1. Effective Dynamics in Ferromagnetic Thin Films , C. J. García-Cervera and Weinan E, J. Appl. Phys. Vol. 90, no. 1, pp. 370-374 (2001).
2. A Gauss-Seidel Projection Method for Micromagnetics Simulations, X.P. Wang, C.J. García-Cervera, and Weinan E, J. Comp. Phys., Vol. 171, pp. 357-372 (2001).
3. Accurate Numerical Methods for Micromagnetics Simulations with General Geometries, C.J. García-Cervera, Z. Gimbutas, and Weinan E, J. Comp. Phys. 184, 1, pp. 37-52, (2003)
4. Improved Gauss-Seidel Projection Method for Micromagnetics Simulations, C.J. García-Cervera, and Weinan E, IEEE Trans. Magn. 39, 3, pp. 1766-1770 (2003)
5. One-Dimensional Magnetic Domain Walls, C.J. García-Cervera, Euro. J. Appl. Math., Vol. 15, No. 4, pp. 451-486 (2004)
6. Néel Walls in Low Anisotropy Symmetric Double Layers, C.J. García-Cervera, SIAM J. Appl. Math., Vol. 65, No. 5, pp. 1726-1747 (2005)
7. Structure of the Bloch Wall in Multilayers, C.J. García-Cervera, Proc. R. Soc. A, vol. 461, pp. 1911--1926 (2005)
8. Magnetic Switching of Thin Films under Thermal Perturbation, Di Liu, and C.J. García-Cervera, J. Appl. Phys., 98, 023903 (2005)
9. Thermal activation in Permalloy nanorectangles at room temperature, E. Martinez, L. Lopez-Diaz, L. Torres, and C.J. García-Cervera, Physica B, 372, pp. 286-289 (2006)
10. Adaptive Mesh Refinement for Micromagnetics Simulations, C.J. García-Cervera and A.M. Roma, IEEE Trans. Magn., 42, pp. 1648-1654 (2006)
11. Advances in Numerical Micromagnetics: Spin-Polarized Transport, C.J. García-Cervera and X.-P. Wang, Bol. Soc. Esp. Mat. Apl., 34, 217--221 (2006).
12. Spin-Polarized Transport: Existence of Weak Solutions, C.J. García-Cervera and X.-P. Wang, Discrete and Continuous Dynamical Systems, series B, 7(1), pp. 87--100 (2007).
13. Spin-Polarized Currents in Ferromagnetic Multilayers, C.J. García-Cervera and X.-P. Wang, J. Comp. Phys., 224(2), pp. 699--711 (2007).
14. Numerical Micromagnetics: A Review, C.J. García-Cervera, Bol. Soc. Esp. Mat. Apl., 39, pp. 103--135 (2007).
15. Micromagnetics Simulations with Thermal Noise: Physical and Numerical Aspects, E. Martinez, L. Lopez-Diaz, L. Torres, and C.J. García-Cervera, Journal of Magnetism and Magnetic Materials, Vol. 316, pp. 269-272 (2007).
16. Minimizing Cell-Size Dependence in Micromagnetics Simulations with Thermal Noise, E. Martinez, L. Lopez-Diaz, L. Torres, and C.J. García-Cervera, Journal of Physics D: Applied Physics, Vol. 40, No. 4, pp. 942-948 (2007)
17. A numerical study of the self-similar solutions of the Schrödinger Map, F. De La Hoz, C.J. García-Cervera and L. Vega, SIAM J. Appl. Math, 70(4), pp. 1047-1077 (2009).
18. A mean-field model for spin dynamics in multilayered ferromagnetic media, Jingrun Chen, C.J. García-Cervera and Xu Yang, SIAM J. Multiscale Modeling, 13(2), pp. 551-570 (2015).
19. Mean-field dynamics of the spin-magnetization coupling in ferromagnetic materials: Application to current-driven domain-wall motions, Jingrun Chen, C.J. García-Cervera and Xu Yang, IEEE Trans. Mag., 51(6), 1400906 (2015).
