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Abstract

In this paper we study the classification of self-homeomorphisms of closed, connected, oriented
4-manifolds with infinite cyclic fundamental group up to pseudoisotopy, or equivalently up to
homotopy. We find that for manifolds with even intersection form homeomorphisms are classified
up to pseudoisotopy by their action onπ1, π2 and the set of spin structures on the manifold. For
manifolds with odd intersection form they are classified by the action onπ1 andπ2 and an additional
Z/2Z. As a consequence we complete the classification program for closed, connected, oriented 4-
manifolds with infinite cyclic fundamental group, begun by Freedman, Quinn and Wang. 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to classify, up to pseudoisotopy, the self-homeomorphisms
of a closed, oriented, connected, topological 4-manifold withπ1M = Z. This classification
was started as a “extended exercise” in [2, Chapter 10] and we follow the outline of that
proof. However there are a number of omissions in that argument, several of which effect
the conclusion. Both [2] and an earlier version of this paper did not adequately analyze the
homeomorphisms over the 1-skeleton. This misses the effect of the homeomorphism on
the spin structures. (We are grateful to the referee for pointing out this omission.) Also
if M is a closed, oriented, connected, topological 4-manifold withπ1M = Z and odd
intersection form, then the argument in [2] misses a Kervaire–Milnor like obstruction to
building a pseudoisotopy over a characteristic class. This extra obstruction was first noted
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in [7] but does not immediately give an obstruction to the existence of a pseudoisotopy.
Proving such an obstruction exists is slightly tricky and has not been done until now. As a
result, we see that for odd intersection forms there are two pseudoisotopy classes of self-
homeomorphisms ofM which induce the identity onπ1M andπ2M. This fact has been
generally regarded as being the case since [7] and [10] first treated the problem.

These results fill in the last detail in the classification results for closed, oriented 4-
manifolds with infinite cyclic fundamental group of [2, §10.7]; [10,11] (which includes
an extension to nonorientable manifolds.) The final classification result is the following
theorem, where the underlined statements are the required changes.

Theorem 1.
(1) Suppose(H,λ) is a nonsingular hermitian form on a finitely generated freeZ[Z]-

moduleH , k ∈ Z/2, and if λ is even thenk ≡ (signatureλ)/8(mod2). Then there
is a closed, oriented4-manifoldM with π1 = Z, intersection formλ and Kirby–
Siebenmann invariantk.

(2) SupposeM and M ′ are two closed, oriented4-manifolds with π1 = Z, the
same Kirby–Siebenmann invariant,h :H2(M;Z[Z])→ H2(M

′;Z[Z]) is a Z[Z]
isomorphism that preserves the intersection form, and if the intersection form is
even thatσ is a spin structure onM andτ is a spin structure onM ′. Then there is a
homeomorphismf :M→M ′ such thatf∗ = h and ifM has even intersection form
f ∗τ = σ . If M has even intersection form, thenf is unique up to pseudoisotopy.
If M has odd intersection form, then there are exactly two pseudoisotopy classes of
such homeomorphisms.

It should be noted that the classification has also been approached by Kreck using his
modified surgery approach [4]. This method gives essentially the same result as above, but
this method has not to the authors’ knowledge been used to study the classification up to
pseudoisotopy of the homeomorphismf in the statement of the theorem.

Phrased purely in terms of self-homeomorphisms the new results in this paper can
be described as follows. SupposeM is a closed, oriented, connected topological 4-
manifold. Let (π2M = H2(M;Z[π1M]), λ) denote the intersection form ofM. Let
Aut(π1M,π2M,λ) denote the group of automorphisms of the pair(π1M,π2M) which
preserveλ. That is an element of Aut(π1M,π2M,λ) is a pair(g,φ) whereg :π1M →
π1M is a group automorphism andφ :π2M → π2M is aZ[π1M] module isomorphism
if the π1M actions are identified viag which preservesλ. If π1M = Z andπ2M is non-
trivial we may describe this as the group ofZ[Z]-automorphisms and anti-automorphisms
preservingλ. Let Spin(M) denote the set of spin structures onM andS(Spin(M)) the
group of permutations of Spin(M). (If M has odd intersection form these are trivial.)
Let TOP(M) denote the group of orientation preserving homeomorphisms ofM. Let
N ⊂ TOP(M) be the subgroup of homeomorphisms pseudoisotopic to the identity. Since
any homomorphism ofM preservesλ and any element ofN clearly induces the identity
map onπ1M,π2M andS(Spin(M)) there is a natural homomorphism

TOP(M)/N→ Aut(π1M,π2M,λ)× S
(
Spin(M)

)
.
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In these terms we will show the following theorem.

