-sphere.
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