20. Semiclassical limit of the Schrödinger-Poisson-Landau-Lifshitz-Gilbert system, Lihui Chai, C.J. García-Cervera and Xu Yang, Arch. Rational Mech. Anal. (2018) 227(3), p. 897.
21. Diffusion limit of the Boltzmann-Landau-Lifshitz-Gilbert system in ferromagnetic materials, Lihui Chai, C.J. García-Cervera and Xu Yang, Communications in Mathematical Sciences, 16(4), 1057-1067 (2018).
22. Twin-enhanced magnetic torque, A. Hobza, C.J. García-Cervera, and P. Müllner, Journal of Magnetism and Magnetic Materials Volume 458, Pages 183-192 (2018).
23. Sensitivity of twin boundary movement to sample orientation and magnetic field direction in Ni-Mn-Ga, Medha Veligatla, Christian Titsch, Welf-Guntram Drossel, C.J. García-Cervera, and Peter Müllner, Acta Materialia, Vol. 186, pp. 389--395 (2020).
24. Magnetic domain-twin boundary interactions in Ni-Mn-Ga , Medha Veligatla, C.J. García-Cervera, and Peter Müllner, Acta Materialia, Vol. 193, pp. 221--228 (2020).
25. Second-order semi-implicit projection methods for micromagnetics simulations , Changjian Xie, Carlos J. García-Cervera, Cheng Wang, Zhennan Zhou, Jingrun Chen, J. Comp. Phys., Vol 404, p. 109104 (2020)
1. Computational studies of the shear flow behaviour of a model for nematic liquid crystalline polymers, D.H. Klein, C.J. García-Cervera, H.D. Ceniceros, and L.G. Leal, ANZIAM J., 46, C210-C244 (2005)
2. Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation, E.W. Cochran, C.J. García-Cervera, and G.H. Fredrickson, Macromolecules, 39(7), pp. 2449-2451 (2006).
3. Defects and their removal in block copolymer thin film simulations, A.W. Bosse, S.W. Sides, K.Katsov, C.J. García-Cervera, and G.H. Fredrickson, Journal of Polymer Science Part B: Polymer Physics, 44 (18), pp. 2495-2511 (2006).
4. Self-consistent field theory simulations of block copolymer assembly on a sphere, T.L. Chantawansri, A.W. Bosse, A. Hexemer, H.D. Ceniceros, C.J. García-Cervera, E.J. Kramer, and G.H. Fredrickson, Phys. Rev. E, 75(3), 031802 (2007).
5. Microdomain ordering in laterally confined block copolymer thin films, A.W. Bosse, C.J. García-Cervera, and G.H. Fredrickson, Macromolecules, 40, pp. 9570-9581, (2007).
6. Ericksen number and Deborah number cascade predictions of a model for liquid crystalline polymers for simple shear flow, D.H. Klein, C.J. García-Cervera, H.D. Ceniceros, and L.G. Leal, Physics of Fluids, 19, 023101 (2007).
7. Three-dimensional shear driven dynamics of polydomain textures and disclination loops in liquid crystalline polymers, D.H. Klein, C.J. García-Cervera, H.D. Ceniceros, and L.G. Leal, Journal of Rheology, 52, pp. 837-863 (2008).
8. Numerical Solutions of the Complex Langevin Equations in Polymer Field Theory, E.M. Lennon, G.O. Mohler, H.D. Ceniceros, C.J. García-Cervera, and G.H. Fredrickson, Multiscale Modeling and Simulation, 6(4), pp. 1347-1370 (2008).
9. Geometric strong segregation theory for compositionally asymmetric diblock copolymer melts, C.B. Muratov, M. Novaga, G. Orlandi, and C.J. García-Cervera, in ''Singularities in nonlinear evolution phenomena and applications", CRM Series, 9, Birkhauser, (2009).
10. SCFT Simulations of Thin Film Blends of Block Copolymer and Homopolymer Laterally Confined in a Square Well, S.-M. Hur, C.J. García-Cervera, E. Kramer, and G.H. Fredrickson, Macromolecules, 42(15), pp. 5861-5872 (2009).