Theorem 2. SupposeM is a closed, oriented, connected topological4-manifold with
fundamental groupZ.

(a) If (H2(M;Z[π1M]), λ) is even, then the natural homomorphismTOP(M)/N →
Aut(π1M,π2M,λ)× S(Spin(M)) is an isomorphism.

(b) If (H2(M;Z[π1M]), λ) is odd, then there is a short exact sequence

0→ Z/2Z→ TOP(M)/N→ Aut(π1M,π2M,λ)→ 0.

These results should be compared to results of Quinn [5] for the simply connected case.
He shows the much stronger fact that for simply connectedM (regardless of intersection
form) the natural homomorphisms give isomorphisms

π0 TOP(M)∼= TOP(M)/N ∼= Aut
(
H2(M;Z), λ

)
.

Thus in either case for fundamental groupZ we have an extraZ/2Z. It is not clear whether
there is a connection between these two extra factors ofZ/2Z or in fact whether the exact
sequence in (b) is split.

The following proposition is an immediate corollary. It can be proved exactly as in
the smooth case as a standard consequence of the surgery exact sequence, compare,
for example, [5, Proposition 2.2] or [6, p. 350]. As a consequence the extra self-
homeomorphisms are not even homotopic to the identity andN may also be described
as the subgroup of homeomorphisms homotopic to the identity.

Proposition 3. SupposeM is a closed, oriented, connected, topological4-manifold with
fundamental groupZ, andf,f ′ :M→M are two homeomorphisms, thenf andf ′ are
pseudoisotopic if and only iff andf ′ are homotopic.

This paper is organized as follows. Section 2 contains a brief review of the techniques
developed in Freedman and Quinn specialized to the relatively simple case where the
fundamental group has no 2-torsion. In Section 3 these results are used to prove Theorem 2
above.

2. Review of embedding results

The classification argument given in [2] is based on a clever use of existence and
uniqueness theorems for codimension 2 embeddings. An existence result for embeddings
in dimension 4 is used for the existence part of Theorem 1 above and an existence result
for embeddings in dimension 5 for the uniqueness part. Unfortunately the statements and
proofs of these results in [2] contain a number of minor flaws which complicate the
classification. Specialized to the case where the fundamental group contains no 2-torsion
the corrected versions read as follows.

Consider the following situation. Let(W,∂W) and (V , ∂0V,∂1V ) be topological 4-
manifolds with boundary. We wish to consider the case whereV looks homotopically
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like it is built from ∂0V by adding 0-handles and 2-handles. Specifically suppose
π1(V , ∂0V ) = π1(V , ∂1V ) = 1, each component ofV has nonempty intersection with
∂1V and components disjoint from∂0V are 1-connected. Suppose we are given a map
h :V →W which restricts to an embedding∂0V → ∂W and preserves all intersection and
self-intersection numbers, including the relative intersection and self-intersection numbers
for classes with boundary in∂0V . (For an abstract definition of these relative intersection
numbers see [2, §10.5].) We wish to alterh to produce aπ1-negligible embedding ofV
in W and to classify such embeddings up toπ1-negligible concordance. Therefore we also
need algebraic dual 2-spheres inW to the 2-handles ofh(V ). See [2, §10.5] for a more
algebraic statement of this condition. Call a maph satisfying all of the above conditions a
π1-negligible embedding problemh : (V , ∂0V,∂1V )→ (W,∂W).