11. Layer undulations in smectic A liquid crystals, C.J. García-Cervera and S. Joo, Journal of Theoretical and Computational Nanosciences, 7(4), pp. 795-801 (2010).
12. Spectral collocation methods for polymer brushes, T. Chantawansri, S.-M. Hur, C.J. García-Cervera, H.D. Ceniceros, and G.H. Fredrickson, J. Chem. Phys., 134, 244905 (2011).
13. Analytic description of layer undulations in smectic A liquid crystals,C.J. García-Cervera and S. Joo, Arch. Rat. Mech. Anal., 203(1), pp. 1-43 (2012).
14. Chebyshev Collocation in Polymer Field Theory: Application to Wetting Phenomena, S.-M. Hur, C.J. García-Cervera, and G.H. Fredrickson, Macromolecules, 45(6), pp. 2905--2919 (2012).
15. A New Approach for the Numerical Solution of Diffusion Equations with Variable and Degenerate Mobility, C.J. García-Cervera and H.D. Ceniceros, J. Comp. Phys., 246, pp. 1--10 (2013).
16. Analysis and Simulations of the Chen-Lubensky Energy for Smectic Liquid Crystals: Onset of Undulations, C.J. García-Cervera and S. Joo, Commun. Math. Sci., 12 (6), pp. 1155 - 1183 (2014).
17. Block Copolymer Self Assembly during Rapid Solvent Evaporation: Insights into Cylinder Growth and Stability, S.P. Paradiso, K.T. Delaney, C.J. García-Cervera, H.D. Ceniceros, and G.H. Fredrickson, ACS Macro Lett., 3, pp. 16--20 (2014).
18. Ordering kinetics of a conserved binary mixture with a nematic liquid crystal component, Matthew Mata. Carlos J. García-Cervera, and Hector D. Ceniceros, Journal of Non-Newtonian Fluid Mechanics, 212, pp. 18-27, (2014).
19. Reorientation of Smectic A Liquid Crystals by Magnetic Fields, C.J. García-Cervera and S. Joo, Discrete and Continuous Dynamical Systems, series B, 20(7), pp. 1983--2000, 2015.
20. Sawtooth profile in smectic A liquid crystals, C.J. García-Cervera. T. Giorgi and S. Joo, SIAM J. Appl. Math., 76(1), pp. 217-237 (2016).
21. Cyclic Solvent Annealing Improves Feature Orientation in Block Copolymer Thin Films, Sean P. Paradiso, Kris T. Delaney, Carlos J. García-Cervera, Hector D. Ceniceros, and Glenn H. Fredrickson, Macromolecules, 49 (5), pp 1743–1751 (2016).
22. The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field, A. Contreras , C. Garcia-Azpeitia , Carlos J. García-Cervera, and S. Joo, Nonlinearity, 29, pp. 2474—2496 (2016).
23. Three-dimensional coarsening dynamics of a conserved, nematic liquid crystal-isotropic fluid mixture, Rudimar Nos, Alexandre Roma, Carlos J. García-Cervera, and Hector D. Ceniceros, J. Non-Newtonian Fluid Mechanics, 248, pp. 62-73 (2017).
24. Switching mechanism in the $B_{\text{1RevTilted}}$ phase of bent-core liquid crystals, C.J. García-Cervera, Tiziana Giorgi, Sookyung Joo, and Xin Yang Lu, SIAM J. Math. Anal., 50(5), 4889–4913 (2018).
25. Optimized Phase Field Model for Diblock Copolymer Melts, Jimmy V. Liu, Carlos J. García-Cervera, Kris T. Delaney, and Glenn H. Fredrickson, Macromolecules, 52 (7), pp 2878–2888 (2019).
26. Linear Scaling Self-Consistent Field Theory with Spectral Contour Accuracy , Daniel L. Vigil, Carlos J. García-Cervera, Kris T. Delaney, Glenn H. Fredrickson, ACS Macro Lett. 8, 11, 1402-1406 (2019).
27. Boundary vortex formation in polarization-modulated orthogonal smectic liquid crystals, C.J. García-Cervera, Tiziana Giorgi, and Sookyung Joo, SIAM Journal on Applied Mathematics 80(5), pp. 2024-2044 (2020).
1. An Efficient Real Space Method for Orbital-Free Density-Functional Theory, C.J. García-Cervera, Comm. Comp. Phys., 2 (2), pp. 334-357 (2007).
2. A sub-linear scaling algorithms for computing the electronic structure of materials, C.J. García-Cervera, J. Lu, and W. E, Communications in Mathematical Sciences, 5(4), pp.999-1026, (2007).
3. A remark on 'An Efficient Real Space Method for Orbital-Free Density Functional Theory', C.J. García-Cervera, Comm. Comp. Phys., 3(4), pp. 968-872 (2008).
4. A Linear Scaling Subspace Iteration Algorithm with Optimally Localized Non-Orthogonal Wave Functions for Kohn-Sham Density Functional Theory, C.J. García-Cervera, Jianfeng Lu, Yulin Xuan, and Weinan E, Phys. Rev. B, 79(11), 115110, (2009).
5. Hartree-Fock Theory with a Self-Generated Magnetic Field, Silvia Comelli and Carlos J. García-Cervera, Journal of Mathematical Physics 58, 062108 (2017).
1. Sequential multiscale modeling using sparse representation, C.J. García-Cervera, W. Ren, J. Lu, and W. E, Comm. Comp. Phys., 4(5), pp. 1025--1033 (2008).
2. A Density Gradient Corrected Embedded Atom Method G. Wu, W. Lu, C.J. García-Cervera, and W. E, Phys. Rev. B., 79, 035124 (2009).
3. Systematic study of exciton diffusion length in organic semiconductors by six experimental methods, J. Lin, O. Mikhnenko, J. Chen, Z. Masri, A. Ruseckas, A. Mikhailovsky, R. Raab, J. Liu, P. Blom, M.A. Loi, C.J. García-Cervera, I. Samuel, T.-Q. Nguyen, Mater. Horiz., 1, 280-285 (2014) .
4. Effect of copper metalation of tetrabenzoporphyrin donor material on organic solar cell performance, M. Guide, J. Lin, C. Proctor, J. Chen, C.J. García-Cervera, and T.-Q. Nguyen, J. Mater. Chem. A, 2, 7890-7896 (2014).
5. An atomistic/continuum coupling method using enriched bases, Jingrun Chen, C.J. García-Cervera and Xiantao Li, SIAM J. Multiscale Modeling and Simulations, 13(3), pp. 766-789 (2015)
6. High Order Finite Difference Discretization for Composite Grid Hierarchy and Its Applications, Qun Gu, Weiguo Gao, and C.J. García-Cervera, Commun. Comput. Phys. 18(5), pp. 1211-1233 (2015).
7. Detecting Small Surface Vibrations by Passive Electro-Optical Illumination, Matthew Buoni, Wellesley Pereira, Reed A. Weber, and Carlos García-Cervera, Proc. of SPIE Vol. 9219, Infrared Remote Sensing and Instrumentation XXII, 92190E (2014).
8. An effective multigrid strategy for large-scale molecular mechanics optimization, Jingrun Chen, and C.J. García-Cervera, J. Comp. Phys., 342(1), pp. 29-42 (2017).
8. Control of Partial Differential Equations via Physics-Informed Neural Networks, C.J. Garcia-Cervera, Mathieu Kessler and Francisco Periago, Journal of Optimization Theory and Applications, (2022).
1. Advances in Materials Modeling: Analysis and Simulations. Special Issue of Discrete and Continuous Dynamical Systems, Series B, Volume 6, Number 2 (2006).
C.J. Garcia-Cervera acknowledges partial support from the National Science Foundation for some of the publications listed above. Any opinions, findings and conclusions or recomendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).