For aπ1-negligible embedding problem, with some extra fundamental group assump-
tions, [2, Chapter 10] and [7] give a short list of obstructions to homotopingh rel∂0V to a
π1-negligible embedding and a short list of obstructions to finding aπ1-negligible concor-
dance between two such embeddings. The uniqueness part of this result can be phrased as
follows. Call aπ1-negligible embedding problems-characteristic ifω2 :π2W → Z/2Z
does not vanish but does vanish on the subspace ofπ2W = H2(W ;Z[π1W ]) perpen-
dicular (in the sense of intersection pairings) toh∗H2(V , ∂0V ;Z[π1W ]). Paraphrased,
h is s-characteristic if the universal cover̃W of W is not spin, but for some element
x ∈H2(V , ∂0V ;Z[π1W ]), h∗(x) is characteristic iñW .

Theorem 4 (Freedman, Quinn and Stong).Supposeh : (V , ∂0V,∂1V )→ (W,∂W) is a
π1-negligible embedding problem andπ1W is “good” and contains no2-torsion. Suppose
f1 and f2 are two π1-negligible embeddings homotopicrel∂0V to h. Fix a homotopy
H rel∂0V fromf1 to f2.

(a) If h is not s-characteristic, thenH is homologous, withZ[π1W ]-coefficients, to a
π1-negligible concordance betweenf1 andf2.

(b) If h is s-characteristic, then there is an obstructionkm(H) ∈H1(W ;Z/2Z) which
vanishes if and only ifH is homologous, withZ(π1W)-coefficients, to aπ1-
negligible concordance betweenf1 andf2.

(c) If h is s-characteristic,f1 is fixed andα ∈ H1(W ;Z/2Z), then there is aπ1-
negligible embeddingf2 and a homotopyH rel∂0V from f1 to f2 such that
km(H)= α.

The proof of this theorem is contained in [2] and [7] and will not be reproduced here.
However a few of the details deserve comment. The term “good” group refers to the groups
for which topological surgery in dimension 4 works. Freedman [1] showed thatZ is good
which is all we need for this paper. He in fact also showed that all the elementary amenable
groups are good. By recent results of Freedman and Teichner all groups of subexponential
growth are good [3]. It is still open whether all groups are good, but it is generally believed
that the free group onn generators,n> 2, is not good.

An exact description of the invariant km will be needed for the proof below. In
the easy case of Theorem 4 [7] contains a usable combinatorial description. Choose a
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classx ∈ H2(V , ∂0V ;Z[π1W ]) for which h∗(x) is characteristic inW̃ . After possibly
stabilizingW andV by adding copies ofS2 × S2 we may choose an embedded 2-disk
(D2, S1)→ (V , ∂0V ) representingx. Then we may viewH |(D2,S1)×I as an immersion
G : (D3, S2)→ W which is an embedding near the boundary. Put this immersion into
general position. Then the singular setΣG of G forms a link inD3. The components
of this link fall into three classes. The first are pairs of circles which map underG to a
single circle inW . The other two are circles which underG double cover either a circle in
W or an arc inW with cusps at the endpoints. Consider a pair of circlesC andC′ which
cover the same circle inW . Then one can assign an element ofH1(W ;Z/2Z) as follows.
Choose pointsx ∈ C andx ′ ∈ C′ which map to the same point ofW . Let γ be a path in
D3 from x to x ′. ThenG(γ ) is a closed loop inW which represents the desired element
of H1(W ;Z/2Z). Denote this element byaC . Let lk(C) be the number of components of
ΣG−C linked byC counted mod2. (By [7] this is the same as lk(C′), hence the apparent
asymmetry in our definition is only apparent.) Then

km(H)=
∑
{C,C ′}

lk(C)aC,

where the sum runs over all pairs of circles inΣG which cover a single circle inW . Note
that from this definition it is clear that km(H) is unchanged if we stabilizeW by adding a
connected sum with a closed, 1-connected, spin 4-manifold.

3. Applications to self-homeomorphisms

We now turn to the proof of Theorem 2 above. LetM be a closed, oriented, connected
topological 4-manifold with fundamental groupZ. First we will show surjectivity of the
natural map TOP(M)/N → Aut(π1M,π2M,λ) × S(Spin(M)). Suppose we are given a
group automorphismg :π1M → π1M and aZ(π1M) module isomorphismφ :π2M →
π2M. If M is even, fix a spin structureσ onM and letτ be another spin structure onM
(possible the same one). Choose an embedding circleγ in M representing the generator
of π1M. Then a closed regular neighborhoodN of γ is homeomorphism toS1 ×D3. If
M is even, choose this trivialization to agree with the one given byσ otherwise fix any
trivialization. We wish to start building our homeomorphismf with a homeomorphism
f |N :N → N . If g is the identity makef |N the identity on the coreS1, otherwise
make it the reverse. IfM is odd extend it toN arbitrarily. If M is even, then the spin
structureτ gives another trivialization ofN . Use this trivialization to buildf |N . LetMS

beM − int(N). Choose another embedded circleγ ′ in int(MS) representing the generator
of π1MS = π1M and letE be a closed regular neighborhood ofγ ′ let V beMS − int(E)
and let∂0V = ∂MS = ∂N . Thenφ :π2M → π2M determines, up to homotopy, a map
h : (V , ∂0V )→ (MS, ∂0V ) extendingf |∂N . One easily checks that homotopically (in fact
geometrically after stabilization by connected sum withE8 andS2 × S2) V is built from
∂0V by adding 2-handles. Also for any isomorphism

φ :H2
(
V,∂0V ;Z[Z]

)→H2
(
MS,∂MS;Z[Z]

)
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Poincaré duality guarantees the existence of dual 2-spheres. Therefore by Theorem 10.5
of [2] h is homotopic to aπ1-negligible embedding. Use this to extendf over V to
a mapf |M−int(E) :M − int(E)→ M. Fix a trivialization ofE. ThenM − f (M − E)
is a homotopyS1 with a fixed identification of its boundary withS1 × S2. By [2,
Proposition 11.6A] there is a homeomorphismS1 × D3→ M − f (M − E) extending
the given one on the boundary. This extendsf to a homeomorphismf :M→M. Note
thatf induces the given mapsg andφ onπ1 andπ2 and in the even case takesσ to τ .

Now we wish to apply Theorem 4 above to study the kernel of the homomorphism. Let
M,γ,N,γ ′,E andV be as above. Further suppose thatf :M→M is a homeomorphism
which induces the identity onπ1,π2 and in the even case on the spin structures onM.
We want to start building a pseudoisotopyF from the identity tof . However applying
Theorem 4 to classify self-homeomorphisms up to pseudoisotopy is slightly subtle for two
reasons. That theorem essentially describes what happens to the 2-skeleton. However it is
not clear that obstructions to extending a pseudoisotopy defined over the 1-skeleton to one
defined over the 2-skeleton actually give obstructions to finding a pseudoisotopy. Further
the obstruction km(H) to uniqueness of embeddings depend (weakly) on the choice of a
homotopyH between the two embeddings. The purpose of this section is to resolve these
issues.

Clearly to showf is pseudoisotopic to the identity, it suffices to build a pseudoisotopy
F :M × I →M × I from id to any homeomorphism homotopic tof . Thus we are free
to changef by an isotopy whenever we desire. We will continue to denote this modified
map byf . By a first isotopy we may assumef is the identity onγ . For such anf we
may takeF to be id× I on γ × I . We have a trivialization ofN × {0} as S1 × D3

and applyingf gives a trivialization ofN × {1}. In the even case, sincef preserves
spin structures this is the isotopic to the trivialization onN × {0} and after isotopingf
we can extendF to be the identity onN × I . If M is odd, thenM is not spin and we
may isotopf so thatf induces the same trivialization ofN as the identity. Hence in this
case we may also extendF overN × I to be the identity. Next we wish to extendF
over(MS − int(E))× I . The problem of extendingF over (MS − int(E))× I is exactly
the problem solved by Theorem 4. Ifλ is even, there is no obstruction to extendingF
by Theorem 4(a). Ifλ is odd and if one fixes a homotopyH between id|MS−int(E) and
f |MS−int(E), then by Theorem 4(b) there is an obstruction km(H) ∈H1(M;Z/2Z)∼= Z/2Z
to finding aπ1-negligible concordance between id|MS−int(E) andf |MS−int(E) homologous
(with Z[π1M] coefficients) toH . If this obstruction vanishes (for some choice ofH ), then
we can extendF over (MS − int(E))× I . In either of the cases where we can extendF ,
we have definedF : (M − int(E))× I →M × I . The complement of im(F |(M−E)×I ) is
homeomorphic toS1×D4 and has a fixed identification of its boundary withS1× S3. By
[2, Theorem 11.5]S1 ×D4 is unique up to homeomorphism rel boundary. ThereforeF

extends to a pseudoisotopy from id tof .
This completes the proof in the case whereM is even. In the odd case, the obstruction

km(H) is additive under disjoint unions in the following sense. IfH is a homotopy from
f1 to f2 andH ′ is a homotopy fromf2 to f3, then we may regardH ∪H ′ as a homotopy
fromf1 tof3. Since km is calculated by adding up contributions from the self-intersections
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of the homotopy one clearly has km(H ∪ H ′) = km(H)km(H ′). Therefore in the odd
case we have two possibilities for the kernel of TOP(M)/N→ Aut(π1M,π2M,λ), either
Z/2Z or 1. The former case occurs if and only if km is actually independent of the choice
of homotopy and some homeomorphism realizes the nonzero value of km.

In the case whereλ is odd, it is possible to find a self-homeomorphismf of M which
is the identity onN and induces the identity onπ2M and for which some homotopy
realizes the nontrivial value of this obstruction km. For this alter the construction of self-
homeomorphism ofM given above to exploit Theorem 4(c). When it comes time to extend
the homeomorphismh overV instead of using the identity, we argue that by Theorem 4(c)
there is an embeddingf :V →MS and a homotopyH rel∂0V from id|V to f with km(H)
nonzero. To extendf overE we proceed as above.MS − int(f (V )) is a homotopy circle
with boundary identified withS1×S2. Hencef extends to a homeomorphismf :M→M.

It only remains to show that km(H) is independent of the choice of the homotopy
H . First assume thatM = S1 × S3#N whereN is a closed, oriented, 1-connected,
topological 4-manifold with odd intersection form. Suppose furtherN has a characteristic
class represented by an locally flat, topologically embedded 2-sphereS ⊂ N . Suppose
H :S2 × I → M × I is the homotopy fromS to f (S). Up to homotopy any other
homotopyH ′ from S to f (S) differs fromH by forming an ambient connected sum with
an element ofπ3(M × I). Since the invariant km(H ′) depend only on the homology class
of H ′, we need only calculate km(H ′) for one element ofπ3(M × I) in each class in
H3(M × I ;Z[π1M]). But

H3
(
M × I ;Z[π1M]

)∼=H3
(
M;Z[π1M]

)∼= Z
and is generated by the coreS3 in S1 × S3. Thus it suffices to show that km(H) is
unchanged if we form an ambient connected sum ofH with a copy of this 3-sphere.
We may assumeH is a productS × [0, ε) insideM × [0, ε) and we may choose our
3-sphere to be the obvious one inM × {ε/2} which is embedded disjoint from im(H).
Perform the ambient connected sum in a neighborhood of an arc from im(H) to this 3-
sphere with interior disjoint from both. Then the resulting homotopyH ′ has exactly the
same self-intersections asH . Since km(H ′) is computed entirely from linking numbers of
self-intersection components we must have km(H ′)= km(H).

For the general case it does not seem to be possible to compute the effect of changing the
homotopyH directly. This difficulty is easy to get around by stabilization. The invariant km
is unchanged if one takes a connected sum withS2× S2. Therefore it suffices to show that
one can get to the case above by such stabilizations. SupposeM is any closed, oriented,
connected, topological 4-manifold withπ1 = Z and odd intersection form. Then by the
stable classification of such manifolds [4,10] there is some positive integerk, such that
M#k(S2 × S2) is homeomorphic toS1 × S3#N for someN . (By a recent example of
Teichner’s [9] there are examplesM which are not of the formS1× S3#N .) If necessary
adding another copy ofS2× S2, we may assumeN has an indivisible, characteristic class
α with

α · α ≡ sign(N)+ 8KS(N)(mod16).

By [2, §10.8]α is represented by a locally flat embedded 2-sphere.
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